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We report the results of a search for the Xð1835Þ state in the process eþe− → J=ψXð1835Þ using a data
sample of 672 fb−1 collected with the Belle detector at and near the ϒð4SÞ resonance at the KEKB
asymmetric-energy eþe− collider. No significant evidence is found for this process, and an upper limit is set
on its cross section times the branching fraction: σBornðeþe− → J=ψXð1835ÞÞ · BðXð1835Þ →≥
3 charged tracksÞ < 1.3 fb at 90% confidence level.

DOI: 10.1103/PhysRevD.89.032003 PACS numbers: 13.66.Bc, 12.39.Mk, 13.25.Gv

The BESII Collaboration observed a resonance, the
Xð1835Þ→πþπ−η0, in the radiative decay J=ψ→ γπþπ−η0,
with a 7.7σ statistical significance [1]. Recently, the structure
has been confirmed by BESIII in the same process with a
statistical significance greater than 20σ [2]. From a fit
with a Breit-Wigner function, the mass and width are
determined to be 1836:5� 3:0ð stat:Þþ5.6−2.1ð syst:Þ MeV=c2

and190� 9ð stat:Þþ38−36ðsyst.Þ MeV,respectively,withaprod-
uctbranching fractionofBðJ=ψ → γXÞ · BðX → πþπ−η0Þ ¼
½2.87� 0.09ðstat.Þþ0.49−0.52ðsyst.Þ� × 10−4 [2]. The Belle
Collaboration also searched for the Xð1835Þ in two-photon
collisions, but no strong evidence was found [3]. Many
theoretical models have been proposed to interpret its under-
lying structure. Some consider the Xð1835Þ as a radial
excitation of the η0 [4,5]; a pp̄ bound state [6–8]; a glueball
candidate [9–12]; or a ηc-glueball mixture [13]. C-even
glueballs can be studied in the process eþe− → γ� → HGJ
[14], where H denotes a cc̄ quark pair or charmonium state
and GJ is a glueball, as shown in Fig. 1. In this paper, we
search for Xð1835Þ in the process eþe− → J=ψXð1835Þ
at

ffiffiffi
s

p
≈ 10.6 GeV.

This analysis uses a 604 fb−1 data sample collected with
the Belle detector [15] at the Υð4SÞ resonance and 68 fb−1
60 MeV below it at the KEKB asymmetric-energy eþe−

collider [16]. The Belle detector is a large-solid-angle
magnetic spectrometer that consists of a silicon vertex
detector, a 50-layer central drift chamber, an array of
aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and
an electromagnetic calorimeter comprised of CsI(Tl) crys-
tals located inside a superconducting solenoid coil that
provides a 1.5T magnetic field. An iron flux return located
outside of the coil is instrumented to identify KL and
muons. Two different inner detector configurations were
used: a 2.0 cm radius beam pipe and a 3-layer silicon vertex
detector for the first 155 fb−1 data, and a 1.5 cm radius

FIG. 1. Possible Feynman diagram for γ� → H þ GJ [14].
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beam pipe with a 4-layer vertex detector for the remaining
data sample.
A Monte Carlo (MC) simulation based on the

BABAYAGA event generator [17], in which the initial
state radiation (ISR) correction is taken into account, is
used to estimate the selection efficiency. We assume the
minimum remaining system energy (after initial state
radiation) to be 8 GeV. To incorporate the Xð1835Þ J=ψ
reaction into BABAYAGA, the two-body final state is
assumed to be distributed according to 1þ cos2 θ in the
eþe− center-of-mass (CM) system, where θ is the angle
between the J=ψ and e− beam direction in the CM system.
The mass of Xð1835Þ is generated according to a Breit-
Wigner function, with the reported mass of 1836 MeV=c2

and width of 190 MeV. The efficiency is calculated using
eþe− → J=ψXð1835ÞðγÞ signal events, where the J=ψ
decays to eþe− or μþμ− and the Xð1835Þ decays to
η0πþπ−, followed by η0 → ηπþπ− and η → γγ.
The J=ψ reconstruction procedure is similar to that

described in Ref. [18]. Oppositely charged tracks that
are both identified either as muons or electrons are
combined as a J=ψ candidate. To correct for final state
radiation and bremsstrahlung, photons within 50 mrad of
the e� are included in the eþe− invariant mass calculation.
The lepton identification efficiencies are 96% and 98% for
μ� and e�, respectively. The two lepton candidate tracks
are required to have a common vertex, with a distance to
the IP in the rϕ plane (transverse to the beam direction)
smaller than 100 μm. The J=ψ signal region is defined by
the mass window jMlþl− −MJ=ψ j < 30 MeV=c2 (∼2.5σ),
common for both dimuon and dielectron channels. We also
define a sideband region as 70 MeV=c2 < jMlþl−−
MJ=ψ j < 190 MeV=c2, which is used to estimate the
contribution from the dilepton combinatorial background
under the J=ψ peak. A mass-constrained fit to the recon-
structed J=ψ candidates is then performed to improve their
momentum resolution. The mass of the system recoiling
against a reconstructed J=ψ is determined from

Mrecoil ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðECM − E�

J=ψÞ2 − p�2
J=ψ

q
; (1)

where ECM is the CM energy of eþe− collisions, and E�
J=ψ

and p�
J=ψ are the energy and momentum of the J=ψ

candidate in the CM system, respectively.
The background due to initial state radiation with a hard

photon [radiative return to J=ψ(ψð2SÞ)] [19] and the QED
process J=ψeþe−[20] is large. According to a study
reported in Ref. [18], these backgrounds contribute mainly
to Nch ¼ 3 and Nch ¼ 4 events (whereNch is the number of
charged tracks in an event). We suppress these backgrounds
by requiring Nch > 4. The mass distributions for J=ψ
candidates in the region 0 < Mrecoil < 3 GeV=c2 after
the selection are shown in Fig. 2.
The Mrecoil distributions are shown in Fig. 3. The

remaining backgrounds are mainly from two sources.

One is the combinatorial dilepton events in the J=ψ mass
window that are estimated from the J=ψ sideband data, as
shown in Fig. 3. The other background is the nonprompt
J=ψ decay products from excited charmonium states (such
as ψ 0, χcJ). This is found to contribute negligibly to the
J=ψ signal. To understand this kind of background from
ψ 0 → πþπ−J=ψ decays, we reconstruct such events by
combining the detected J=ψ mesons with any pair of
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FIG. 2. Mass distribution for the J=ψ candidates reconstructed
from μþμ−ðaÞ and eþe−ðbÞ in the region 0 < Mrecoil < 3 GeV=c2.
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FIG. 3. Distribution of the recoil mass against the J=ψ
reconstructed from μþμ−ðaÞ and eþe−ðbÞ. The points are data,
the solid histograms represent the backgrounds from the J=ψ
sideband, and the hatched histograms represent the charmed- plus
uds-quark backgrounds. The solid lines are results of the fits
in the recoil mass region and the dashed lines are the total
background.
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oppositely charged pion tracks and find fewer than five
events in the region Mrecoil < 3 GeV=c2 at 95% C.L. J=ψ
mesons from B decay are kinematically forbidden to
produce a recoil mass below 3 GeV=c2.
In order to understand the J=ψ peaking background from

eþe− → J=ψþ hadrons, we analyze a sample of continuum
MC events at theϒð4SÞ generated with EvtGen [21], which
contains charmed- plus uds-quark backgrounds. After the
selection criteria are applied, the surviving background is
less than the combinatorial lepton pair background, as
shown in Fig. 3. Annihilation of two virtual photons in the
process eþe− → γ�γ� → J=ψγ� → J=ψff̄ may contribute
significantly to the background in the Mrecoil mass region,
where ff̄ denotes a pair of light quarks hadronizing into
multihadrons. This type of background is suppressed by the
Nch > 4 cut.
We search for an Xð1835Þ signal using an unbinned

maximum likelihood fit to the Mrecoil distributions
shown in Fig. 3, in the region 0.85 GeV=c2 < Mrecoil <
2.65 GeV=c2. The signal shape is fixed to the MC
simulation using the mass and width from the BESIII
measurement [2]. The background is represented by a third-
order Chebychev function. A simultaneous fit is performed
for the μþμ− and eþe− channels, which constrains the
expected signal from J=ψ → μþμ− and J=ψ → eþe− to be
consistent with the ratio of εi and Bi, where εi and Bi are
the efficiency and branching fraction for the two channels,
respectively. The εi values are obtained from MC simu-
lation including ISR. The results of the fit are shown in
Table I and Fig. 3.
The Born cross section is determined by the following

formula derived from the second-order calculation of the
perturbation theory [22]:

σBorn ¼ σmeasuredðnon-ISRÞ=ξBorn; (2)

where σmeasuredðnon-ISRÞ is the cross section when the
energy of a radiative photon is less than 10 MeV. The value
of this cutoff energy Erad:γ is arbitrary; the final result is
independent of this choice. The factor ξBorn relates the
measured cross section with radiative photons below the
cutoff energy to the Born cross section. From the QED
calculation [22], ξBorn is determined to be 0.629 for
Erad:γ ¼ 10 MeV. The final Born cross section is then
estimated as

σBorn ¼
Rεfnon-ISR

ξBorn
×

Nfit

LintεsumBsum
; (3)

where Nfit is the sum of the fitted event yields in the μþμ−
and eþe− modes, the factor Rε is the ratio of the full and
non-ISR reconstruction efficiencies and fnon-ISR is the
fraction of non-ISR events depending on the final states
that are incorporated using the signal MC sample. For
Erad:γ ¼ 10 MeV, this part of the soft ISR process accounts
for approximately 65% of the total. Here, Lint is the
integrated luminosity, εsum is the total detection efficiency
and Bsum is the total branching fraction of J=ψ → μþμ− and
eþe− decays.
Since the fit does not return any significant signal in

the Xð1835Þ mass region, we set an upper limit on its
production rate. The upper limit of σBorn is calculated by
replacing Nfit with the upper limit on the signal yield at
90% C.L. in Eq. (1). We integrate the likelihood function
starting at Nevent ¼ 0; the upper limit is set when the
integral reaches 90% of the total area. The total upper
limit of Xð1835Þ events in the two J=ψ decay modes is
Nevent ¼ 46.7 at 90% C.L.
Systematic uncertainties listed in Table II are dominated

by the following sources. In MC simulation of ISR process,
the corresponding systematic uncertainty is estimated by
replacing the 1=Q2 dependence of the form factor with
1=Q4 and changing the minimum remaining system energy
(after ISR) from 8 GeV to 9 GeV. The uncertainty from the
background estimation is evaluated by the variations in the
result arising from changes in the fitting range and back-
ground shape (the latter being obtained from fitting Mrecoil
on J=ψ sideband data); fitting Mrecoil including the signal
region (1.7 GeV=c2–2.2 GeV=c2); and floating the back-
ground parameters. The quantum numbers JPC of the
Xð1835Þ reported by BES are 0−þ, corresponding to a ð1þ
cos2 θÞ polar angular distribution. We generate events with
flat and sin2 θ distributions to compare and estimate the
systematic uncertainty associated with different possible
polarizations of the J=ψ . The width of the Xð1835Þ remeas-
ured by BESIII is Γ ¼ 190� 9 ð stat:Þþ38−36ðsyst.Þ MeV [2];
the systematicuncertainty causedbydifferentwidths is taken
into account.
Other systematic uncertainties come from MC statistics

(3%), track reconstruction efficiency (1% per track) and
lepton identification uncertainty (1.5% per lepton) in J=ψ

TABLE I. Fit results for the Mrecoil region 0.85–2.65 GeV=c2.

Mode Nsignal Nbackground

J=ψ → μþμ− −20.0� 20.0 346.0� 18.4
J=ψ → eþe− −7.5� 7.6 880.5� 31.3

TABLE II. Contributions to the systematic uncertainties.

Syst. uncertainties (%)

Source μþμ− eþe−

ISR 5 5
Background estimation 9 13
J=ψ polarization 8 10
Xð1835Þ width 16 16
Track reconstruction 5 5
Lepton identification 3 3
MC statistics 3 3
Sum in quadrature 22 24
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reconstruction. The luminosity and branching ratio uncer-
tainties are negligible.
The systematic uncertainties caused by the J=ψ

polarization for the two decay modes J=ψ → μþμ− and
J=ψ → eþe− are correlated, which will expand or shrink
the likelihood functions in the same way. Other sources of
systematic uncertainties for the two J=ψ decay modes are
uncorrelated. In the combination of the two J=ψ decay
modes, the total systematic uncertainty would be smaller
than the one of single eþe− decay mode. However, in the
upper limit calculation, we use just the systematic uncer-
tainty for J=ψ → eþe−, which gives the most conservative
result.
Since the recoil mass method is used in the analysis, the

efficiency of the Xð1835Þ selection always coincides with
the efficiency of J=ψ reconstruction. The MC simulation
eþe− → J=ψXð1835Þ, where Xð1835Þ decays to η0πþπ−
with η0 → ηπþπ−, η → γγ, is one of modes with fewest
charged tracks that satisfies Nch > 4. Using this efficiency
in the upper limit calculation also gives a less restrictive
upper limit.
After taking into account the systematic uncertainty, the

upper limit on σBorn is 1.3 fb.
In summary, using a 672 fb−1 data sample collected with

the Belle detector, we search for the Xð1835Þ state by
analyzing the J=ψ recoil mass distribution from the
assumed process eþe− → J=ψXð1835Þ. No significant
evidence for Xð1835Þ production in this process is found.
An upper limit is set to be σBornðeþe− → J=ψXð1835ÞÞ ·
BðXð1835Þ →≥ 3 charged tracks) < 1.3 fb at 90% C.L,
including systematic uncertainties. This upper limit is 3
orders of magnitude smaller than the cross section for
prompt production of the J=ψ meson [18]. No evidence is
found to support the hypothesis of the Xð1835Þ as a
glueball produced in association with a J=ψ in the Belle
experiment.
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