
First observation of Cabibbo-suppressed �0
c decays

R. Chistov,20 I. Adachi,12 H. Aihara,58 D.M. Asner,44 V. Aulchenko,3 T. Aushev,20 A.M. Bakich,52 A. Bala,45

V. Bhardwaj,36 B. Bhuyan,14 A. Bondar,3 G. Bonvicini,64 A. Bozek,40 M. Bračko,29,21 J. Brodzicka,40 T. E. Browder,11
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We report the first observation of the Cabibbo-suppressed decays �0
c ! ��Kþ, �0

c ! �KþK� and

�0
c ! ��, using a data sample of 711 fb�1 collected at the �ð4SÞ resonance with the Belle detector

at the KEKB asymmetric-energy eþe� collider. We measure the ratios of branching fractions to be
Bð�0

c!��KþÞ
Bð�0

c!���þÞ¼ð2:75�0:51�0:25Þ�10�2, Bð�0
c!�KþK�Þ

Bð�0
c!���þÞ ¼ð2:86�0:61�0:37Þ�10�2 and Bð�0

c!��Þ
Bð�0

c!���þÞ ¼
ð3:43� 0:58� 0:32Þ � 10�2, where the first uncertainty is statistical and the second is systematic.

DOI: 10.1103/PhysRevD.88.071103 PACS numbers: 14.20.Lq, 13.30.Eg

Weak decays of charmed baryons provide a useful test

of many competing theoretical models and approaches

[1]. While many Cabibbo-favored decays of �þ
c and

�þ;0
c have been observed, the accuracy of the measured

branching fractions remains poor. Some of the Cabibbo-

suppressed (CS) decays of the �þ
c were observed by

Belle [2] and BABAR [3]; no experimental information

is available for the CS decay modes of the �0
c. In this

paper we report the first observation of the CS decays

�0
c ! ��Kþ, �0

c ! �KþK� and �0
c ! ��. The first

decay is the Cabibbo-suppressed analogue of the

Cabibbo-favored decay �0
c ! ���þ and proceeds

through the external W-emission and W-exchange

diagrams (see the two upper panels of Fig. 1). The third

one proceeds through the internal W-emission and

W-exchange diagrams (see lower two panels of Fig. 1).

The �0
c ! �KþK� decay can receive contributions

from all W-mediated diagrams. The W-internal diagrams

in charmed meson decays are usually color suppressed;

this is not the case in charmed baryon decays [4].

Therefore, it is important to check this behavior in

Cabibbo-suppressed �0
c decays.
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The analysis is performed using data collected with the
Belle detector at the KEKB asymmetric-energy eþe� col-
lider [5]. The data sample consists of 711 fb�1 taken at the
�ð4SÞ resonance.

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector, a 50-
layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters (TOF),

and an electromagnetic calorimeter composed of CsI(Tl)
crystals located inside a superconducting solenoid coil that
provides a 1.5 T magnetic field. An iron flux return located
outside of the coil is instrumented to detect K0

L mesons

and to identify muons. The detector is described in detail
elsewhere [6].
We select charged pions, kaons and protons (unless

a track has been identified as a daughter of a �� or �
hyperon) that originate from the region dr < 0:5 cm and
jdzj< 1 cm, where dr and dz are the distances between
the point of closest approach and the interaction point (IP)
in the plane perpendicular to the beam axis (the r-� plane)
and along the beam direction (z), respectively. We apply
identification (ID) requirements for the charged particles
using likelihoods LK, L� and Lp for the kaon, pion and

proton hypotheses, respectively, that are derived from in-
formation recorded by the TOF, ACC and CDC. Charged
kaons are required to satisfy LK=ðLK þL�Þ> 0:6 and
LK=ðLK þLpÞ> 0:6. Protons are required to satisfy

Lp=ðLK þLpÞ> 0:6 and Lp=ðL� þLpÞ> 0:6. For

both species, these criteria have an efficiency greater
than 87% and a misidentification probability of less than
11%. We apply no ID requirements for pions.
In our Monte Carlo (MC) simulation, �0

c baryons are
produced in eþe� ! c �c events using the PYTHIA [7] frag-
mentation package. Subsequent short-lived particle decays
at the IP are generated by EvtGen [7]. The detailed detector
response is simulated using GEANT [8].
The � hyperons are reconstructed in the decay mode

� ! p��. (Unless stated otherwise, charge conjugation is
implicitly assumed throughout the paper.) We fit the p and
�� tracks to a common vertex and require an invariant
mass in a �3 MeV=c2 (� � 3�) interval around the
nominal � mass. We then impose the following require-
ments on the � decay vertex: the vertex fit must be sat-
isfactory; the difference in the z coordinates of the proton
and pion at the decay vertex must satisfy �z < 1 cm; the
distance between the � decay vertex position and IP in the
r-� plane must be greater than 0.1 cm; the angle ��

between the � momentum vector and the vector joining
the IP to the decay vertex must satisfy cos�� > 0:9 for the
case �0

c ! ��. (No cos�� requirement is applied for the
�0

c ! ��Kþ candidates since, in this case, we select �’s
emerging from the �� decay vertex rather than the IP.)
The �� hyperons are reconstructed in the decay mode

�� ! ���. We require a ��� invariant mass within a
�6 MeV=c2 (� � 3�) interval around the nominal ��
mass, fit the � and the �� track to a common vertex and
apply the following requirements: the vertex fit must be
satisfactory; the distance between the �� decay vertex
position and IP in the r-� plane must be greater than
0.1 cm; the angle ��� between the �� momentum vector
and the vector joining the IP to the �� decay vertex must
satisfy cos��� > 0:9. All criteria described above and the
reconstruction method for the two long-lived hyperons
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FIG. 1. Diagrams for the �0
c ! ��Kþ (upper two) and �0

c !
�� (lower two) decays.
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have been verified and used in previous Belle papers on �,
�� and �� hyperons [2,9–11].

The combinatorial background peaks at low momenta
while charmed hadrons in eþe� ! c �c are concentrated at
high momenta. Therefore, the momentum p� in the eþe�
center-of-mass frame for the �0

c candidates is required to
be greater than 3:0 GeV=c.

We reconstruct �0
c ! ��Kþ candidates by combining

�� and Kþ candidates in the event. The resulting spec-
trum of the invariant mass Mð��KþÞ after all selection
requirements is shown in Fig. 2, where a signal near
2470 MeV=c2 is observed. In addition, a broad bump
above the combinatorial background is evident at higher
mass that is due to a reflection from �0

c ! ���þ, in
which the pion is misidentified as a kaon. We first check
the origin of this reflection peak with data. With tight kaon
ID requirements, the reflection bump completely vanishes;
with looser ID requirements, the peak is more prominent.
We check the shape and position of the reflection using
signal MC events for the decay �0

c ! ���þ. By recon-
structing such events as ��Kþ, we observe that the posi-
tion and shape of this reflection match those of the data. We
also check the invariant mass distribution for the wrong-
sign ��K� combinations in data with the same selection
requirements. We find no indications of peaking structures
and observe a mass distribution that is featureless over
a wide mass range centered around the mass of the �0

c

(see Fig. 3).
The solid curve in Fig. 2 is the result of the fit that

includes the signal, the reflection and the combinatorial
background. Here and elsewhere in this paper, we use a
binnedmaximum likelihood fit. The signal is described by a
double Gaussian with a common floating mean and widths
fixed from signal MC events. We calibrate these widths by
the data-to-MC ratios from the study of �0

c ! ���þ de-
cay: we take�core and�tail from the fit to the�0

c ! ���þ
signal on data and divide these by the corresponding �’s

from its signalMC events: ð�data
core

�mc
core
Þ���þ ¼ 6:00=5:48 ¼ 1:09,

ð�data
tail

�mc
tail
Þ���þ ¼ 12:50=11:06 ¼ 1:13. Then we make a

correction of �core and �tail taken from �0
c ! ��Kþ MC

events and obtain the widths that we fix in the fit of
the �0

c ! ��Kþ signal on data: ð�data
coreÞ��Kþ ¼ 1:09 �

5:87 ¼ 6:43 MeV=c2, ð�data
tail Þ��Kþ ¼ 1:13� 12:72 ¼

14:35 MeV=c2. We also include the shape of the reflection
from �0

c ! ���þ that is determined from MC-generated
�0

c ! ���þ decays reconstructed as �0
c ! ��Kþ. We

find that the reflection can be parametrized by an asymmet-
ric Gaussian with the right shoulder being larger than the
left one. We fix the shape of the reflection and leave its
normalization as a free parameter in the fit. The background
is parametrized by a third-order polynomial function. The
fit yields N ¼ 313:8� 57:8 events and M ¼ 2470:6�
1:5 MeV=c2 for the �0

c ! ��Kþ signal. The obtained
mass is in good agreement with the world average mass of
Mð�0

cÞ ¼ ð2470:88þ0:34
�0:80Þ MeV=c2 [4]. The significance of

the observed signal is 8:0�. The signal significance reported
here and elsewhere in this paper is determined from 2 �
ln ðL0=Lmax Þ, where Lmax is the maximum likelihood for
the nominal fit and L0 is the corresponding value with the
signal yield fixed to zero. The extraction of the significance
takes into account 2 additional degrees of freedom (mass
and yield).
We generate signal MC events without any momentum

requirement, so here and elsewhere in this paper all calcu-
lated efficiencies take into account the kinematic efficiency
of the p� > 3:0 GeV=c requirement. The measured total
reconstruction efficiency for the �0

c ! ��Kþ mode is
ð4:47� 0:03Þ%; this includes the intermediate branching
fractionBð� ! p��Þ [4]. Using the results from the study
of the normalization channel �0

c ! ���þ (the number
of events and reconstruction efficiency, described below),

we obtain the ratio Bð�0
c!��KþÞ

Bð�0
c!���þÞ ¼ ð2:75� 0:51� 0:25Þ �

10�2. The first and second errors are statistical and system-
atic, respectively.
In the search for �0

c ! ��ð� ! KþK�Þ decay, in ad-
dition to the above-described selection criteria, we require
that the mass of the �K� pair be outside a �6:5 MeV=c2
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FIG. 2. FittedMð��KþÞ spectrum. The peak at 2470 MeV=c2

corresponds to the �0
c ! ��Kþ signal. The broad structure

from 2520 MeV=c2 to 2700 MeV=c2 corresponds to the �0
c !

���þ. The smooth curve is the fit result, described in the text.
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FIG. 3. The wrong-sign Mð��K�Þ spectrum. There are no
peaking structures around 2470 MeV=c2.
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masswindow aroundMð��Þ ¼ 1672:45 MeV=c2 [4]. This
requirement removes the contribution from thewell-known
�0

c ! ��Kþ (�� ! �K�) decay [4]. The resulting spec-
trumof the three-body invariantmassMð�KþK�Þ is shown
in Fig. 4, where a signal near 2470 MeV=c2 is observed.We
fit the �0

c ! �KþK� signal to the data with a double
Gaussian with the fixed widths from corresponding MC
events (�core ¼ 2:53 MeV=c2, �tail ¼ 6:10 MeV=c2). For
the background, we use a third-order polynomial. The fit
results in a mass ofM ¼ 2471:2� 1:1 MeV=c2 and a yield
ofN ¼ 511:0� 109:5. Thismass is in good agreementwith
the world average mass of the �0

c. The significance of this
signal is 6:4�.

To obtain the�0
c ! �� signal, we select�KþK� com-

binations within the �12 MeV=c2 mass window around
Mð�0

cÞ ¼ 2470:9 MeV=c2 and investigate the distribution
of MðKþK�Þ shown by the data points in Fig. 5. The
superimposed histogram shows the � signal for the events
taken from the �0

c sidebands, which are normalized to
the area under the�0

c signal. The left�
0
c sideband is defined

by 2403:2 MeV=c2 <Mð�KþK�Þ< 2451:2 MeV=c2,
and the right one by 2491:2 MeV=c2 <Mð�KþK�Þ<
2539:2 MeV=c2. A distinct excess of�mesons is observed
in the �0

c signal region, establishing the observation of the
two-body �0

c ! �� decay.
The � signal is described by a Breit-Wigner function

convolved with the double Gaussian resolution function
with the widths fixed from MC events (�core ¼
0:61 MeV=c2, �tail ¼ 1:39 MeV=c2). The natural width
�� is fixed to its nominal value of 4.26 MeV [4]. The

threshold function multiplied by a third-order polynomial
is used to model the combinatorial background together
with a nonresonant contribution. The fit results in the
following � yields: N1 ¼ 1533:1� 47:9 events in the �0

c

signal region and N2 ¼ 5006:8� 88:8 events in the �0
c

sidebands region. From this, the final net � yield in �0
c !

�KþK� decays is N�¼ðN1��N1Þ=0:98�ðN2��N2Þ�
0:249¼315:8�53:7. The coefficient 0.98 takes into
account the efficiency of the mass requirement of
�12 MeV=c2 around Mð�0

cÞ. The coefficient 0.249 is the

ratio of areas under the �0
c signal and the sum of its

sidebands. From the obtained � net yield and the proba-
bility value of the Gaussian distribution of the error, we
extract a significance of 5:9� for the �0

c ! �� signal. By
varying the width of the�0

c sidebands and repeating the �
yield extraction procedure, we obtain significances that
are never less than 5:6�. We quote this latter value as
our significance of the �0

c ! �� signal, including the
systematic error. The total reconstruction efficiency,
including the intermediate branching fractions of � !
p�� and � ! KþK�, is extracted from signal MC

events to be ð3:60� 0:02Þ%. We obtain Bð�0
c!��Þ

Bð�0
c!���þÞ ¼

ð3:43� 0:58� 0:32Þ � 10�2. The first and second errors
are statistical and systematic, respectively.
To obtain the ratio of branching fractions for the

three-body �0
c ! �KþK� channel, we estimate its signal

efficiency as follows. Taking into account the correspon-
dence between the obtained number of events for the three-
body mode (511:0� 109:5) and for the �0

c ! �� mode
(315:8� 53:7), we generate a sample of �0

c states that
decay 40% of the time into the three-body phase space
�KþK� final state and 60% of the time into the �� final
state. The total reconstruction efficiency, including the
intermediate branching fraction for � ! p��, is found
to be ð7:01� 0:04Þ%. We vary the portion of the resonant
mode over a �50% range and repeat the efficiency extrac-
tion. The absolute value of the largest variation in the
total reconstruction efficiency is found to be 0.15%,
which is treated as a systematic error. Finally, we get
Bð�0

c!�KþK�Þ
Bð�0

c!���þÞ ¼ ð2:86� 0:61� 0:37Þ � 10�2, where the

first and second errors are statistical and systematic, re-
spectively. An additional source of systematic error due to
the MC model of �0

c decay into the final state �KþK� is
also included.
Currently, there are no absolute branching fraction mea-

surements for�0
c, so we choose to normalize the results for
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FIG. 4. The Mð�KþK�Þ distribution together with the over-
laid fitting curve. The fit is described in the text.
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shows the � signal for the events taken from the normalized
�0

c sidebands (see the text).
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�0
c decays to the well-known decay mode �0

c ! ���þ.
Using the same data sample, the selection criteria and
the pð�0

cÞ� > 3:0 GeV=c requirement described above,
we reconstruct �0

c ! ���þ decays and obtain the
Mð���þÞ spectrum shown in Fig. 6. We fit this spectrum
with a double Gaussian with a floating common mean and
floating widths (to describe the signal) and a third-order
polynomial function to account for the background. The
signal yield is N ¼ 15324� 262. The Gaussian widths
and common mean are extracted from the fit to be �core ¼
6:0� 0:3 MeV=c2, �tail ¼ 12:5� 0:8 MeV=c2 and M ¼
2471:4� 0:1 MeV=c2, respectively. The mass is in
agreement with the world average value: Mð�0

cÞ ¼
ð2470:88þ0:34

�0:80Þ MeV=c2 [4]. We generate signal MC events

and reconstruct the generated events according to the
procedure that is used in analyzing the data. The total
reconstruction efficiency is determined to be ð6:00�
0:03Þ%. This efficiency includes the intermediate branch-
ing fraction Bð� ! p��Þ [4]. Since the number of signal
events for this mode is large, we do not fix the Gaussian
resolution to obtain the final yield for �0

c ! ���þ.
We consider the following sources of systematic errors:

the fit,K ID efficiency andMC statistics. The fit systematics
are determined by varying the range of the fitted invariant
mass distributions and by changing the polynomial order

for the background function. Other sources of uncertain-
ties, such as particle reconstruction efficiency and � re-
construction efficiency, cancel in the branching fraction
ratio. For the �0

c ! �� and �0
c ! �KþK� results, we

consider possible interference between the non-��KþK�
and resonant ��ð� ! KþK�Þ amplitudes. This effect
is estimated to be 3.8%. Finally, the MC model of the
�0

c ! �KþK� mode introduces an additional uncertainty
that we estimate to be 2%. As we do not have a calibration
channel for the width correction in the �0

c ! �KþK�
mode, we add a 10% systematic error based on the calcu-
lated corrections in the �0

c ! ���þ mode. Table I
summarizes the systematic errors.
In conclusion, we have observed for the first time

the Cabibbo-suppressed decays �0
c ! ��Kþ, �0

c !
�KþK� and �0

c ! �� with significances of 8:0�,
6:4� and 5:6�, respectively. The ratios of the branching

fractions Bð�0
c!��KþÞ

Bð�0
c!���þÞ ,

Bð�0
c!�KþK�Þ

Bð�0
c!���þÞ and Bð�0

c!��Þ
Bð�0

c!���þÞ are

measured to be ð2:75� 0:51� 0:25Þ � 10�2, ð2:86�
0:61� 0:37Þ � 10�2 and ð3:43� 0:58� 0:32Þ � 10�2,
respectively.
The observed decay modes proceed through external

and internal W-emission diagrams with an admixture of
the W-exchange diagram. Our results can be used to study
the corresponding decay dynamics and to investigate quan-
titatively the interplay between strong and weak interac-
tions in charmed baryon weak decays. We confirm the
previous observations [2,3,12] that the W-internal dia-
grams are not (color) suppressed as compared to the
W-external diagrams in charm baryon decays.
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FIG. 6. The Mð���þÞ distribution for data together with the
overlaid fitting curve. The fit is described in the text.

TABLE I. Summary of systematic errors in the ratios of
Bð�0

c!��KþÞ
Bð�0

c!���þÞ (�
�Kþ), Bð�0

c!�KþK�Þ
Bð�0

c!���þÞ (�KþK�) and Bð�0
c!��Þ

Bð�0
c!���þÞ

(��).

Source

Value, %

(��Kþ)
Value, %

(��)

Value, %

(�KþK�)

Kaon ID 1 2 2

Fit model 9 8 7

Interference � � � 3.8 3.8

MC statistics 0.5 0.5 0.5

MC model � � � � � � 2

MC width � � � � � � 10

Total 9.1 9.1 13.1
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