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We generalize Greenberger-Horne-Zeilinger (GHZ) theorem to an arbitrary number of D-dimensional systems.
Contrary to conventional approaches using compatible composite observables, we employ incompatible and
concurrent observables, whose common eigenstate is still a generalized GHZ state. It is these concurrent

observables which enable one to prove a genuinely N-partite and D-dimensional GHZ theorem. Our principal
idea is illustrated for a four-partite system with D which is an arbitrary multiple of 3. By extending to N qudits,
we show that GHZ theorem holds as long as N is not divisible by all nonunit divisors of D, smaller than N.
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I. INTRODUCTION

The inconsistency of (local) hidden variable theories with
quantum mechanics fascinates many researchers. It has been
discussed in many theoretical [1] and experimental works [2].
Bell’s theorem, one of the most profound discoveries concern-
ing the foundations of quantum mechanics, states that any local
realistic theory is incompatible with quantitative predictions of
quantum mechanics. Even though Bell’s theorem was studied
mostly in terms of statistical inequalities, a more striking
conflict, without inequalities, was also shown for a multiqubit
system by Greenberger, Horne, and Zeilinger (GHZ) [3]. They
derived an all-versus-nothing contradiction based on perfect
correlations for so-called GHZ states. This leads to a direct
refutation of Einstein-Podolsky-Rosen (EPR) ideas on the
relation between locality and elements of reality with quantum
mechanics [4].

This is a striking blow right into the very basic ideas linked
with local hidden variables. After all, EPR used the concept of
(local) elements of reality to support their claim that quantum
mechanics is incomplete. All this can be best explained
using the three particle GHZ paradox. Take a state |GHZ) =
\/LZ(H_—H_) — |—=—-)), where |£) denotes states associated

with the eigenvalues &1 of the local Pauli o, operator.
The operators 0, ® 0y ® 0,0, ® 0, ® 0y,0, ® 0, ® 0y, and
o, ® 0, ® o0, all commute, and their eigenstate is |GHZ). The
eigenvalues are —1, 1, 1, and 1, respectively, which signify
perfect (GHZ)-EPR correlations. This would please any local
realist. Assume that the particles are far away from each
other, and three distant independent observers can perform
experiments on them, choosing at will the observables. For
example, the first and the second one may choose o, and their
measurement results are 1 and —1, respectively. In such a
case, they can together predict with certainty what would have
been the result of the third observer had he or she chosen to
measure also o,. Simply the local results must multiply to the
eigenvalue of the joint observable o, ® 0, ® o,, and this is
—1. Thus, the third observer, if the hypothetical case of him
or her choosing to measure o, really happens, must for sure
get 1. Thus, as EPR would say, this value is an element of
reality, because in no way the distant choices, and obtained
results can influence anything that happens at the location
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of the third observer (especially if measurements actions, are
spatially separated events in the relativistic sense of this term,
and the measurement choices are made some time after the
particles are emitted from a common, say central, source). For
such counterfactual reasonings one can use any of the four
perfect correlation cases for the joint measurements given
above, and apply to each observer. Thus, it seems that one
can ascribe elements of reality of to all local situations, no
matter whether the local observable is o, or o,. Note that
these are incommensurable. Let us denote such elements of
reality, related with a single emission act of three particles,
by rf‘u, where w = x,y denotes the observable, and k = 1,2,3
denotes the observer. Obviously X = 1. For the four cases
of GHZ-EPR perfect correlations one therefore must have

1,2,3 _ 1,2,3 _ 1,2,3 _ 1,23 _
rxrx;.’)C = —1, and reryTy = 1, r:‘,rxry = 1, ryryry = 1. If one
multiplies these four relations side by side, one gets 1 = —1.

Thus an attempt of introducing EPR elements of reality leads
to a nonsense. Ergo, elements of reality are a nonsense. No
other argument against local realism could be more striking.
Extending Bell’s theorem to more complex systems such as
multipartite and/or high-dimensional systems [5] is important
not only for a deeper understanding of foundations of quantum
mechanics. It is associated with developing new applica-
tions in quantum information processing, such as quantum
cryptography, secret sharing, quantum teleportation, reduction
of communication complexity, quantum key distribution,
and random numbers generation [6—10]. Similarly to Bell’s
theorem, also all-versus-nothing tests, which we call GHZ
theorem, have been generalized to higher dimensional systems.
For the sake of convenience, we shall use the tuple (N, M, D)
to denote N parties, M measurements for each party, and
D distinct outcomes for each measurement. In Ref. [11],
the GHZ theorem was derived for a (D + 1,2,D) problem.
A probabilistic but conclusive GHZ-like test was shown for
(D,2,D) in Ref. [12]. The (N,2,D) problem for odd N > D
and even D was studied by Cerf et al. [13]. Lee et al. showed
the GHZ theorem for more general cases, (oddN,2,evenD), by
an unconventional approach using incompatible observables
[14]. Recently, Tang et al. generalized GHZ theorem to the
N (=4)-partite case and even-D dimensional systems with the
help of GHZ graphs [15]. Despite such an intensive progress
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in extending GHZ theorem, many cases of N-partite and
D-dimensional systems remain still as open problems.

We generalize the GHZ theorem to three or higher D-
dimensional systems. To this end, we employ concurrent
composite observables which, in contrast with the standard
approach, are mutually incompatible but still have a common
eigenstate, here a generalized GHZ state. They can be realized
by multiport beam splitters and phase shifters, as it is shown
in Refs. [11,14]. We first illustrate our principal idea with
four 3d-dimensional systems and then provide a systematic
method, so as to extend it to three or higher D-dimensional
systems. Finally, we show a GHZ-type contradiction, as long
as N is notdivided by all nonunit divisors of D, smaller than N.
Our generalization is genuinely N-partite and D-dimensional
and can reproduce the previous results [3,11,13,14]. This
approach can lead to a general GHZ theorem for N qudits.

II. CONCURRENT OBSERVABLES

Some sets of observables have a common eigenstate. If a
system is prepared in the eigenstate, the measurement results
for such observables are concurrently appearing with certainty.
Such observables are called “concurrent” [14]. For a quantum
system of dimension D(>2), consider two Hermitian operators
A and B such that A = a|y)(¢| + A} and B = b|y/)(¥| +
Bi‘ with Ai(éj;)h//) = 0. The state |y) is then a common
eigenstate of both observables as AB)|Y) = a)|¥), even if
[A,B] =[A}.B}]#0[16].

Such concurrent observables can be constructed by the
method introduced in Ref. [14]. Consider a unitary operator U,
which is of the form of U = ¢'®[v)(y/| + Uy with Uy |y) =
0. Here ljj; is a unitary operator on a space Hfb‘ which is
defined by the requirement H = Hy @ Hi, where Hy, is the
one-dimensional space containing [i). Every such unitary
operator leaves the state |) unchanged, up to a global phase:
If the state |y) satisfies A|y) = A|v), then all transformed
operators By = U AU are concurrent with A.

Consider N qudits prepared in a generalized GHZ state

f Z ®k | In)x, where |n) denotes a basis state
for a qudit. ThlS GHZ state is a common eigenstate with the
unity eigenvalue of any composite observable X®V = X ®
X® - ®X as )A(@’NW) = |v), where the local observable
X is defined by applying quantum Fourier transformation F
on a reference unitary observable Z = Zn —o @"|n){n| with
w = exp(2rwi/D), that is, X=FZFt [17]. An eigenvector
of X associated with the eigenvalue " is given by |n)x =
Fin) = f Zm —_o @""|m). With the standard basis set {|n)},
the observable X is written as X = Zn _o In){(n + 1], where

|[n) = |n mod D).
To construct a set of concurrent composite observables, we

employ a unitary operation in the form of U = ®,1(V=1 P fo)
with a phase shifter 2 = 321 @/i®|n) (n]. If “phases” f; (n)
satisfy a condition,

N
> fil®y=0 mod D, (1)

k=1
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for each n, then the unitary operator U leaves the GHZ state
|) invariant. This simple invariance condition enables one
to construct a large number of concurrent observables which
have a common eigenstate of the generalized GHZ state.

Let us apply the unitary operation U with the phases
fr(n) = agn with rational numbers ¢y to X®N _If the phases
fx(n) satisfy the invariance condition (1), the transformed ob-
servable UX®NUT = X(a)) ® X(a2) ® - - - ® X(ay) is con-
current with X®V i.e., UX®NUT|y) = |¢). For each eigen-
value w", the eigenvector of the local observable X («) is given
by applying the phase shifter P on |n) as |n)q = Pln), =
f S P71 @™ Im) . The observable X () can be written in
the standard basis set {|n)} as

D-2
X@ = (Z m){n + 1] + P |D - 1><0|) e

n=0

Note that if « is an integer, the measurement basis set {|n),} of
X (o) will be the same as {|n)y} of X except the ordering, i.e.,
In)e = |n + a)x. Thus, X («) = o~ ®X. That s, the observable
X(@) is equivalent to X, up to a phase factor w™*. Let |n),
be the eigenstate of X () associated with eigenvalue ", and
|m) g the eigenstate of X(B) associated with ™. If and only if
« differs from B by an integer, then two measurement bases
satisfy |0[(n|m),g|2 = 6p(y),wherey =m —n + 8 — «. Here
dp(y) = 1if y is congruent to zero modulo D and otherwise
dp(y) =0. That is, if B —« is not an integer, two local
observables X (@) and X (B) are inequivalent.

III. GENERALIZED GHZ THEOREM
A. Four-qudit system

We first illustrate our idea by considering a four-qudit
system. Already this case goes significantly beyond the
previous studies [11,13—15]. Take a four-qudit GHZ state
) = j—ﬁ Z,?:_ol |[n,n,n,n) (here D is assumed to be an
integral multiple of 3). The qudits are distributed to four
sufficiently separated parties. Each party performs one of two
nondegenerate local measurements on his or her qudit, each
of which produces distinguishable D outcomes. We represent
the measurement for the kth party by My, and the eigenvalues
of the observables are of the form w™*, where m; is an integer.
One can denote a joint probability that each party obtains the
result ™ by P(m,m,m3,my), andAdeﬁneA a corrglation func-
tion Eqm(Mi,My,M3,M4) = (Y |M1 @ My @ M3 @ My|yr),
equivalently the quantum average of products of the measure-

ment results: ZZI;IO---ZD loa)z' 1" P(my,my,msz,my).

When all measurements are X ,thatis, each M; = ;= X , since X®
X ® X ® X|¥) = |¢), one has Equ(X,X,X,X) = 1. This
implies that we have a perfect GHZ correlation. If arbitrary
three parties know their own outcomes w* of measurements
X, then they can predict with certainty the remaining party’s
outcome. We will denote such a perfect correlation by

Com(x1 + x2 + x3 + x4 = 0). 3)

The sum is taken modulo D; such a convention is used below
in all formulas.

Let us construct concurrent composite observables from
the observable 9y = X®*, by applying a unitary operator
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Ul = f’l ® P23, with the phase shifters ﬁk of phases fi(n) =
(D — nand f>(n) = n/3. One of the new observables is 0] =
0,000] = (D — 1) ® X(1/3)®3. The phases fi(n) satisfy
the invariance condition (1), fi(n)+3f,(n) =0 mod D.
Thus, the observable 9; has |¢) as its eigenstate with
eigenvalue 1. By Eq. (2) one has X(D —1) = wX(0), and
¥ = X(1/3) is given by

D-2
Yy = '3 (Z In)(n + 1| + o”?|D — 1)(0|) @
n=0

The observable ¥ = X (1/3) is not equivalent to X=X 0)
[see the explanation below Eq. (2)]. The other three concurrent
observables are obtained by 0, = 011300;, [ € {2,3,4}, where
the unitary operators U; are composed of the cyclic per-
mutations of the local phase shifters: U2 P2 ® P1 ® P2 ®
PU;=PeoP,eP®Pandl,s=PeP,o P P
The perfect correlations for 9; (i = 1, ... ,4) are, respectively,
given by

Com(xi +y2+y3+ys=—1),
Com(y1 +x2+y3 +ys = —1),

Comn +y2 +x3+y4 = —1),
Com(y1 +y2+y3 +x4 = —1),

®)

where w”' is an outcome of measurement ¥ for the ith party.
Local realistic theories assume that the outcomes of the
measurements are predetermined, before the actual measure-
ments. This implies that the values of local realistic predictions
for the correlations (5), for each experimental run, must satisfy

1

0" =0, " 1

oWl wt = w” ,

(6)
0o 0 = w7l I

' 0wt = w”
If local realism is also to reproduce quantum perfect correla-
tions for the case of 9§y, = X®*, one must have for each run,

oM wB o™ = 1. 7

However, one sees that this is possible only provided
w354 = 1 if one multiplies side-by-side all equations
(6). Asw = exp(2wi/ D), if D = 3d where d is an integer, one
can use the fact that an elementary algebra shows that there is
no integer solution of the equation 3y +4 =0 mod D. Thus
local realistic correlation (7) is impossible.

It is worth noting that the approach with concurrent
observables relaxes the restrictions of early studies requir-
ing compatible observables. This enables one to generalize
GHZ contradictions beyond the case N > D studied in
Refs. [11,13].

Note that to prove the four-partite GHZ contradiction, we
chose the local dimension D and the number of the observables
?’s in the considered correlation functions, N,, such that the
greatest common divisor (gcd) of D and N,, here gcd(D,N,) =
3, does not divide the number of parties N = 4, or equivalently
the number N, of the observables X (here equal to 1). This
mathematical property plays a central role in the generalization
of the GHZ contradiction to an arbitrary number of parties.
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B. Extending to N-qudit system

We extend our approach into a general case of N qudits,
N > 3,suchthat N is nondivisible by any nonunit divisor of D,
smaller than N. To this end, we use a set of (N + 1) concurrent
observables given by o = X®V and N observables of the
following forms: 9, = wX®V1 @ Y®V and o, = V&1 ®
wX®V @ Y®Na—ktl for k =2, ... N, + 1 and finally o, =
XOk=N2ml @ YO8N @  XON K+ for k = Ny +2,...,N.

The composite observable 9; is obtained by a unitary
transformation, U, = P, @ 18V~ @ 132®N2, of the observable
0g, 1.e., U] = U, ﬁOUI, with the phase shifters P, and P,
of phases fi(n) = (D — Dn and f>(n) = n/N,, respectively.
The local observables X = X(0) and ¥ = X(1 /N») are given
by Eq. (2). Likewise, we obtain the other concurrent observ-
ables 1;(2 <1 < N) by cyclic permutations in the unitary
operator U}, as it was done for the four-partite case. The phases
satisfy the invariance condition (1) as fi(n) + N, fo(n) =0
mod D. Thus the N-partite generalized GHZ state |¢) =
f YOV Qi In)i is a common eigenstate of all the
(N 4+ 1) concurrent observables v; (I =0,...,N), with the
same eigenvalue 1. This leads to the following values of
correlation functions (for later convenience we use party
indices i = 1,...,N, which will later on allow us to get a
more concise notation in formulas). If all local observables are
X, that is, for global ¥y, one has Equm(X,X,...,X) = 1. Thus
we have a perfect correlation which can be denoted, in the way
introduced earlier, as CQM(ZlN:l x; = 0). For 0y, where k =
1,2, ...,N,onehas perfect correlations of the following forms:
for k =1, CQM(ZZN X+ ZN Ny41Yi = —1), and for k =

2,....,N, +1, CQM(Zz 1y;+ZNl+k : i+ZNN|+kyiE
—1) and finally for k = Ny +2,...,N, Com(X ="' x; +
Yk, Vi + i xi = =1,

Following similar arguments as in the case of the four-
partite GHZ contradiction, we obtain the following condition
for the local realistic correlation function for the composite
observable 9y = X®V, to have value equal to the quantum
prediction, that is, 1. It reads (modulo D)

N N
NIZx,-E—NQZyi—NEO. (8)
i=1 i=1

However, if N, is an integral multiple of g but N cannot be
divided by g, then there are no solutions of y = ), y; to the
equation Ny + N =0 mod D. The greatest common divisor
of N, and D is an integral multiple of g, i.e., gcd(N,, D) = kg
for some positive integer k but kg cannot divide N as N is not
an integer multiple of g. Thus we have a contradiction with
the quantum prediction.

In order to show a GHZ contradiction for N-partite and
D-dimensional system, we choose that (a) D = dg, (b) N, =
ng, where d and n are positive integers, and (c) N cannot be
divided by g. Choosing the integer g, a nonunit divisor D, plays
a crucial role. For example, consider four six-dimensional
systems. The nonunit divisors g, smaller than N = 4, are 2
and 3. If we choose g =2, then we are unable to see any
four-partite GHZ contradiction as the greatest common divisor
(ged) of Ny and D, gcd(N, = 2,D = 6) = 2, divides N = 4.
On the other hand, if we choose g = 3, the four-partite GHZ
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contradiction can be proved as gcd(N, = 3,D = 6) =3 and
g = 3 does not divide N = 4. This is a specific example of a
GHZ contradiction for a (4,2,3d) problem. As a consequence,
we conclude that one is always able to prove the GHZ
contradiction for the N(>3)-partite and D(>2)-dimensional
systems as long as N cannot be divided by all nonunit divisors
of D.

For appropriate values of N and D, our approach repro-
duces the previous works [11,13,14]. A GHZ contradiction for
(D + 1) qudits shown in Ref. [11] is reproduced by choosing
N; =1 and N, = D in our method, and noticing the fact that
N; =1 is indivisible by D = gcd(N, = D, D). The case of
(oddN,2,evenD) studied in Refs. [13,14] can be also proved
by choosing a nonunit divisor g = 2 of D and an arbitrary odd
integer N;. One can also easily check that if N, = D = 2 and
N; = 1, then our contradiction is reduced to the original GHZ
theorem [3].

C. Genuinely N-partite D-dimensional case

The GHZ theorem for the two-dimensional systems seems
to be fully understood. However, for more complex systems
this is not so. Cerf et al. suggested a criterion for a genuinely
N -partite (D-dimensional) GHZ contradiction [13]. It arises
only for the given full N-partite (D-dimensional) system, but
not for any n(<N)-partite subset, or for an effectively lower
dimensionality of the involved observables. For example, the
three-qubit classic GHZ theorem can be put as the theorem for
three qutrits, and specific entangled GHZ states involving only
two-dimensional subspaces for each qutrit.

The GHZ contradiction we show here is a genuinely
N-partite one, as it is constructed using a set of composite
observables composed of cyclic permutations. Let us explain
this with the four-partite GHZ contradiction, where we used
the five concurrent composite observables: X @ X ® X ® X,
X7yl 7oXeY®l.YeY®X®V,andV ®
Y ® Y ® X. In such circumstances, if we eliminate one of
the parties, we are unable to show a GHZ contradiction with
the remaining observables. The four-partite GHZ state is no
longer their common eigenstate. A similar argument can be
put forward in the case of our N-partite theorem.

The genuine D dimensionality is reflected by the fact that
the operators are undecomposable to a direct sum of any
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subdimensional observables [14]. In other words, if two local
observables X and ¥ can be simultaneously block diagonalized
by some similarity transformation § such that $X3t = X| @
- @® Xk and SYST =¥, ® - @ Yk, then there exist some
eigenstates |n), of X and |m)g of Y such thata(nIS'T§|m),g =
0 and one can find a subdimensional GHZ contradiction.

However, there are no such eigenstates in our method because
sin?(rr &)
DZsin?[(/ D)E]

£ =m —n+ B — a. As the local observables X = X («) and
Y = X(B) are such that B —« is not an integer, & is a
nonintegral rational number. Thus, our GHZ contradiction is
genuinely D dimensional.

for every n and m, |O,(n|m),3|2 = > (0, where

IV. SUMMARY

We construct a generalized GHZ contradiction for mul-
tipartite and high-dimensional systems. The GHZ theorem
holds as long as N is not divisible by all nonunit divisors of
D, smaller than N. We also demonstrate that our formulation
of a generalized GHZ contradiction is genuinely N partite
and D dimensional. For this purpose, we employ concurrent
composite observables, which have a generalized GHZ state
as a common eigenstate (even though these observables are
incompatible). Our approach, by using concurrent observ-
ables, enables us to find a broader class of GHZ contradic-
tions. There remain still more possibilities for constructing
concurrent observables, which may help in further exten-
sion of the GHZ theorem. We hope that our approach of
concurrent observables would be useful in the search of
other kinds of quantum correlations, which are impossible
classically.
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