
PHYSICAL REVIEW A 88, 052123 (2013)

Operational quasiprobabilities for qudits
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2Department of Physics, Hanyang University, Seoul 133-791, Korea
3Center for Macroscopic Quantum Control, Seoul National University, Seoul 151-742, Korea

4Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
5School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea

(Received 8 February 2011; revised manuscript received 5 September 2013; published 20 November 2013)

We propose an operational quasiprobability function for qudits, enabling a comparison between quantum and
hidden-variable theories. We show that the quasiprobability function becomes positive semidefinite if consecutive
measurement results are described by a hidden-variable model with locality and noninvasive measurability
assumed. Otherwise, it is negative valued. The negativity depends on the observables to be measured as well as a
given state, as the quasiprobability function is operationally defined. We also propose a marginal quasiprobability
function and show that it plays the role of an entanglement witness for two qudits. In addition, we discuss an
optical experiment of a polarization qubit to demonstrate its nonclassicality in terms of the quasiprobability
function.
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I. INTRODUCTION

Quantum physics exhibits striking features compared to
classical physics such as complementarity, nonlocality, and
entanglement. The most profound discoveries have been found
in terms of Bell’s inequality and the Leggett-Garg inequality,
which local realistic and macrorealistic theories obey, respec-
tively, but quantum theory can violate [1–3]. A comparison of
quantum and classical statistics has also provided significant
insights into understanding quantum physics and separating
its features from the classical. For instance, photons have been
shown to exhibit antibunching effects that classical statistics
of light cannot describe [4]. These quantum features are said to
be nonclassical if the classical theory of light does not predict
them.

To compare quantum with classical statistics, the Wigner
function has been employed to represent a joint distribution of
position x and momentum p in phase space [5–7]. Contrary
to the classical statistics, it is not straightforward to define
a joint probability distribution in quantum statistics due to
the uncertainty relation between position and momentum;
in quantum physics, when two observables are mutually
complementary, one observable cannot be measured without
disturbing the other. Due to the complementarity (or uncer-
tainty) principle, the Wigner function is not always positive
semidefinite and may be negative valued for some quantum
states. As it is not allowed by any classical probability
distribution, the negativity is regarded as a signature of the
nonclassicality. The Wigner function, called a quasiprobability
distribution function, has been generalized to discrete systems
as quantum informatics has gained importance [8,9]. The
generalized quasiprobability functions have been applied to
the omnidirectional range of quantum information processing,
including quantum tomography, quantum teleportation, and
analysis of quantum algorithms [10,11].
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The quasiprobability functions have made significant
progress in their own context. Nevertheless, we need to be
careful when directly comparing a quasiprobability function
with its classical counterpart, as they can be associated with
different kinds of observations even with the same functional
form. For instance, consider a classical distribution function
P (x,p). A functional of P (x,p),∫ ∞

−∞

∫ ∞

−∞
dxdpP (x,p) xp, (1)

is associated with the average value of the product xp of
position x and momentum p in a joint measurement. On the
other hand, the same functional of Wigner function W (x,p),∫ ∞

−∞

∫ ∞

−∞
dxdp W (x,p) xp, (2)

is associated with the quantum average of a Hermitian
observable operator {x̂,p̂} = 1

2 (x̂p̂ + p̂x̂) [6,7]. This quantum
average is not directly related to the average of xp in the
above joint measurement. It arises because the eigenvectors of
the operator {x̂,p̂} are unequal to any joint (or consecutive)
measurement of x̂ and p̂. Thus, Wigner function W (x,p)
and its classical counterpart P (x,p) can be associated with
different kinds of observations by the same functionals. We
say that W (x,p) is “incommensurable” with its classical
counterpart P (x,p) [12]. This incommensurability makes it
difficult to interpret the nonclassicality of a quasiprobability
distribution. This problem remains unsolved in the approaches
of generalizing quasiprobability functions to discrete systems
[13,14]. On the other hand, consider a joint probability
distribution in the sequence of measuring p first and x later
[15]:

PQM(x,p) = PQM(x|p)PQM(p), (3)

where PQM(p) is a probability distribution of p, resulting from
quantum theory, and PQM(x|p) is a conditional probability
of x given p. Then, the functional of

∫
dxdp PQM(x,p) xp

is associated with the same observation as the classical
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counterpart, so that PQM(x,p) is commensurate with the
classical probability P (x,p) in the consecutive measurements
p and x.

In this paper, we propose an operational approach to define
a commensurate quasiprobability function, enabling a direct
comparison between quantum and classical statistics. Here,
the classical distribution is described by a local hidden-
variable model with noninvasive measurability [3,16]. We
show that for any classical distribution the commensurate
quasiprobability function is positive semidefinite since it is
a legitimate probability distribution. Based on the result,
we classify classical and nonclassical states of a qubit by
showing the negativity of the commensurate quasiprobability
function. Remarkably, we find that the nonclassicality is
operationally determined in the sense that the degree of the
nonclassicality depends on the observables to be measured,
e.g., a measurement setup, even for a given quantum state. In
addition, we propose an optical experiment of a polarization
qubit, where the nonclassicality of a photon can be revealed by
using a commensurate quasiprobability function without any
theoretical assumptions on photon loss and photon-detection
inefficiency. Finally, we derive a sufficient condition for the
entanglement of two qudits using a marginal quasiprobability
function.

II. COMMENSURATE QUASIPROBABILITY FUNCTION

Suppose that K possible (incompatible) observables Ak are
selectively and consecutively measured on a quantum system
[15] (this is called sequential measurements [17]).

Each nondegenerate measurement of an observable Ak is
performed at time tk with t1 < t2 < · · · < tK if it is selected
to be measured. In this case, depending on the selection of the
observables, we implement one of 2K measurement setups in
which the selected observables are measured consecutively at
different times; Fig. 1(a) shows all possible measurement
setups when there are only two observables A1 and A2.
Each measurement setup is denoted by n = (n1,n2, . . . ,nK ),
where nk �= 0 if the observable Ak is selected to be measured
and nk = 0 otherwise. We assume that each observable Ak

has D possible outcomes denoted by ak ∈ {0,1, . . . ,D − 1}.
Here, we consider both projective and positive operator-
valued measure (POVM) measurements, implying that D is
independent of the dimension of the Hilbert space [18].

In quantum theory, one needs to carefully describe the
consecutive measurement of incompatible observables.
For instance, suppose that two observables A1 and A3 are
selected to be measured for a given quantum state ρ̂, as
shown in Fig. 1(b). For simplicity, we assume that each
observable Ak is a projective measurement described by
projectors �k(ak), which is associated with an outcome ak

of measurement Ak . In this case, the measurement of A1

can yield any outcome a1 with the corresponding probability
p(a1) = Tr[�1(a1)ρ̂ �

†
1(a1)]. Then measuring A3 yields one

of the outcomes a3 with a conditional probability p(a3|a1) =
Tr[�3(a3)�1(a1)ρ̂ �

†
1(a1)�†

3(a3)]/p(a1) depending on the
outcome a1 of the previous measurement A1. This completes
the description of the consecutive measurement of A1 and
A3. Here, we employ a specific form of the expectation of
the consecutive measurement χ (n1,n2 = 0,n3,n4 = 0, . . . ) =

ρ̂

t1 t2

A2

ρ̂ A1

t1 t2

ρ̂

t1 t2

(a) Two possible observables (K = 2) :

(b) K possible observables :
The consecutive measurement of A1 and A3 (n1, n2 = 0, n3, n4 = 0, · · · )

ρ̂

t1 t2 t3

A1 A3

ρ̂ A1

t1 t2

tK· · ·

A2

(ii) (n1, n2 = 0)(i) (n1 = 0, n2 = 0)

(iii) (n1 = 0, n2) (iv) (n1, n2)

FIG. 1. Schematic representation of measurement setups. When
two observables A1 and A2 are selectively and consecutively
measured, four measurement setups can be implemented as shown
in (a): (i) no measurement, (ii) the measurement of A1, (iii) the
measurement of A2, and (iv) the consecutive measurement of A1 and
A2. When there are K possible observables, 2K measurement setups
can be implemented. As an example, the consecutive measurement
of A1 and A3 is displayed in (b).

∑D−1
a1,a3=0 ωn1a1+n3a3 Tr[�3(a3)�1(a1)ρ̂ �

†
1(a1)�†

3(a3)], with
ω = e2πi/D and nk ∈ {1,2, . . . ,D − 1}. Here, ωn1a1+n3a3 is a
possible value of the consecutive measurement corresponding
to the probability p(a3|a1)p(a1) that the outcomes a1 and a3

will occur consecutively.
All expectations of such a form compose a function,

which we call a characteristic function and denote by χ (n),
with n = (n1,n2, . . . ,nK ). When the observables Ak are not
restricted to the projective measurements, we can employ
POVM measurements. In this case, each measurement of Ak

is described by a set of the Kraus operators {Âk(ak)} satisfying
the positivity Â

†
k(ak)Âk(ak) � 0 and the completeness relation∑D−1

ak=0 Â
†
k(ak)Âk(ak) = 1, where 1 denotes the identity op-

erator. When an outcome ak ∈ {0,1, . . . ,D − 1} occurs with
a probability of p(ak) = Tr[Âk(ak)ρ̂Â

†
k(ak)], the output state

becomes Âk(ak)ρ̂Â
†
k(ak)/p(ak). The characteristic function of

the quantum state ρ̂ is then given by

χ (n) = Tr

⎡
⎣T K∏

k=1

⎛
⎝δnk,0I + (

1 − δnk,0
) D−1∑

ak=0

ωnkakAk(ak)

⎞
⎠ρ̂

⎤
⎦,

(4)

with I(ρ̂) = ρ̂ and Ak(ak)(ρ̂) = Âk(ak)ρ̂Â
†
k(ak). Here, δnk,0

represents the Kronecker delta defined by δnk,0 = 1 if nk = 0
and δnk,0 = 0 otherwise. The product of the superoperators
is defined as their composition, e.g., A2(a2)A1(a1)(ρ̂) =
Â2(a2)Â1(a1)ρ̂Â

†
1(a1)Â†

2(a2), and T denotes the chronologi-
cal time-ordering operator defined by T AjAk = T AkAj =
AkAj if tk > tj , which describes the consecutive measure-
ments of the observables Ak . As a simple case with two
observables, A1 and A2, one can perform four measurement
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setups [see Fig. 1(a)], and the characteristic function (4) of
each setup is rewritten as

χ (0,0) = Tr[ρ̂],

χ (n1,0) =
D−1∑
a1=0

ωn1a1 Tr[A1(a1)ρ̂],

χ (0,n2) =
D−1∑
a2=0

ωn2a2 Tr[A2(a2)ρ̂],

χ (n1,n2) =
D−1∑

a1,a2=0

ωn1a1+n2a2 Tr[A2(a2)A1(a1)ρ̂].

We now propose a commensurate quasiprobability function
defined by a discrete Fourier transformation of χ (n),

W(a) ≡ 1

DK

D−1∑
n=0

ω−a·nχ (n), (5)

where a = (a1,a2, . . . ,aK ), a · n = ∑K
k=1 aknk , with ak ∈

{0,1, . . . ,D − 1}, and
∑D−1

n=0 = ∑D−1
n1=0

∑D−1
n2=0 · · · ∑D−1

nK=0. By
definition, the characteristic function χ (n) is reproduced by
the inverse Fourier transformation of W(a),

χ (n) =
D−1∑
a=0

ωn·aW(a). (6)

It is notable that the functional of W(a) coincides with what
it is supposed to represent, i.e., the expectation χ (n) of the
consecutive measurement of incompatible observables (see
Fig. 1). Here ωn·a denotes a possible value of the measurement,
while W(a) is placed at a position where the probability of
measuring ωn·a would be located if the expectation χ (n) was
described by a classical probability distribution. Depending
on the quantum state ρ̂ and observables Ak , a nonnegative
quasiprobability function, i.e., W(a) � 0, may not explain
all the expectations χ (n). In Sec. IV, we show that quantum
theory allows the negativity of the quasiprobability function,
i.e., W(a) < 0 for some a, which is not allowed by any
classical probability distribution. In addition, we find that
the commensurate quasiprobability function is a real-valued
function and satisfies the following conditions: (i) the sum of
W(a) over all a is normalized,

∑
a W(a) = 1, (ii) the sum

of W(a) over a part of a gives the marginal quasiprobability of
the rest, and (iii) the marginal quasiprobability of a single
argument ak is equal to the probability of measuring ak ,
W(ak) = Tr[Âk(ak)ρ̂Â

†
k(ak)]. The second and third conditions

play an important role in quantum tomography, as discussed
in Refs. [9,10].

III. LOCAL HIDDEN-VARIABLE MODEL WITH
NONINVASIVE MEASURABILITY

Various types of local hidden-variable models have been
adopted in their own context, depending on their experi-
mental circumstances [1–3,19–21]. We take a local hidden-
variable model with noninvasive measurability to compare
the commensurate quasiprobability function with its classi-
cal counterpart. Local hidden-variable models have a com-
mon assumption that there exists a nonnegative probability

distribution of the outcomes of all possible measurements.
Our classical model additionally assumes the noninvasive
measurability that it is possible, in principle, to determine
the state of the system with an arbitrarily small perturbation
on its subsequent dynamics [16]. This is understood as not
only a spatially local but also temporally local hidden-variable
model, which we call the classical model.

A classical expectation χcl(n) is then given by

χcl(n) =
∑

a

ωn·apcl(a), (7)

where pcl(a) is a classical joint probability of measur-
ing outcomes a = (a1,a2, . . . ,aK ) when observables Ak are
selected to be measured. The Fourier transformation of the
expectations χcl(n) is then reduced to the classical probability
distribution pcl(a) � 0. This implies that if the expectations
of the consecutive measurements can be described by the
classical model, the quasiprobability function W(a) is positive
semidefinite, i.e., W(a) = pcl(a) � 0, which is defined as the
Fourier transformation of the expectations χ (n), as shown in
Eq. (5). As a contraposition, if the quasiprobability function
W(a) is negative for some a, the corresponding expectations
χ (n) cannot be described by the classical model. In the
next section, we show that quantum theory conflicts with the
classical model and allows the negativity of the commensurate
quasiprobability function.

IV. NONCLASSICALITY OF A QUBIT

A. Complementary observables
(mutually unbiased measurements)

To demonstrate that quantum theory allows the negativity
of the commensurate quasiprobability, we consider a d-
dimensional quantum system called a qudit with complemen-
tary observables Ak . The measurements of the complementary
observables are described by mutually unbiased bases {|ak〉}
satisfying the following conditions: (i) each projective mea-
surement of Ak has d possible outcomes (D = d), (ii) the
orthonormal bases are mutually unbiased, i.e., |〈aj |ak〉|2 =
1/d for all j �= k with aj,k ∈ {0,1, . . . ,d − 1} (complementary
relation) [22,23], and (iii) the number of the complementary
observables is no more than d + 1 in a Hilbert space of
dimension d (K � d + 1) [24]. In this case, the commensurate
quasiprobability function in Eq. (5) is reduced to

W(a) = 1

dK

(
1 +

K∑
k=1

�αk(ak) · �ρ
)

, (8)

where �ρ = (ρ1,ρ2, . . . ,ρd2−1) represents the generalized
Bloch vector of the quantum state ρ̂ defined by ρj = Tr[λ̂j ρ̂]
with a complete orthogonal basis {λ̂j |j = 0,1,2, . . . ,d2 −
1} satisfying λ̂0 = 1 and Tr[λ̂i λ̂j ] = dδi,j . The generalized
Bloch vectors of the complementary observables are defined
similarly by �αk(ak) = (αk(ak)1,αk(ak)2, . . . ,αk(ak)d2−1), with
αk(ak)j = Tr[λ̂j |ak〉〈ak|], and their inner products with �ρ are

defined by �αk(ak) · �ρ = ∑d2−1
j=1 αk(ak)jρj (see the Appendix

for details).
The quasiprobability W(a) in Eq. (8) can be positive

semidefinite for all a or can be negative for a part of a.
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(b) Three Complementary Observables(a) Two Complementary Observables

ρ1

ρ2

ρ3

N

ρ1

ρ2

ρ3

FIG. 2. (Color online) Degree of nonclassicality N of pure qubit states with mutually unbiased measurements. The Bloch vector �ρ =
(ρ1,ρ2,ρ3) of a pure qubit state corresponds to a point on the Bloch sphere. In (a), where two complementary observables are employed, the
nonclassicality is displayed as a function of the Bloch vector, i.e., N (ρ1,ρ2,ρ3). In (b), where three complementary observables are employed
instead, the nonclassicality is displayed in a similar way. In both (a) and (b), the maximal nonclassicality is given byNmax = (

√
2 − 1)/4 ≈ 0.103.

We quantify the degree of nonclassicality N as a sum of the
absolute values of the negative components of W(a):

N = 1

2

∑
a

[ |W(a)| − W(a)]. (9)

Here, N > 0 indicates the nonclassicality of the expectations
χ (n). In this work, we call a quantum state classical if N = 0
and nonclassical otherwise, which generally depends on the
observables to be measured, as shown below.

To illustrate the nonclassical states, we consider a two-
dimensional quantum system, known as a qubit (d = 2), with
two complementary observables (K = 2). We employ the
eigenbases of the Pauli spin operators σ̂x and σ̂y for modeling
complementary observables such that σ̂x |a1〉 = (−1)a1 |a1〉 and
σ̂y |a2〉 = (−1)a2 |a2〉 for a1,2 ∈ {0,1}. The Pauli spin operators
are also used as a complete orthogonal basis, {λ̂0,λ̂1,λ̂2,λ̂3} =
{1,σ̂x,σ̂y,σ̂z}. In this case, a quantum state is represented
by ρ̂ = 1

2 (1 + �ρ · �λ), with �λ = (λ̂1,λ̂2,λ̂3) and �ρ = (ρ1,ρ2,ρ3)
satisfying the normalization condition | �ρ | � 1 ⇔ Tr[ρ̂] = 1.
Then the quasiprobability in Eq. (8) is reduced to W(a1,a2) =
[1 + (−1)a1ρ1 + (−1)a2ρ2]/4. In Fig. 2(a), the degree of
nonclassicality N for pure states is displayed as a function
of the Bloch vector �ρ. Here the Bloch vectors of the pure
states are characterized by | �ρ | = 1, which compose the Bloch
sphere defined by ρ2

1 + ρ2
2 + ρ2

3 = 1, where each pure state
corresponds to a point on its surface. The maximal degree of
nonclassicality over all possible qubit states is given byNmax =
(
√

2 − 1)/4, which is obtained by �ρ = (±1,±1,0)/
√

2. For
both pure and mixed states, N > 0 if |ρ1 + ρ2| > 1 or
|ρ1 − ρ2| > 1, andN = 0 otherwise; in Fig. 2(a), the regime of
ρ1 + ρ2 � 1 on the first octant of the Bloch sphere corresponds
to the classical states of N = 0, which are colored in blue
(dark gray). On the other hand, when three complementary
observables are employed (K = 3), the degree of nonclassi-
cality of quantum states is dramatically changed, as shown in
Fig. 2(b). Here the Pauli spin operator σ̂z is used for modeling
an additional observable such that σ̂z|a3〉 = (−1)a3 |a3〉 for
a3 ∈ {0,1}. In this case, the quasiprobability in Eq. (8)
is reduced to W(a1,a2,a3) = [1 + (−1)a1ρ1 + (−1)a2ρ2 +
(−1)a3ρ3]/8, and all pure states become nonclassical except

for �ρ ∈ {(±1,0,0),(0,±1,0),(0,0,±1)}; these classical states
coincide with those in Refs. [13,14]. The maximal degree
of nonclassicality is Nmax = (

√
2 − 1)/4, as in the case

of the two complementary observables, which is obtained
by �ρ ∈ {(±1,±1,0)/

√
2,(±1,0,±1)/

√
2,(0,±1,±1)/

√
2}. It

is notable that the nonclassicality of a given quantum state
is determined operationally in our approach [23,25,26] in the
sense that a classical state in an experimental setup can be
nonclassical in a different setup; in Fig. 2, most classical states
in Fig. 2(a) become nonclassical in Fig. 2(b) as the observables
to be measured are changed from {σ̂x,σ̂y} to {σ̂x,σ̂y,σ̂z}.

B. Mutually biased measurements

So far we have considered complementary observables
with mutually unbiased bases. However, the commensurate
quasiprobability function proposed in this work can be
applied to more general experimental setups with arbitrary
projective and POVM measurements [see Eq. (5)]. As an
example, we consider projective measurements with mutually
biased bases and their influence on the nonclassicality of
a qubit. Consider two projective measurements defined by
σ̂1 = cos(θ )σ̂x − sin(θ )σ̂y and σ̂2 = − sin(θ )σ̂x + cos(θ )σ̂y ,
where σ̂x and σ̂y are Pauli spin operators and 0 < θ <

π/2. In this case the observables σ̂1 and σ̂2 are not mu-
tually complementary, i.e., |〈a1|a2〉|2 �= 1/2 for all a1,2 ∈
{0,1}, where σ̂1|a1〉 = (−1)a1 |a1〉 and σ̂2|a2〉 = (−1)a2 |a2〉.
The commensurate quasiprobability function in Eq. (5) is then
reduced to W(a1,a2) = [1 + (−1)a1χ (1,0) + (−1)a2χ (0,1) +
(−1)a1+a2χ (1,1)]/4. We note that the quasiprobability function
now contains the expectation of the consecutive measurement
of σ̂1 and σ̂2, denoted by χ (1,1). This term does not vanish,
in general, when the observables to be measured are biased,
e.g., |〈a1|a2〉|2 �= 1/2, contrary to the case of complementary
observables. In Fig. 3(a), the degree of nonclassicality N for
pure qubit states is displayed for θ = π/12. Here the maximal
nonclassicality over all possible quantum states is given by
Nmax = 0.125, which is obtained by �ρ = (1,1,0)/

√
2. It is

notable that the mutually biased measurements considered
here enhance the nonclassicality when compared to the case
of complementary observables, where the nonclassicality is
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(b) Two Complementary Observables (cf. Fig. 2(a))(a) Two Mutually Biased Measurements

ρ1

ρ2

ρ3

N

ρ1

ρ2

ρ3

FIG. 3. (Color online) Degree of nonclassicality N of pure qubit states with mutually biased measurements. In (a), where two mutually
biased measurements are employed, the nonclassicality is displayed as a function of the Bloch vector. In this case the maximal nonclassicality
is given by Nmax = 0.125, which is higher than the maximal value attainable by mutually unbiased measurements, (

√
2 − 1)/4 ≈ 0.103, as

shown in (b).

equal to or less than (
√

2 − 1)/4 ≈ 0.103. For comparison,
we display the nonclassicality by complementary observables
in Fig. 3(b) [note that the color scale is different from that of
Fig. 2(a)].

V. COMMENSURATE QUASIPROBABILITY FUNCTION
OF A POLARIZATION QUBIT

We propose an optical experiment to obtain a commensurate
quasiprobability function of a polarization qubit that would
measure the nonclassicality N of a photon. To this end, we
show that it is also a positive semidefinite probability distri-
bution in a classical model, hidden variables with noninvasive
measurability. In our classical model, a photon is assumed to
be a particle. By doing so, we exclude the quantum nature of
antibunching for a photon, and we focus on other quantum
characteristics that a photon may have but the classical model
of hidden variables cannot simulate.

In Fig. 4, we show all possible measurement setups for two
possible observables, each of which measures horizontal and
vertical polarizations (H and V) and diagonal and antidiagonal
polarizations (D and A). In Figs. 4(b) and 4(d), each red
(light gray) square represents a polarizing beam splitter (PBS)
that transmits a horizontally polarized photon and reflects a
vertically polarized one. On the other hand, in Figs. 4(c) and
4(d), each blue (dark gray) square denotes a PBS that transmits
a diagonally polarized photon and reflects an antidiagonally
polarized one. In Figs. 4(a)–4(d), black half circles represent
photon detectors, each of which is placed at a position where a
photon can be detected in the presence of beam splitters. The
selection of the observables to be measured, which is denoted
by (n1,n2) with n1,2 ∈ {0,1}, determines the arrangement of
beam splitters: (n1,n2) = (0,0) corresponds to no polarization
measurement [Fig. 4(a)], (n1,n2) = (1,0) corresponds to the
measurement of H and V polarizations [Fig. 4(b)], (n1,n2) =
(0,1) corresponds to the measurement of D and A polarizations
[Fig. 4(c)], and (n1,n2) = (1,1) corresponds to the consecutive
measurement of H and V and D and A polarizations [Fig. 4(d)].
For each experimental setup, the associated expectation is

given by

χ̃exp(n1,n2) =
1∑

a1,a2=0

ωn1a1+n2a2fn1,n2 (a1,a2), (10)

where fn1,n2 (a1,a2) are the relative frequencies of pho-
ton counts at different detectors, i.e., fn1,n2 (a1,a2) =
Nn1,n2 (a1,a2)/N (det)

n1,n2
, where Nn1,n2 (a1,a2) represents photon

counts at a detector denoted by Da1,a2 (see Fig. 4) and N (det)
n1,n2

(a) (n1, n2) = (0, 0) (b) (n1, n2) = (1, 0)

(c) (n1, n2) = (0, 1) (d) (n1, n2) = (1, 1)

PBS(H/V)

PBS(H/V)

PBS(D/A)PBS(D/A)

PBS(D/A)

D0,1

D1,0

D0,0

D1,1

D1,0

D0,0

D0,1

D0,0

D0,0

FIG. 4. (Color online) An optical experiment of a polarization
qubit. A red (light gray) square represents a polarizing beam splitter
(PBS) that transmits a horizontally polarized photon (H) and reflects
a vertically polarized one (V). A blue (dark gray) square denotes a
PBS that transmits a diagonally polarized photon (D) and reflects
an antidiagonally polarized one (A). A black half circle represents
a photon detector, and its position is denoted by Da1,a2 . The
commensurate quasiprobability function can be obtained by Fourier
transformation of the expectations of the measurement setups shown
in (a)–(d).
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is the total number of detected events given by N (det)
n1,n2

=∑1
a1,a2=0 Nn1,n2 (a1,a2). The commensurate quasiprobability

function is then given by the Fourier transformation of the
expectations χ̃exp(n1,n2),

W̃exp(a1,a2) = 1

4

1∑
n1,n2=0

ω−a1n1−a2n2 χ̃exp(n1,n2). (11)

In the presence of photon loss and photon-detection ineffi-
ciency, some of the fired photons from the source will be lost
or will not be detected in experiment. In this case the relative
frequencies fn1,n2 (a1,a2) in Eq. (10) describe the conditional
probabilities of detecting a photon, given that no photon loss
takes place. It is notable that the conditional probabilities are
the only quantities that can be determined operationally in
experiment because the total number of photons fired from the
source (or, equivalently, photon-loss probability) is generally
unobservable.

We now show that the quasiprobability W̃exp(a1,a2)
consisting of the conditional probabilities is positive
semidefinite if the expectations χ̃exp(n1,n2) can be described by
a local hidden-variable model with noninvasive measurability.
In the presence of photon loss and photon-detection
inefficiency, the local hidden-variable model describes the
expectations as follows:

χcl(n1,n2) =
1∑

a1,a2=0

ωn1a1+n2a2pcl(a1,a2,det), (12)

where pcl(a1,a2,det) is the classical probability of detecting
a photon at a detector denoted by Da1,a2 . The normalization
condition of the probabilities is then given by

p
(loss)
cl +

1∑
a1,a2=0

pcl(a1,a2,det) = 1, (13)

where p
(loss)
cl is the photon-loss probability. We divide the

classical expectations by the total photon-detection probability
defined by pcl(det) = ∑1

a1,a2=0 pcl(a1,a2,det),

χ̃cl(n1,n2) = χcl(n1,n2)

pcl(det)

=
1∑

a1,a2=0

ωn1a1+n2a2pcl(a1,a2|det), (14)

where pcl(a1,a2|det) = pcl(a1,a2,det)/pcl(det) is the
conditional probability of detecting a photon at a detector
denoted by Da1,a2 , given that no photon loss takes place. The
Fourier transformation of the classical expectations χ̃cl(n1,n2)
is then reduced to the conditional probability distribution
pcl(a1,a2|det). This implies that when the expectations
χ̃exp(n1,n2) measured in experiment can be described by the
local hidden-variable model, the commensurate quasiprob-
ability function is reduced to the classical distribution, i.e.,
W̃exp(a1,a2) = pcl(a1,a2|det) � 0, which is positive semidef-
inite. This implies that the negativity of the quasiprobability
function indicates the nonclassicality of the photon, which
can be determined operationally in experiment without any
theoretical assumptions on photon loss. This is contrary to
a common procedure in which the photon-loss probability is
deduced or postulated from experimental data, which depends
on the theoretical assumptions on photon loss. Our approach
is similar in spirit to the Clauser-Horne inequality [27].

VI. MARGINAL QUASIPROBABILITY FUNCTION
AS AN ENTANGLEMENT WITNESS

When the commensurate quasiprobability function is ap-
plied to a composite system consisting of spatially separated
subsystems, the quasiprobability function reveals two different
types of nonclassicality. One is related to the temporal quantum
correlation of each subsystem, which has been discussed
in the previous sections. The other is the spatial quantum
correlation between subsystems, such as entanglement [1,2].
To distinguish the latter from the former, we now propose a
marginal quasiprobability function of the composite system,
which is positive semidefinite for all separable quantum states,
implying that the negativity of the marginal quasiprobability
function indicates the presence of entanglement.

We consider a composite system of two d-dimensional
subsystems called qudits, each of which is distributed to one of
the spatially separated observers Alice and Bob, respectively.
Each qudit is selectively and consecutively measured by a
complete set of complementary observables (K = d + 1), as
is the case of the single system considered in Sec. IV: here
we assume that d is a prime or a power of a prime number,
for which the explicit forms of the mutually unbiased bases
were developed by Wootters and Fields [24]. When Alice’s
and Bob’s complementary observables are denoted by Ak and
Bl , respectively, with the associated orthonormal bases {|ak〉}
and {|bl〉}, the characteristic function of a composite quantum
state ρ̂ is given by

χ (m,n) = Tr

⎡
⎣T

d+1∏
k=1

⎛
⎝δmk,0I + (

1 − δmk,0
) d−1∑

ak=0

ωmkakAk(ak)

⎞
⎠ ⊗

d+1∏
l=1

⎛
⎝δnl,0I + (

1 − δnl,0
) d−1∑

bl=0

ωnlblBl(bl)

⎞
⎠ ρ̂

⎤
⎦ ,

whereAk(ak)(ρ̂) = |ak〉〈ak|ρ̂|ak〉〈ak| andBl(bl)(ρ̂) = |bl〉〈bl|ρ̂|bl〉〈bl |. With the use of the complementary relation [see Eq. (A2)],
the commensurate quasiprobability function defined by the Fourier transformation of χ (m,n) is given by

W(a,b) = 1

d2(d+1)

(
1 +

d+1∑
k=1

�αk(ak) · �ρ A +
d+1∑
l=1

�βl(bl) · �ρ B +
d+1∑
k,l=1

�αk(ak) · S · �βl(bl)

)
, (15)
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where �αk(ak) = Tr[(�λA ⊗ 1)(|ak〉〈ak| ⊗ 1)], �ρ A =
Tr[(�λA ⊗ 1)ρ̂], �βl(bl) = Tr[(1 ⊗ �λB)(1 ⊗ |bl〉〈bl |)], �ρ B =
Tr[(1 ⊗ �λB)ρ̂], and S = Tr[(�λA ⊗ �λB)ρ̂] in a generalized
Bloch representation [23]. Here �ρ A = Tr[(�λA ⊗ 1)ρ̂] and
S = Tr[(�λA ⊗ �λB)ρ̂] stand for ρA

j = Tr[(λ̂A
j ⊗ 1)ρ̂] and

Sjk = Tr[(λ̂A
j ⊗ λ̂B

k )ρ̂] for the sake of simplicity. The
generalized Bloch vectors �ρ A and �ρ B describe the reduced
quantum states of Alice’s and Bob’s qudits, respectively,
while the generalized Bloch matrix S describes the spatial
correlation between two qudits. Here the complete orthogonal
basis for the Hilbert space of Alice’s qudit, �λA, is generally
different from that of Bob’s qudit, �λB .

We now propose a marginal quasiprobability function:

Wm(c) =
∑
a,b

⎛
⎝d+1∏

j=1

δ(cj − aj + bj )

⎞
⎠ W(a,b), (16)

with aj ,bj ,cj ∈ {0,1, . . . ,d − 1}. Here δ(x) = 1 if x ≡ 0
mod d and δ(x) = 0 otherwise. When the complementary
observables Ak and Bl are employed, by using W(a,b) in
Eq. (15) and

∑d−1
ak=0 �αk(ak) = �0 [23], where �0 is a null vector,

the marginal quasiprobability function is given by

Wm(c) = 1

d2(d+1)

∑
a

(
1+

d+1∑
k,l=1

�αk(ak) · S · �βl(al −cl mod d)

)

= 1

dd+1

(
1+ 1

d

d+1∑
k=1

d−1∑
x=0

�αk(x) · S · �βk(x − ck mod d)

)

= 1

dd+1
{1+ Tr[SM(c)]}, (17)

where M(c) is a linear map from the generalized Bloch vector
space to itself,

M(c) = 1

d

d+1∑
k=1

d−1∑
x=0

�βk(x − ck mod d)�αk(x). (18)

For a separable state ρ̂(sep) = ∑
j pj ρ̂

A
j ⊗ ρ̂B

j , with pj � 0 and∑
j pj = 1, the marginal quasiprobability function in Eq. (17)

is reduced to

W (sep)
m (c) = 1

dd+1

⎛
⎝1 +

∑
j

pj �ρ B
j · M(c) · �ρ A

j

⎞
⎠ � 0, (19)

where �ρ A
j = Tr[�λAρ̂A

j ], �ρ B
j = Tr[�λBρ̂B

j ], and �ρ B
j · M(c) ·

�ρ A
j � −1 for all j as M(c) · �ρ A

j is a generalized Bloch
vector and the inner product between two generalized Bloch
vectors is no less than −1 [23]. This implies that the
marginal quasiprobability function is positive semidefinite
for all separable quantum states. As a contraposition, this
implies that a given quantum state is entangled if the associated
marginal quasiprobability functionWm(c) is negative for some
c. As an example, we consider a Werner state,

ρ̂Werner = p |ψMES〉 〈ψMES| + (1 − p)
1

d2
1 ⊗ 1, (20)

where 0 � p � 1 and |ψMES〉 = 1√
d

∑d−1
n=0 |n〉 ⊗ |n〉 is a max-

imally entangled state. Here we use specific forms of the

complete orthogonal bases for Alice’s and Bob’s qudits, such
that 〈n|�λB |n′〉 = 〈n′|�λA|n〉 for all n,n′ ∈ {0,1, . . . ,d − 1} in
the Schmidt basis {|n〉}. The generalized Bloch matrix S then
becomes the identity I multiplied by p, i.e., Sjk = pδj,k with
the Kronecker delta δj,k = 1 if j = k and δj,k = 0 otherwise,

S = p 〈ψMES| �λA ⊗ �λB |ψMES〉

= p

d

d−1∑
n,n′=0

〈n|�λA|n′〉〈n|�λB |n′〉

= p

d
Tr[�λA�λA] = pI, (21)

leading to a simplified form of the marginal quasiprobability
function,

WWerner
m (c) = 1

dd+1

(
1+p

1

d

d+1∑
k=1

d−1∑
x=0

�αk(x) · �βk(x−ck mod d)

)

� 1

dd+1
[1 − p(d+1)]. (22)

Here the lower bound in Eq. (22) is due to the fact that
the inner product between two generalized Bloch vectors is
no less than −1 [23], i.e., �αk(x) · �βk(x − ck mod d) � −1
for all k and x. The equality holds when the eigenvectors
of Alice’s and Bob’s complementary observables are given
by {|ak〉 = ∑d−1

n=0 φkn(ak)|n〉} and {|bk〉 = ∑d−1
n=0 φ∗

kn(bk)|n〉} in
the Schmidt basis {|n〉}. In this case, �αk(x) · �βk(y) = dδx,y − 1
due to the orthonormality condition �αk(x) · �αk(y) = dδx,y − 1
[23] and �αk(y) = �βk(y):

�αk(y) = Tr[(�λA ⊗ 1)(|y〉kk〈y| ⊗ 1)]

= Tr[(1 ⊗ �λB)(1 ⊗ |y〉kk〈y|)] = �βk(y). (23)

This implies that when we set ck = 1 for all k in Eq. (22),
�αk(x) · �βk(x − 1 mod d) = −1 for all k and x, leading to
the lower bound of the marginal quasiprobability function
in Eq. (22). This shows that the marginal quasiprobability
function becomes negative (for some c) for the Werner states
with p > 1/(d + 1), implying that a Werner state is entangled
if p > 1/(d + 1). This sufficient condition for the presence of
entanglement of the Werner states coincides with that in Ref.
[28]. These results indicate that the marginal quasiprobability
function can be utilized as an entanglement witness [29], where
the negativity of the marginal quasiprobability is a sufficient
condition for the presence of entanglement.

We call an observable A an entanglement witness if
Tr(A ρ̂s) � 0 for all separable states ρ̂s and Tr(A ρ̂e) < 0
for at least one entangled state ρ̂e. Therefore, if we detect
Tr(A ρ̂e) < 0, we know certainly that state ρ̂e is entangled.
Entanglement witnesses are directly measurable quantities, so
they are one of the most important methods for the analysis
of entanglement in experiment. It is significant that our
commensurate quasiprobability function naturally has such
properties. By definition, every entanglement witnesses can
detect some entangled state, but some witnesses are better
than others for detecting entangled states. In this sense, we
have an optimization problem of the entanglement witness.
This is also the case for our commensurate quasiprobability
function. We assumed mutually unbiased basis measurement
so as to optimally detect entanglement for Werner states. Other
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types of entanglement require a different set of measurements
to be optimal. Finding an optimal entanglement witness is a
challenging problem in quantum information science.

VII. SUMMARY

We proposed a commensurate quasiprobability function for
discrete systems, which is commensurate with its classical
counterpart, enabling a direct comparison between quantum
and classical statistics. We showed that the commensurate
quasiprobability is positive semidefinite when the expectations
of measurements can be described by a local hidden-variable
model with noninvasive measurability. We demonstrated that
quantum theory allows the negativity of the quasiprobability
function and the negativity depends on both the quantum state
and observables to be measured. In addition, we proposed an
optical experiment of a polarization qubit and showed that the
negativity of the quasiprobability function can be operationally
determined in experiment without any theoretical assumptions
on photon loss and photon-detection inefficiency. Finally,
we proposed a marginal quasiprobability function for two
qudits, which can be utilized as an entanglement witness.
We showed that the marginal quasiprobability function is
positive semidefinite for all separable quantum states and the
negativity of the marginal quasiprobability function leads to
a sufficient condition for the presence of entanglement of the
Werner states. It would be interesting to apply a commensurate
quasiprobability function to quantum information processing,
for instance, to test if a given algorithm for quantum computa-
tion possesses nonclassical features or if it can be classically
simulated by a classical (hidden-variable) model. It is an
open question whether and/or how to define a commensurate
quasiprobability function for a continuous-variable system,
where its derivation might be difficult for its unbounded
observables [30].
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APPENDIX

We shall derive the form of commensurate quasiprobability
function in Eq. (8) when local measurements are mutually
unbiased bases. The quasiprobability function in Eq. (5) is
rewritten as

W(a) = Tr

[
T

K∏
k=1

(
1

d
I + �Ak(ak)

)
[ρ̂]

]
, (A1)

where Ak(ak)(ρ̂) = |ak〉〈ak|ρ̂|ak〉〈ak| and �Ak(ak) =
Ak(ak) − 1

d

∑d−1
a=0 Ak(a). The complementary relation

between the observables is given by

Tr[Ak(ak)Aj (aj )ρ̂] = 1

d
Tr[Aj (aj )ρ̂] (A2)

for tk > tj . This leads to Tr[T �Ak(ak)�Aj (aj )ρ̂] = 0, and it
can be generalized to the case of an arbitrary combination of
�Ak(ak), i.e., Tr[T �Al(al) · · · �Ak(ak) · · · �Aj (aj )ρ̂] = 0.
This implies that only the zeroth and the first orders of �Ak(ak)
survive in Eq. (A1), while all higher orders vanish due to the
complementary relation. The commensurate quasiprobability
function is then simplified as

W(a) = 1

dK
Tr

[(
I + d

K∑
k=1

�Ak(ak)

)
ρ̂

]

= 1

dK

(
1 +

K∑
k=1

�αk(ak) · �ρ
)

, (A3)

with the generalized Bloch vectors �αk(ak) and �ρ.
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