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Linearly embedded graphs in 3–space
with homotopically free exteriors

YOUNGSIK HUH

JUNG HOON LEE

An embedding of a graph into R3 is said to be linear if any edge of the graph is
sent to a line segment. And we say that an embedding f of a graph G into R3 is
free if �1.R3�f .G// is a free group. It is known that the linear embedding of any
complete graph is always free.

In this paper we investigate the freeness of linear embeddings by considering the
number of vertices. It is shown that the linear embedding of any simple connected
graph with at most 6 vertices whose minimal valency is at least 3 is always free. On
the contrary, when the number of vertices is much larger than the minimal valency or
connectivity, the freeness may not be an intrinsic property of the graph. In fact we
show that for any n � 1 there are infinitely many connected graphs with minimal
valency n which have nonfree linear embeddings and furthermore that there are
infinitely many n–connected graphs which have nonfree linear embeddings.

57M25; 57M15, 05C10

1 Introduction

Let G be a finite connected graph and let f W G!R3 be an embedding of G into the
Euclidean 3–space R3 . If the fundamental group �1.R

3�f .G// is free, then we say
that the embedding f is free.

The freeness of the fundamental group plays a key role in detecting the unknottedness
of graphs in R3 . A graph embedded into R3 (or its embedding into R3 ) is said to be
unknotted if it lies on an embedded surface in R3 which is homeomorphic to the 2–
sphere. It is known that a simple closed curve embedded in R3 is unknotted if and only
if it is free; see Papakyriakopoulos [6]. This result was generalized by Scharlemann and
Thompson. They proved that for any planar graph G , its embedding f is unknotted
if and only if �1.R

3�f .H // is free for every subgraph H of G ; see Scharlemann
and Thompson [9], Wu [10] and Gordon [2]. Furthermore this criterion is valid even
when determining whether a graph has a linkless embedding; Robertson, Seymour and
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Thomas [8] proved that a graph G has a linkless embedding if and only if it has an
embedding f such that �1.R

3�f .H // is free for every subgraph H of G .

In this paper, we are interested in the freeness of graphs in R3 , but our viewpoint is
different from the works above. We begin with observing two specific embeddings
of the complete graph K4 . In Figure 1(a) an edge forms a locally knotted arc, hence
the embedding illustrated in the figure is not free. For any graph with a cycle, we
may construct a nonfree embedding in this way. On the contrary, in Figure 1(b), every
edge is a line segment. Therefore the embedded edges constitute the 1–skeleton of
a tetrahedron, and the fundamental group of its complement is free in consequence.
Motivated by this example, the freeness of such linear embeddings is studied in
this paper.

(a) (b)

Figure 1

An embedding of a graph into R3 will be said to be linear if each edge of the graph is
sent to a line segment. Note that, for a graph to be linearly embeddable, it should be
simple, that is, have no multiple edges between any two vertices and no loop edges.

In the late 1980s, V Nicholson proved the following theorem which says that the
freeness of linear embedding is an intrinsic property of complete graphs:

Theorem 1 [5] Every linear embedding of the complete graph Kn is free.

The first aim of this paper is to investigate small graphs with this property. Let G be a
connected graph. Suppose that a cycle of G contains n consecutive vertices v1; : : : ; vn

such that the valency of vi in G is two for every i . Then for n� 4 we can construct a
linear embedding of G so that the path traversing the vertices forms a locally knotted
arc, and consequently the embedding is not free. See Figure 2 for an example. To
avoid such local knottedness, the graphs in our consideration are restricted so that every
vertex is of valency at least three.

Let V .G/ be the set of vertices of G . For a vertex v , let d.v/ denote its valency, and
let ı.G/ denote minfd.v/ j v 2 V .G/g. Then we have the following theorem:
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Theorem 2 Let G be a simple connected graph with jV .G/j � 6. If the minimal
valency ı.G/ is at least 3, then every linear embedding of G is free.

v1

v2 v3

v4

)

v1 v2

v3

v4

Figure 2

)

Figure 3

We remark that the condition ı � 3 is not sufficient to guarantee the freeness for
graphs with more than 7 vertices. For example, Figure 3 shows a graph with ı D 3

and jV j D 8 which has a nonfree linear embedding. The embedding is obtained by
adding 6 additional line segments to a hexagonal trefoil knot so that the additional
edges cobound some disks with subarcs of the knot. Consequently the fundamental
group of its complement is a free product of the fundamental group of the trefoil
knot complement and a free group. Since the fundamental group of the trefoil knot
complement is not free, our group is also not free.

Motivated by this observation we show that if the number of vertices of a graph is
relatively larger than its minimal valency or connectivity, then it may have a linear
embedding which is not free:

Theorem 3 For any n � 1, there are infinitely many simple connected graphs with
minimal valency n which have nonfree linear embeddings.

Theorem 4 For any n� 1, there are infinitely many n–connected graphs which have
nonfree linear embeddings.

The proofs of the two theorems are constructive. In Theorem 3 the constructed graph
has at least 6.nC 1/ vertices, and in Theorem 4, at least 12n vertices. Note that for
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the complete graph Kn , the number of vertices, valency and connectivity are n, n� 1

and n, respectively.

The rest of this paper is devoted to proving these theorems. Theorems 3 and 4 are
proved in Sections 2 and 3, respectively. The proof of Theorem 2 is given in the final
section for our convenience.

2 Proof of Theorem 3

Let C6 be the cycle graph with only six vertices v1; v2; : : : ; v6 and let Gi be a copy of
the complete graph KnC1 for 1� i � 6. Identifying each vi with a vertex of Gi , we
obtain a simple connected graph G with 6.nC1/ vertices and ı.G/Dn. Then construct
a linear embedding f of G into R3 as follows. Figure 4 depicts the embedding.

� Embed C6 so that f .C6/ is a hexagonal trefoil knot.

� Take mutually disjoint small 3–balls B1;B2; : : : ;B6 so that each Bi meets
f .C6/ only at the vertex f .vi/.

� Embed each Gi linearly into Bi so that it meets the boundary 2–sphere SiD@Bi

only at the identified vertex f .vi/.

KnC1

Bi

Figure 4: A linear embedding of G which is not free

Now we show that �1.R
3�f .G// is not free. For our convenience, let G denote the

embedded graph f .G/ itself. First modify G slightly by subdividing each vertex vi

as seen in Figure 5. Then the complement of G has the same homotopy type as that of
the new graph. Again for our convenience, let G denote the new graph.

Taking a tubular neighborhood of each edge and a small ball centered at each vertex, we
have a neighborhood N.G/ of G that looks like Figure 6. Let Ai DN.G/\Bi and
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B DN.G/\ cl.R3� .
S

Bi//. Then the subset Ai is a neighborhood of a union of a
linearly embedded KnC1 in int Bi and a line segment. The subset B is a neighborhood
of a union of a hexagonal trefoil knot and six line segments. It can be assumed that
Di DN.G/\Si is a disk, hence Ei D cl.Si �Di/ is also a disk.

Gi

Si

C6 Gi

Si

C6

Figure 5: Subdivision at vi

Ei

Xi

Ai Di B

Y

Figure 6: A neighborhood N.G/ of G

Let Xi D cl.Bi � Ai/ and Y D cl.R3 � .
S

Bi/ � B/. Then Xi \ Y D Ei and
Xi [Y D cl.R3�N.G/� .

S
j¤i Bj //.

Claim 1 �1.Xi/ is free.

Proof If we glue a 3–ball O to Bi along their boundaries, we get the 3–sphere S3 .
Then Xi D cl.S3 � .Ai [O//, and Ai [O can be regarded as a neighborhood of a
linearly embedded KnC1 in S3 . Therefore by Theorem 1, �1.Xi/ is free.

Claim 2 �1.Y / is not free.

Proof Note that Y D cl.R3 � .B [ .
S

Bi///, and B [ .
S

Bi/ can be regarded as
a neighborhood of a hexagonal trefoil in R3 . Therefore �1.Y / is not free by the
unknotting theorem in [6].
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Since �1.Xi \ Y / is trivial, �1.Xi [ Y / is a free product of �1.Xi/ and �1.Y / by
the van Kampen theorem. So �1.Xi [ Y / is not free by Claims 1 and 2. We repeat
gluing XiC1 to .� � � ..Y [X1/[X2/ � � � /[Xi . Since Y [.

S6
iD1 Xi/D cl.R3�N.G//,

we conclude that �1.R
3�N.G// is not free.

The construction above can be applied to any nontrivial knot other than the trefoil.
Therefore we have an infinite family of graphs satisfying the statement of the theorem.
Note that since the number of line segments necessary to realize polygonal representa-
tion of any nontrivial knot is at least 6 (see Randell [7]), the number of vertices of each
graph in the family is at least 6.nC 1/.

3 Proof of Theorem 4

Let Kn;n be the complete bipartite graph. Its vertices are denoted by ai , bi .1� i �n/,
and edges by aibj .1� i; j � n/. Let H be a graph obtained by adding edges aiaiC1

and bibiC1 .1 � i � n� 1/ to Kn;n . Consider six copies H1; : : : ;H6 of H . The
vertices of each Hi .1 � i � 6/ are denoted by ai;j , bi;j .1 � j � n/. Finally we
obtain a graph G from H1; : : : ;H6 by adding edges b1;j a2;j ; : : : ; b5;j a6;j ; b6;j a1;j

(1� j � n) as illustrated in Figure 7. Then the graph G is n–connected.

b6;1 a6;1

b6;n
a6;n

a1;1 a1;n

b1;1 b1;n

a2;n b2;n

a2;1 b2;1

Figure 7: The n–connected graph G

Before constructing a linear embedding of G into R3 , let us consider a linear embedding
of H into the cube I3 D Œ1; n� � Œ1; n� � Œ1; n�. A linear embedding of a graph is
determined by the positions of its vertices. Construct two linear embeddings G1 and G2

of H into I3 so that ai D .n=2; i; n/, bi D .i; 1; 1/ for G1 , and ai D .nC1� i; 1; 1/,
bi D .n=2; i; n/ for G2 as illustrated in Figure 8.
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a1

an

b1 bnG1

b1

bn

an a1G2

Figure 8

a1

an

b1

bnG0
1

b1

bn

a1

an
G02

Figure 9

Figure 10

Figure 10 shows the final linear embedding of G obtained by connecting the cubes in
the above with 6n line segments. The embedding is realizable by modifying the cubes
so that the top and front faces are leaning as much as necessary. Figure 9 illustrates such
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a modification. Note that the embedded cycle ha1;1b1;1a2;1b2;1 � � � a6;1b6;1i of G is a
dodecagonal trefoil knot.

Consider the following process. Let T0 be an embedded graph in R3 . For i �0, choose
an arc ˛i in R3 and a subarc ˇi of Ti so that there exists a disk Di with @Di D˛i[ˇi

and Di \Ti D ˇi . Let TiC1 D Ti [ ˛i . Then by the HNN–extension theorem (see
Lyndon and Schupp [4]) �1.R

3�TiC1/ is the free product of �1.R
3�Ti/ and the

infinite cyclic group Z. Therefore for any n � 1, �1.R
3 � Tn/ is a free product of

�1.R
3�T0/ and the free group of rank n.

We can see that the embedded graph G is obtained through the above process starting
from a dodecagonal trefoil knot. So �1.R

3�G/ is a free product of the trefoil knot
group and a free group, consequently it is not free. By applying this construction to
other nontrivial knots, we get an infinite family of graphs satisfying the statement of
the theorem. Every graph in the family has at least 12n vertices.

4 Proof of Theorem 2

Since the minimal valency of G is at least 3, the number of vertices should be 4, 5

or 6. If it is 4, then G is the complete graph K4 . By Theorem 1 we may assume
that G is not a complete graph.

If jV .G/j is 5, the possible distribution of valencies of its vertices is .4; 4; 4; 3; 3/ or
.4; 3; 3; 3; 3/. In the former case G should be the graph in Figure 11(a). The graph
contains the complete graph K4 as a subgraph. If G is linearly embedded into R3 ,
then K4 constitutes the 1–skeleton of a tetrahedron. Consider the relative position of
three edges incident to the fifth vertex v with respect to the tetrahedron T . Then we
know that any linear embedding of G corresponds to one of the three types illustrated
in Figure 11(b): v 2 int T , v 62 T and no edge incident to v meets int T , or v 62 T and
only one edge from v meets int T . Apply the process in the previous section which
starts from K4 . Then it can be confirmed that the three types are free. In fact each
type can be isotoped into a plane in R3 .

If the distribution is .4; 3; 3; 3; 3/, G should be the graph in Figure 12(a). Consider
a convex hull determined by four vertices of G . Then, similarly as above, it can be
shown that all possible types of linear embedding of G are free. In fact, also in this
case, each type can be isotoped into a plane in R3 . Figure 12(b) shows an example.

In the rest of this section we consider the case jV .G/jD6. Let f be a linear embedding
of G into R3 . For our convenience G will denote both the abstract graph itself and the
embedded graph without distinction. The vertices will be labeled simply by 1; 2; : : : ; 6
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(a) (b)
Figure 11

(a) (b)

Figure 12

and the line segment in R3 between two vertices i and j is denoted by ij . Let �ijk

denote the convex hull determined by three vertices i , j and k . Lastly, for an ordered
sequence ij k of three vertices, define

HC
ijk
D fp 2R3

j .
�!
ij �
�!
j k/ �

�!
jp > 0g and H�ijk D fq 2R3

j .
�!
ij �
�!
j k/ �

�!
j q < 0g:

Now three lemmas necessary for the proof of Theorem 2 are introduced. We begin
with a well-known result of Conway and Gordon.

Lemma 5 [1] Every embedding of the complete graph K6 into R3 contains a
nonsplittable 2–component link as a pair of disjoint cycles.

Without loss of generality we may assume that the vertices embedded by f are in
general position. Then f can be extended to be a linear embedding of K6 . By Lemma 5
we can label the vertices so that the following conditions are satisfied (see Figure 13).

� @4123[ @4456 is a Hopf link.

� 45 penetrates 4123 .

� 13 penetrates 4456 .

� 4; 6 2HC
132

and 5 2H�
132

.

� 6 2HC
134

and 2; 5 2H�
134

.
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1

23

4

5

6

Figure 13

We will say that a convex hull �ijk is trivial if its interior is not penetrated by any line
segment between the vertices of G . In a previous work of the first author the linear
embeddings of K6 were investigated. An observation from the work is given here as a
lemma.

Lemma 6 (Huh and Jeon [3, Section 4]) The following convex hulls are trivial:

f�124; �125; �135; �136; �146; �156; �234; �235; �245; �246; �346; �356g:

Considering the conditions of G , the following lemma is easily proved.

Lemma 7 The graph G contains a Hamiltonian cycle.

By Lemma 7 there exists a hexagonal knot P in R3 which is a Hamiltonian cycle
of G . Each component of G�P is a line segment connecting two vertices of P . Such
line segments will be called bridges of P . Possibly P is one of 5!

2
D 60 Hamiltonian

cycles of F.K6/, where F is the linear embedding of K6 extended from f . For each
possible case, we are going to observe the isotopy relation among the bridges of P .

Case 1: P is the cycle h123456i In this case the possible candidates for bridges
of P are

f13; 14; 15; 24; 25; 26; 35; 36; 46g:

Since �124 is trivial, it is a disk whose interior is disjoint from the embedded graph K6 .
Therefore 14 can be isotoped to 24 by sliding along 12 (see Figure 14(a)). Now look
into 26 and 46. The trivial convex hull �246 does not contain any edge of P . But �234
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is trivial. Therefore, slightly pulling down the disk �246[�234 , we can obtain another
disk such that it is bounded by 26, 46, 34 and 23, and its interior is disjoint from
the embedded K6 . Consequently 26 can be isotoped to 46 by sliding along a subarc
23[ 34 of P (see Figure 14(b)). Applying these two arguments to other candidates,
we can construct a graph I as seen in Figure 15(a): the fat vertices correspond to
candidates of bridges. Two fat vertices are connected by an edge if two corresponding
candidates are isotopic as described above. Note that the resulting graph I is connected.

1

2

4

2

3

46
(a) (b)

Figure 14

15

14 24 25

46 36 35

26 13

34 23 25

24 65

64 16 13 15

(a) (b)

Figure 15

Now we associate the connectivity of I with the freeness of f . Let B1; : : : ;Bk be
the bridges of P and BkC1; : : : ;B9 be the other line segments not belonging to G .
Choose labels so that for i � j � kC 1,

d.Bi ; fB1; : : : ;Bkg/� d.Bj ; fB1; : : : ;Bkg/;

where d is the distance between vertices in the graph I . Let G0 D P and Gi D

Gi�1 [ Bi for i � 1. And let Mi D R3 �N.Gi/ for i � 0. Then Gk D G and
G9 DK6 . Since the graph I is connected, for any i � k , the line segment BiC1 is
parallel to @Mi . This implies that �1.MiC1/Š �1.Mi/�Z. In consequence �1.M9/

is the free product of �1.Mk/ and the free group of rank 9�k . By Theorem 1, �1.M9/

is free, which implies that �1.Mk/Š �1.R
3�G/ is also free.

Case 2: P is the cycle h126354i The possible candidates for bridges of P are

f16; 13; 15; 23; 25; 24; 65; 64; 34g:
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Figure 15(b) shows that the graph I is not connected in this case. But the line
segment 65 bounds the trivial �356 together with 63[ 35 which constitute an arc
of P . This implies that if 65 is Bi , then it is parallel to @Mi�1 . Also 24 belonging to
the other component of I bounds the trivial �124 together with an arc 21[ 14 of P .
Therefore the argument in Case 1 is still valid, and we can conclude �1.Mk/ is free.

We have checked the remaining 58 cases (in fact, permuting the vertices 1 and 3, it
is enough to check 28 cases). In each of the cases, either the graph I is connected
or every connected component of I contains a fat vertex whose corresponding line
segment bounds a trivial disk together with an arc of P . Therefore we can apply the
arguments in Cases 1 and 2 to conclude that �1.Mk/ is free. This completes the proof.
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