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a b s t r a c t

Wewill generalize the Treibich–Verdier theory about elliptic solitons to aHitchin systemby
constructing a particular ruled surface and we will propose a generalization of a tangency
condition associated with elliptic solitons to a Hitchin system in Definition 4. In particular,
we will calculate the dimension of the moduli space of Hitchin covers satisfying the
tangency condition to exhibit non-vacuousness of this definition. With this new point of
view, we will see a subtle relation between the characterizations of coverings and the
singularities of divisors in a particular algebraic surface.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The origin of a tangential cover is rooted in the investigation of the solutions of the Kd-V equation. More specifically, it is
originated from the reduction theory, i.e., how to reduce a theta function of a given genus to theta functions of lower genera.
The theta function is in some sense a multi-dimensional Fourier transform. It is not easy to handle the expression. So, it was
a very active area of nineteenth century to invent the method of how to reduce it.

It is well known that the Kd-V equation has an explicit theta solution, so-called ‘‘Mateev–Its formula’’ by the work of the
Russian school. So, the modern reduction theory around the Kd-V theory, more generally non-linear evolution equations,
has dealt with how to express the theta formula in terms of an elliptic function, which is the origin of the terminology,
elliptic soliton. An elliptic soliton is, simply speaking, a solution of the K–P equation, more generally any nonlinear evolution
equation, which can be written as elliptic functions. Krichever gave an explicit formula of an elliptic soliton associated with
the K–P equation by generalizing the work of Airault, McKean, and Moser about the Kd-V equation. The main ingredients
in Krichever’s work [1] were a Lax representation and a Calogero–Moser system. When the concept of a tangential cover,
which was apparent in the work of Krichever in elliptic soliton with hindsight, was first introduced by Treibich and Verdier,
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this dynamical system point of view essentially becomes the realm of algebro-geometric problems. Hence, it is very obvious,
at least to the author, that translating dynamical behaviors to algebrogeometric tools should be an interesting work to do in
answering many problems in non-linear evolution equations as well as the other directions.

On the other hand, it is known that there is a relation between the K–P equations and Hitchin systems [2]. Hence, it
would be interesting to investigate a link between elliptic solitons and Hitchin systems. Thus, in this paper we propose to
generalize the Treibich–Verdier theory about elliptic solitons to a Hitchin integrable system. The main framework is two-
fold: The first is to construct a particular ruled surface associated with a Hitchin system [3,4] which generalizes a ruled
surface in the Treibich–Verdier theory. In [5], Treibich and Verdier construct a surface S which is a projectivization of rank 2
bundle W over an elliptic curve. It is a universal embedding bundle of a principal affine-bundle ∆ over X:

0 → Ga → ∆ → X → 0.

In order to extend the Treibich–Verdier theory about an elliptic curve to a general algebraic curve of an arbitrary genus,
we need to construct a particular ruled surface whose role substitutes the role of S in [5]. We will deal with this matter in
Section 2. The second is to generalize the tangency condition associated with elliptic curves in [5] to appropriate one in a
Hitchin system. In [5], Treibich and Verdier call a pointedmorphismπ : (R, p) → (R, q) a tangential cover ifπ∗

◦dAb(Tq R)

is tangent to Ab(R) at p where Tq R is a tangent space. Here Ab is the Abel map Ab : R → Jac(R) or Ab : R → Jac(R)
and dAb is the associated tangential map. In [5], the authors confine themselves to the case when R is an elliptic curve. Of
course, it looks tangible that the concept of tangency makes sense regardless of genus of a compact Riemann surface R. On
the other hand, it seems unclear whether or not this can give interesting results when R is replaced to a general Riemann
surface of genus > 1. Suppose that π : R → R is a Hitchin spectral cover [3,4]. This spectral curve is a natural realization
of a Higgs bundle φ: A Higgs field is a section of End E⊗KR where E is a holomorphic vector bundle of rank n and KR is a
canonical bundle of a compact Riemann surface R. Then a Hitchin spectral curve R is defined by a zero divisor of a section
det(χ · id−φ) of a holomorphic line bundle π∗

KR
K n

R over KR. Namely, letting χ be a tautological section of π∗

KR
KR and id be

the identity map in End E, a Higgs bundle φ defines an associated Hitchin spectral curve

R = {det(χ · id−φ) = 0}.

Note that diagrammatically we see

KR

π∗
KR //

πKR

��

π∗

KR
KR

R R ⊂ KR.π
oo

χ

OO

Even though the tangency condition in [5] makes sense for a Riemann surface of arbitrary genus, we claim that a trivial
straightforward generalization of this concept would not work, since the Treibich and Verdier theory [5,6] heavily uses the
fact that dimH0(X, OX ) = 1 where X is an elliptic curve. Hence, a suitable modification of this concept is necessary to get
more interesting theory. Therefore themain results in this paperwill be tomodify the concept of the tangency and showwhy
this modification is indeed a right generalization of the tangency for an elliptic curve, which will justify the investigation of
this paper, we hope.

Note that a generalization [7] of elliptic solitons is given by R. Donagi and E. Previato, which is called an abelian soliton. The
main step of this generalization is to replace the roles of a tangent vector and an elliptic curve with those of an osculating
plane and an abelian subvariety of Jac(R). See [7] for more details. The generalization we will formulate in this paper is
somewhat different from that in [7]. The main idea comes from a cohomological observation. In the theory of the K–P
equation, the tangent vector of the first K–P flow is nothing but dAb(Tp) where Tp is a tangent vector at p of a Riemann
surface R. Moreover, from a well-known cohomological aspect [8–10] of dynamical systems, we can identify a tangent
vector with a cohomology class using long exact sequence (6) of cohomologies. Based on this observation, we will propose,
so-called, a Hitchin tangency condition in Definition 4. For the details, one may take a look at some explanations in the below
of Theorem 5 in Section 5.

The structure of this paper is as follows: In Section 2, wewill construct a new ruled surface where Hitchin spectral curves
can be defined as divisors. This new surface S will take the place of the projectivized cotangent bundle S′

:= P(KR ⊕ C)
of a compact Riemann surface R in [3] as well as generalizing the role of S in the elliptic soliton theory. In Section 3 we will
characterize the properties of Hitchin divisors in S′

= P(KR ⊕C) and describe a linear system of them. In Section 4, we will
study Hitchin spectral curves which can be realized as divisors in S and indicate a necessary condition for a Hitchin cover
to become a divisor in S. Moreover, we will also describe the moduli space consisting of such Hitchin covers. In Section 5,
we will generalize the tangency condition in the Treibich–Verdier theory to a Hitchin system and we will show that this
condition indeed describes the Hitchin divisors in S. Once we have established the basic necessary frameworks, we will
characterize an implication of the tangency condition to the defining equation of a Hitchin spectral curve.
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2. Ruled surface and associated vector bundle

In this section we will generalize the construction of the ruled surface in Treibich–Verdier theory about elliptic solitons
to a Hitchin system. For the backgrounds of basic facts about this section, we refer to [11,12]: An elementary transformation
of a sheaf W of vector bundle W of rank 2 over a Riemann surface R associated with a surjective morphism uq for q ∈ R is

0 // elmuq(W) // W
uq // Cq // 0.

For example, letting uq be a projection to the first factor of OR ⊕ OR, we have

elmuq(OR ⊕ OR) = OR(−q) ⊕ OR.

By projectivization, we see

P

elmuq(OR ⊕ OR)


= P(OR(−q) ⊕ OR) = P(OR ⊕ OR(q)). (1)

In terms of a projectivized bundle, the corresponding process of the above is given by elmp


P1

× R


where p = ([1, 0], q).

Geometrically, this process is the blowingup at p followedby the contraction of the original fiberπ−1(q)whereπ : P1
×R →

R.
M. Atiyah showed that a P1-bundle over a complete non-singular curve is represented by a vector bundle of rank 2 with

the set of transition functions

Gij(q) =


aij(q) bij(q)
0 cij(q)


(see [12] for details). In this notation, we calculate explicitly the set

of transition functions of a vector bundle of rank 2 after certain elementary transformations.

Theorem 1. Let {(Ui, zi)} be an open cover with local coordinates zi of R, p′
= (∞, q0) = ([1, 0], q0), and p = ([−1 : 1], q0)

where q0 ∈ R. The transition function Gij ∈ PGL(2, C) on Ui ∩ Uj of a projective bundle elmp ◦ elmp′


P1

× R


is given by

Gij(q) =


1 (gij(q) − 1)zi(q)
0 1


∈ PGL(2, C).

Here {gij(q) =
zj(q)
zi(q)

} is the set of the transition functions of a line bundle OR(q0) and gij(q) = 1 for q ∈ Ui ∩ Uj such that
q0 ∉ Ui ∩ Uj.

Proof. Consider a trivial bundle C2
×R of rank 2 and its projectivization P1

×R. By an elementary transformation (see [12])
at p′

= (∞, q0) = ([1, 0], q0), a basis {e1, e2} of global sections in H0(R, OR ⊕ OR) is transformed to {ze1, e2} = {e′

1, e
′

2}

around q0 with a local coordinate z, i.e., ae1 + be2 →
a
z e

′

1 + be′

2. An equivalent procedure up to projectivization in the spirit
of Eq. (1) is to add zeros at q0, i.e.,

ae1 + be2 → ae′

1 + zbe′

2.

Consequently, the defining transformation at q0 of elmp′


P1

×R


is given by


1
z

0

0 1


. On the other hand, by an elementary

transformation at p = ([−1, 1], q0), we have

ae1 + be2 → (a + b)e′

1 +
b
z
e′

2.

That is, a basis {e1, e2} of global sections in H0(R, OR ⊕ OR) is transformed to {e1, z(e2 − e1)} = {e′

1, e
′

2} around q0 with

a local coordinate z. Consequently, the transition function at q0 of elmp


P1

× R


is given by


1 1

0
1
z


. Combining those

transformations, the defining transformation at q0 of elmp ◦ elmp′


P1

×R


is given by

 1
z

1

0
1
z


. Then the transition function

Gij on Ui ∩ Uj is given by
1
zj

1

0
1
zj

zi −z2i
0 zi


=


zi
zj

zi
zj

(zj − zi)

0
zi
zj

 .

Since gij =
zj
zi
is a transition function of OR(q0), as a projective transformation it is the same as

Gij(q) =


1 (gij(q) − 1)zi(q)
0 1


. �
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Let KR =
2g−2

i=1 qi be a canonical divisor of R. In particular, let us assume all the qi are distinct throughout the paper
unless otherwise specified. Let p′

i = (∞, qi) for i = 1, . . . , 2g − 2 and pi = ([−1, 1], qi) for i = 1, . . . , 2g − 2. Note that
we denote ∞ = [1, 0]. By Theorem 1, we have the following.

Corollary 1. Let {(Ui, zi)} be an open cover with local coordinates zi of R. The transition function Gij ∈ PGL(2, C) on Ui ∩ Uj of
a projective bundle

elmp1 ◦ · · · ◦ elmp2g−2 ◦ elmp′
1
◦ · · · ◦ elmp′

2g−2


P1

× R


is given by

Gij(q) =


1 (gij(q) − 1)zi(q)
0 1


∈ PGL(2, C).

Here {gij(q) =
zj(q)
zi(q)

} is the set of the transition functions of a line bundle OR(KR).

We will denote

S := elmp1 ◦ · · · ◦ elmp2g−2 ◦ elmp′
1
◦ · · · ◦ elmp′

2g−2


P1

× R


. (2)

From Corollary 1, we deduce that S is a projectivization of a vector bundle W of rank 2 with a set


1 (gij(q) − 1)zi(q)
0 1


of

transition functions. In particular, from the explicit expression of the transition functions we can see that
2 W is trivial

and has a trivial sub-bundle. Hence, it defines an extension class [α] ∈ H1(R, OR):

[α] : 0 → OR → W → OR → 0. (3)

Remark 1. This construction is the generalization of the construction of a surface S in [5]which is a projectivization of rank 2
bundle W over an elliptic curve. The bundle W is an universal embedding bundle of a principal affine-bundle ∆ over X:

0 → Ga → ∆ → X → 0.

Let C0 be a section of πS : S → R corresponding to a trivial sub-bundle. It is obvious that H0(R, W) ≠ 0 where W is the
sheaf of W. Moreover, after tensoring L to (3), we see that H0(R, W ⊗ L) = 0 for any line bundle L with negative degree
from the induced long exact sequence of the short exact sequence

0 → L → W ⊗ L → L → 0

and the fact H0(R, L) = 0. That is, the sheaf W is normalized (see p. 373 in [11]). Consequently,

C0 · C0 = qf · qf = 0 and C0 · qf = 1 where

qf is a divisor which is the fiber π−1
S (q) of πS : S → R. Moreover, from p. 373 in [11] we see that the canonical divisor is

given by

KS ∼ −2C0 + KRf

where KR is a canonical divisor of R.

3. Hitchin covers in a linear system in S′ = P(KR ⊕ C).

AHitchin spectral curveπ : R → R of degree n over a compact Riemann surfaceR of genus g is defined by a zero divisor
of a section s of a holomorphic line bundle π∗

KR
K n

R over a non-compact complex surface KR where πKR
: KR → R. Since the

line bundle π∗

KR
K n

R has a section χn where χ is a tautological section of π∗

KR
KR over KR, we deduce that a Hitchin spectral

curveR is linearly equivalent to the zero divisor nR of χn. On the other hands, since s is a section of π ′
: π∗

KR
K n

R → KR, we
also infer that a Hitchin spectral curve R is linearly equivalent to a divisor π ′−1

(nKR) where KR is a canonical divisor of R.
In particular, from the adjunction formula and the triviality of canonical bundle KKR

of the non-compact space KR, we have

g(R) = n2(g − 1) + 1 and dim |nR| = n2(g − 1) + 1.

See [3] for details. By projectivizing the canonical bundle,S′
= P(KR⊕C), we still conclude that aHitchin spectral curveR in

KR naturally sits inS′
= P(KR⊕C). However, it is easy to see thatR is not linearly equivalent to a divisor nKRf ′

:= nπ−1
S′ (KR)

whereπS′ : S′
→ R, since there is no tautological section onS′. Instead, it is not difficult to see thatR is linearly equivalent

to nC ′

0 + nKRf ′ where C ′

0 is a horizontal section, i.e., the section corresponding to a surjection KR ⊕ OR → OR where KR

is the sheaf of a canonical bundle KR. Let us calculate the dimension of |nC ′

0 + nKRf ′
|. Note that since S′

= P(KR ⊕ C) is
a ruled surface, we can find a normalized sheaf E0 such that S′

= P(E0) from the correspondence between a ruled surface
and a locally free rank 2 sheaf (see p. 372 in [11]).
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Lemma 1. Let e =
2

E0. For integers i ≥ 0 and n1, n2 > 0, we have

Hi(OS′(n1C ′

0 + n2KRf ′)) =

n1
m=0

Hi(OR(me + n2KR)). (4)

Proof. Note that P(KR ⊕ OR) ∼= P(OR ⊕ (−KR)). Since OR ⊕ (−KR) is already normalized where KR is the sheaf of a
canonical bundle KR, we may conclude that the divisor of

2
E0 is −KR := e from the uniqueness (see p. 374 in [11]). We

will prove the lemma by proceeding an induction on n1. From p. 371 in [11], we know that

Hi(OS′(C ′

0 + n2KRf ′)) = Hi(R, πS′∗(OS′(C ′

0 + n2KRf ′))) = Hi(R, E0 ⊗ (n2KR)).

Consequently,

Hi(OS′(C ′

0 + n2KRf ′)) = Hi(OR(n2KR)) ⊕ Hi(R, OR((n2 − 1)KR)).

Hence, we have proved assertion (4) for n1 = 1. Let

D = n1C ′

0 + n2KRf ′ and D−1 = (n1 − 1)C ′

0 + (n2 − 1)KRf ′.

Now consider a short exact sequence:

0 → OS′(D−1) → OS′(D) → OC ′
0+KRf ′(D) → 0.

Hence, we have the induced long exact sequence:

0 // H0(OS′(D−1))
// H0(OS′(D))

α // H0(R, n2KR)

β0

ssggggggggggggggggggggg

H1(OS′(D−1))
// H1(OS′(D)) // H1(R, n2KR)

β1

ssggggggggggggggggggggg

H2(OS′(D−1))
// H2(OS′(D)) // 0.

Since α is always surjective, β0 is a zero map. By the induction hypothesis, we have

H2(OS′(D−1)) =

n1−1
m=0

H2(OR(me + (n2 − 1)KR)).

Clearly, the right-hand side is zero. Hence, β1 is a zero map. Consequently, we have

Hi(OS′(D)) = Hi(OS′(D−1)) ⊕ Hi(R, n2KR) for i ≥ 0. (5)

Again, by the induction hypothesis, we have

Hi(OS′(D−1)) =

n1−1
m=0

Hi(OR(me + (n2 − 1)KR)).

Since e = −KR, we see that

n1−1
m=0

Hi(OR(me + (n2 − 1)KR)) =

n1−1
m=0

H1(OR(m + 1)e + n2KR)

=

n1
m=1

Hi(OR(me + n2KR)).

Combining this with (5), we have

Hi(OS′(D)) =

n1
m=0

Hi(OR(me + n2KR)). �
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Corollary 2.

dimH1(OS′(nC ′

0 + nKRf ′)) = g + 1

dimH2(OS′(nC ′

0 + nKRf ′)) = 0.

Proof. By Lemma 1 and dimH1(OR((n − m)KR)) = 0 for n − m > 1, we have

dimH1(OS′(nC ′

0 + nKRf ′)) = dimH1(OR) + dimH1(OR(KR)) = g + 1.

The second assertion also comes from Lemma 1:

H2(OS′(D)) =

n1
m=0

H2(OR(me + n2KR)) = 0. �

Consequently, we have the following result:

Theorem 2. For R ∈ |nC ′

0 + nKRf ′
| on S′, the genus of R is given by

g(R) = n2(g − 1) + 1.

Moreover,

dim |nC ′

0 + nKRf ′
| = n2(g − 1) + 1.

Proof. Note that

KS′ = −2C ′

0 and C ′

0 · C ′

0 = 2 − 2g.

Consequently, the adjunction formula implies

g(R) =


nC ′

0 + nKRf ′


·


(n − 2)C ′

0 + nKRf ′


2

+ 1

= −n(n − 2)(g − 1) + n2(g − 1) + n(n − 2)(g − 1) + 1
= n2(g − 1) + 1.

LetD = nC ′

0+nKRf ′. By Corollary 2,wehave dimH2(OS′(D)) = 0 anddimH1(OS′(D)) = g+1. Hence, by the Riemann–Roch
theorem, we have

dimH0(OS′(D)) =
D · (D − KS′)

2
+ (1 − g) + dimH1(OS′(D))

= (n2
− 1)(g − 1) + g + 1

= n2(g − 1) + 2. �

Theorem 2 implies that there is no difference of natural properties between the linear system |nR| of Hitchin divisors on
the non-compact space KR and the linear system |nC ′

0+nKRf ′
| of Hitchin divisors on the compactified spaceS′

= P(KR⊕C).
We remark that readers may compare this discussion with the one in [3]. In the next section, we will see what happens if
we replace S′ with S.

4. Hitchin covers and the ruled surface S

In this section, we will characterize the Hitchin divisors mapped into the surface S constructed in Section 2 and the
singularities of the Hitchin divisors in the associated linear system on S. Let us remind

S = elmp′
1
◦ · · · ◦ elmp′

2g−2
S′ where S′

= P(KR ⊕ C)

and p′

i = ([−1, 1], qi) for i = 1, . . . , 2g − 2, and KR =
2g−2

i=1 qi is a canonical divisor of R. By abuse of notation, let elm be
the transformation from S′ to S:

elm : S′
→ elmp′

1
◦ · · · ◦ elmp′

2g−2
S′.

Hence we may write

elm(nC ′

0 + nKRf ′) = nC0 + nKRf .

Lemma 2. The genus of a curve D ∈ |nC0 + nKRf | is (2n2
− n)(g − 1) + 1.
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Proof. Note that C0 · C0 = qf · qf = 0 and C0 · qf = 1 for any q ∈ R. Since
2 W is trivial, we see that

KS = −2C0 + KRf .

Using the adjunction formula, we have

2g − 2 = (KS + D) · D
= (−2C0 + KRf + nC0 + nKRf ) · (nC0 + nKRf )
= ((n − 2)C0 + (n + 1)KRf ) · (nC0 + nKRf )
= n(n − 2)(2g − 2) + n(n + 1)(2g − 2).

Henceg = (2n2
− n)(g − 1) + 1. �

Definition 1. We will call a Hitchin spectral cover π : R → R of degree n a Hitchin tangential cover on S if there is a
morphism ι : R → S := P(W) such that ι−1(C0) ⊆ π−1(KR).

Lemma 3. If π : R → R is a Hitchin tangential cover, then

ι(R) ∈ |nC0 + nKRf |.

Proof. Let i : KR → P(KR ⊕ C) be a natural inclusion. Note that by construction, a Hitchin spectral curve is defined by the
zero locus of a polynomial of degree nR = {det(χ · id−φ(z)) = 0} := {PR(χ, z) = 0}

where χ is a tautological section of π∗

KR
KR and id is the identity map in End E. This polynomial is of degree n in χ . If

π : R → R is a Hitchin tangential cover, we have the following commutative diagram

R ι //

i &&MMMMMMMMMMMM S

S′
:= P(KR ⊕ C).

elm:=elmp′1
◦···◦elmp′2g−2

OO

In particular, we may find a polynomial Pι(R)(kS, z) on S such that its zero is ι(R) and the pole is nC0 + nKRf where

kS = T ◦


elmp1 ◦ · · · ◦ elmp2g−2 ◦ elmp′

1
◦ · · · ◦ elmp′

2g−2

−1

and T : R × P1
→ P1 is a natural projection. �

Definition 2. We will call a meromorphic function k := kS ◦ ι onR a Hitchin tangential function. Moreover, we will denote
HT(n, g, S) is the sub-linear system of |nC0 + nKRf | consisting of Hitchin tangential covers where g is the genus of R.

From Lemma 2, we know that the arithmetic genus of ι(R) is (2n2
−n)(g −1)+1 which is bigger than n2(g −1)+1, the

genus ofR. This implies that ι(R) should admit singularities. On the other hand, it is not hard to see that dim |nC0 + nKRf |
is also bigger than the desired one, n2(g − 1)+ 1. We will characterize a sub-linear system of |nC0 + nKRf | whose members
have the genus n2(g − 1) + 1 after their desingularization.

Remark 2. We remark the followings:

(i) The pole of kS is C0 + KRf and Pι(R)(kS, z) is a polynomial of degree n in kS.
(ii) The reason for choosing the terminology, ‘‘tangential cover’’, in Definition 1 will be clearer in Section 5.
(iii) Laterwewill show the existence of aHitchin tangential cover by calculating the dimension ofHT(n, g, S) in Corollary 7.

Lemma 4. Let q ∈ R. For any extension class [α] ∈ H1(R, OR), we have

[α] ∈ δKR+q


H0(R, CKR+q)


= H1(R, OR)

where δKR+q is a connecting homomorphism of a long exact sequence (6).

Proof. Consider the following sequence

0 → OR

s
→ OR(KR + q) → CKR+q → 0.
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From this, we have a long exact sequence

· · · // H0(R, CKR+q)
δKR+q // H1(R, OR)

s∗ // H1(R, OR(KR + q))

C2g−1 Cg 0.

(6)

So we know that

s∗([α]) = 0 ∈ H0(R, OR(KR + q)).

Hence, from the exactness, we have

[α] ∈ δKR+q


H0(R, CKR+q)


⊆ H1(R, OR). �

We remark that readersmay consult [8–10] to see an interesting nature of the connecting homomorphism δKR+q in terms
of dynamical system point of views and its generalization to a vector bundles.

Corollary 3. Let π : R → R be any ramified cover. Then

π∗([α]) ∈ δπ−1(KR+q)


H0(R, Cπ−1(KR+q))


⊂ H1(R, OR).

Now consider the following diagram

0 // OR
// OR(KR) //

��

CKR

��

// 0

0 // OR
// OR(KR + q) // CKR+q // 0

0 // OR
// OR(q) //

OO

Cq //

OO

0.

This induces

H0(OR(KR)) //

��

H0(CKR
)

δKR //

��

H1(OR) // C1 // 0

H0(OR(KR + q)) // H0(CKR+q)
δKR+q // H1(OR) // 0 // 0

H0(OR(q))
zero map //

OO

H0(Cq)
δq //

OO

H1(OR) // Cg−1 // 0.

So we see that

δKR+q = δKR
+ δq. (7)

Corollary 4. There is a class [ν] ∈ H0(CKR
) such that

[α] = δKR
([ν]) + cδq(1Cq)

where 1Cq is a generator of H0(Cq) ∼= C1 and c is a constant.

We can improve Corollary 3 for a case when [α] is the class of the constructed extension in Section 2 and π : R → R is
a Hitchin tangential cover.

Theorem 3. Let [α] ∈ H1(R, OR) be the class of the constructed extension in Section 2

0 → OR → W → OR → 0.

Let π : R → R be a Hitchin tangential cover. Then

π∗([α]) ∈ δπ−1(KR)


H0(R, Cπ−1(KR))


⊂ H1(R, OR).
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Proof. From Definition 1, there is a morphism ι : R → S := P(W) such that ι−1(C0) ⊆ π−1(KR). Now it is well-known
that the existence of a morphism ι : R → S := P(W) such that ι−1(C0) ⊆ π−1(KR) is equivalent to the existence of a
surjective homomorphism c in the following diagram (see p. 162 in [11]):

0

��
0 // OR //

s
��

π∗W

s′

��

b //

c

xx

OR // 0

0 // OR(π−1(KR)) //

��

W ′ // OR // 0

Cπ−1(KR)

��
0

Note that the existence of c implies the existence of s′, i.e., the commutativity of the diagram where the second horizontal
short exact sequence is assumed to split. So s∗(π∗([α])) = 0 in H1(OR(π−1(KR))). Consequently, we deduce that

π∗([α]) ∈ δπ−1(KR)


H0(R, Cπ−1(KR))


⊂ H1(R, OR). �

Immediate consequences are the following corollaries:

Corollary 5. For the class [α] of the constructed extension in Section 2, we have

[α] ∈ δKR


H0(R, CKR

)


⊆ H1(R, OR).

Corollary 6. For a given Hitchin tangential cover π : R → R and the constructed extension [α] in Section 2, there exists
ρπ ∈ H0(R, Cπ−1(KR)) such that

δπ−1(KR)(ρπ ) = π∗([α]). (8)

The characterization of ι(R) in |nC0 + nKRf | among divisors D ∈ |nC0 + nKRf | is, by the construction, that ι(R) passes
through each point of σ(KR) with multiplicity n for R ∈ |nC ′

0 + nKRf ′
| where σ : R → C0 is the section. Hence ι(R)

becomes a singular curve in S. In particular the degree of singularities at σ(qi) is n(n−1)
2 . If the singularity of multiplicity n at

each point in σ(KR) is an ordinary singularity of multiplicity n, then the desingularization of the singularities is nothing but
the blowing up of S at σ(KR). Let Bl : S → S be the blow-up of S at σ(KR). Let ι(R) is the strict transformation of ι(R)

with respect to Bl. Then the genusg of ι(R) is given by

g = (2n2
− n)(g − 1) + 1 −

n(n − 1)
2

(2g − 2) = n2(g − 1) + 1.

Let

Ln,n,n := Bl∗(nC0 + nKRf ) − n
2g−2
i=1

Ei where

Ei is an exceptional divisor at σ(qi) where qi is in the canonical divisor KR. Clearly, ι(R) ∈ |Ln,n,n|. By the Bertini theorem, a
generic divisor in |Ln,n,n| is smooth. Hence, we conclude that ι(R) has an ordinary singularity of multiplicity n for a generic
Hitchin spectral curve π : R → R.

One can observe that the above would be the typical procedure: Take a non-compact complex surface and consider a
linear system of smooth divisors. If one wants to study amoduli space consisting of divisors with a particular property, then
construct another compact complex surface where the singular divisors naturally form a sub-linear system of some linear
system.
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Lemma 5. For n > 2, we have

dimH1(OS(Ln,n,n)) = 0

dimH2(OS(Ln,n,n)) = 0.

Proof. Note the facts that Ei · Ej = −δij, Bl∗(D1) · Ei = 0, and Bl∗(D1) · Bl∗(D2) = D1 · D2 for D1,D2 ∈ Pic(S) where δij is the
Kronecker symbol. Let

D = Bl∗((n + 2)C0 + (n − 1)KR) − (n + 1)
2g−2
i=1

Ei.

Clearly, D2
= (n2

− 5)(2g − 2) > 0 for n > 2. Also D · C0 > 0, D · qf > 0, and D · Ei > 0 for the generators of Pic(S) where
q ∈ R. Hence from the Nakai–Moishezon criterion (p. 365 in [11]), we see that D is an ample divisor. Note that the canonical
divisor ofS is

KS = Bl∗(KS) +

2g−2
i=1

Ei = Bl∗(−2C0 + KRf ) +

2g−2
i=1

Ei.

By the Kodaira vanishing theorem (p. 248 in [11]), we have for i > 0,

0 = Hi(OS(D + KS))

= Hi


OS


Bl∗(nC0 + nKR) − n

2g−2
i=1

Ei


= Hi(OS(Ln,n,n)). �

From the above lemma, we have the following theorem.

Theorem 4. Let n > 2. The dimension of a linear system |Ln,n,n| onS is

dim |Ln,n,n| = (n2
− 1)(g − 1) − 1.

Proof. Note that since pa is preserved under a blow-up where pa is the arithmetic genus, we have

pa(OS) = pa(OS) = −g.

By Lemma 5, dimH2(OS(Ln,n,n)) = 0 and dimH1(OS(Ln,n,n)) = 0. By the Riemann–Roch theorem, we see that

dimH0(OS(Ln,n,n)) =
Ln,n,n · (Ln,n,n − KS)

2
+ (1 − g)

=


n(n − 1) + n(n + 2) − n(n + 1) − 1


(g − 1)

= (n2
− 1)(g − 1). �

Corollary 7. For n > 2, dimHT(n, g, S) = (n2
− 1)(g − 1) − 1.

Remark 3. In [3], the dimension of the Hitchin moduli space for rank n holomorphic bundles over a compact Riemann
surface R of genus g > 1 is given by (n2

− 1)(g − 1) + g .

5. Hitchin tangential functions and the generalization of tangency

From the definition of the skyscraper sheaf CD where D is a divisor on R, we may regard an element of H0(R, CD) as
the Laurent tail of a local function defined on the support of D on R. That is, there is a correspondence between a vector
(c1,1, . . . , c1,m1), . . . , (cd,1, . . . , cd,md)


∈ C

d
k=1 mk ∼= H0(R, CD) where D =

d
k=1 mkpk and a local function λ with a

Laurent tail

λ(zk) =
ck,mk

zmk
k

+ · · · +
ck,1
zk

in the neighborhood of pk in the support of D. In this vein, we can formulate the following:
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Definition 3. We call the set of the Laurent tails of a local function λ at a divisor D a residue section of λ associated with a
divisor D and denote it by

ρ(λ) ∈ H0(R, CD).

Conversely, we assign a class ρ ∈ H0(R, CD) a local function denoted by λρ . In particular, we have

ρ(λρ) = ρ.

By Corollary 5, we know that there is ρ ∈ H0(R, CKR
) such that

π∗


δKR

(ρ)


= π∗([α]) ∈ δπ−1(KR)


H0(R, Cπ−1(KR))


⊂ H1(R, OR).

From now on we let λρ be a local function corresponding to ρ.

Theorem 5. Let π : R → R be a Hitchin tangential cover of degree n. There is a meromorphic function k on R such that the
poles of k + π∗(λρ) is ι−1(C0) ⊆ π−1(KR).

Proof. We know that there is a meromorphic function T : R × P1
→ P1 which is a natural projection. Then we may let

kS = T ◦


elmp1 ◦ · · · ◦ elmp2g−2 ◦ elmp′

1
◦ · · · ◦ elmp′

2g−2

−1
.

Consider a Hitchin tangential function

k = kS ◦ ι where ι : R → S.

The poles of kS are C0+KRf . Hence the poles of kS+π∗
S(λρ) is holomorphic outside of C0 whereπS : S → R. Consequently,

ι∗

kS + π∗

S(λρ)


= k + π∗(λρ)

is holomorphic outside of C0. �

In the theory of the K–P equation, the Its–Mateev formula implies that

u(x, y, t) = 2
∂2

∂x2
ln θ(Ux + Vy + Wt + z0) + constant

and the tangent vector of the first K–P flow is U, which is nothing but dAb(Tp)where Tp is a tangent vector at p of a Riemann
surfaceR (see p. 287 in [1]). In [5],R is called a tangential cover of an elliptic curve X if dAb(Tp) = π∗(dAb(Tq)) where Tq is
a tangent vector at q and π(p) = q and Treibich and Verdier proved that any elliptic soliton is a tangential cover. Note that
δp(1Cp) = dAb(Tp) = U ∈ δp


H0(R, Cp)


⊂ H1(R, OR) and since H1(X, OX ) is 1-dimensional, in this case [α] is realized

as the tangent vector Tq, i.e., dAb(Tq) = [α] where [α] ∈ H1(X, OX ) ∼= C1 is the canonical extension class

0 → OX → W → OX → 0.

Consequently, what the tangency condition for an elliptic curve case implies is that the tangency condition of the K–P flow
is realized by the lifting π∗([α]) of some ruled surface corresponding to [α]: Algebraically, we may write this as

δp(1Cp) = π∗([α]). (9)

Using previous preliminaries, let us propose a generalization of a tangential cover in a Hitchin system as Corollary 6:

δπ−1(KR)(ρπ ) = π∗([α]).

Definition 4. Let π : R → R be a Hitchin spectral cover. A Hitchin tangency condition is defined to be

δπ−1(KR)(ρπ ) = π∗([α]). (10)

Note that for an elliptic soliton case, Eq. (10) is the same as

δp(1Cp) = π∗


δq(1Cq)


(11)

where δq : H0(X, Cq) → H1(X, OX ) is induced from a short exact sequence on X ,

0 → OX → OX (q) → Cq → 0.
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From Corollary 4 for a pointed Hitchin spectral cover π : (R, p) → (R, q), Eq. (10) is not equivalent to δp(ρπ ) =

π∗


δq(1Cq)


but to

δπ−1(KR)(ρπ ) = π∗


δKR

([ν]) + cδq(1Cq)


(12)

for some [ν] ∈ H0(CKR
), since [α] = δKR

([ν]) + cδq(1Cq). In particular, Corollary 5 implies c = 0. Hence, we may see that
geometrically the elliptic soliton does not have this property. On the other hand, Eq. (12) can be also seen as a generalization
of Eq. (11), since the canonical bundle KX is trivial for an elliptic curve X . Hence, upon these considerations it seems plausible
to propose Definition 4 as a generalization of the tangency condition of a Hitchin system which fulfills the main motivation
of this investigation.

Remark 4. In the Krichever theory [13], a Riemann surface R with a divisor D appears as a solution of the K–P equation.
That is, the theta function associated withR and the dynamics of divisor Dt onR give a solution of the K–P equation. Hence,
a priori, there is no geometry of coverings involved. One method to define a particular subspace of space of all the K–P
solutions is to use the reduction theory which we mention in Section 1. When a theta function is reduced to theta functions
of lower genera, the Riemann surfaceR with a divisor D appears as a cover of some Riemann surface, π : R → R. The set of
such coverings naturally defines a subspace of the space of all K–P solutions. Note that the configuration of the divisorD onR
also plays a role in characterizing a solution in this case. For example, from [1] we know that π : R → R with D =

d
i=1 pi

is a matrix elliptic soliton if and only if all the pi for i = 1, . . . , d lie over one fiber, i.e., pi ∈ π−1(q) for i = 1, . . . , d. The
D-tangency condition [6] is an equivalent way to describe this method.

On the other hand, in the Hitchin theory [3], Hitchin spectral curvesR naturally appear as coverings of a Riemann surface
R. Oneway to generalize the Krichever theory to this case is to use the generalized tangency condition of Definition 4. To get
a subspace of the space of all Hitchin curves,whatwe proposed inDefinition 4 is, loosely speaking, equivalent to constructing
a particular algebraic surface where a particular family of Hitchin spectral curves can be mapped into the surface.

Consider a short exact sequence

0 // OR // OR ⊗ π∗KR
// Cπ−1(KR)

// 0 (13)

and the induced long exact sequence:

· · · // H0(R, π∗KR) // H0(R, Cπ−1(KR))
δ
π−1(KR)// H1(R, OR) // · · · (14)

From Corollary 5, we may let δKR
(ρ(λ)) = [α] for some local function λρ with the Laurent tail defined on the support of KR.

From Hitchin tangency condition (10), we have the zero class

[δKR
(ρπ ) − π∗


δKR

(ρ(λ))

] = [0] ∈ H1(R, OR). (15)

Hence, from long exact sequence (14), we may find a w ∈ H0(R, π∗KR) corresponding the zero class. Consequently, by
construction the Laurent tail of w + π∗(λρ) at π−1(KR) is the residue section

ρ(w + π∗(λρ)) = ρπ ∈ H0(R, Cπ−1(nK)).

Let (Ui, zi) be a neighborhood of a point qi ∈ KR =
2g−2

i=1 qi with coordinate zi. The defining equation of R around qi is
given by

0 = R(k, zi) =

n
j=1


k +

ci,j
zi

+ hj(zi)


where

k is a function on R given by Theorem 5 and hj(zi) is a holomorphic function. Note that the residue section ρ(k + π∗(λρ))

at KR =
2g−2

i=1 qi is
(c1,1 − λ1,1, . . . , c1,n − λ1,n), . . . , (c2g−2,1 − λ2g−2,1, . . . , c2g−2,n − λ2g−2,n)


.

Here 
(λ1,1, . . . , λ1,n), . . . , (λ2g−2,1, . . . , λ2g−2,n)


is the residue section ρ(λρ) of λρ . In fact, from Eq. (15) it is not hard to see that

ρ(k + π∗(λρ)) = ρπ .

Consequently, we see that w = k. Hence we have prove the following;
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Theorem 6. Any Hitchin spectral cover satisfying tangency condition (10) is a Hitchin tangential cover in Definition 1.

This shows that we may find an explicit local data of singularities of Hitchin tangential curves from the generalized
tangency condition. For the elliptic soliton case, there are explicit defining equations of elliptic solitons and matrix
elliptic solitons available to characterize singularities. See [1,6] for details. It will be also interesting to see how these
singularities look like for the case of sub-linear systems of Hitchin spectral curves. That is, an investigation about the
characteristic of singularities of Hitchin spectral curves associated with vector bundles [3] with gauge groups, for example,
SO(2m, C), SP(m, C), SO(2m + 1, C), and G2, etc., would be an interesting problem. Therefore, we will revisit this
investigation and deal with these cases for somewhere else in the future.
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