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1 Introduction and Summary

The AdS/CFT correspondence relates d dimensional field theory to d + 1 dimensional theory
of gravity. This relation has been explored in great detail over the years in various context.
Stochastic quantization[1, 2, 3] is a formalism which studies non-equilibrium dynamics of d
dimensional field theory which evolves along stochastic time variable. Resulting theory is
interpreted as a d + 1 dimensional field theory. There were proposals relating AdS/CFT
corresponding to the stochastic quantization in the past[6, 7, 8, 9].

Recently, we proposed a specific relation between AdS/CFT and Stochastic quantization.
In [10], we proposed that the Hamiltonian governing the holographic Wilsonian renormalization
equations[4, 5] in the AdS/CFT correspondence is equal to the Fokker-Planck Hamiltonian of
the stochastic system. It in turn implies the stochastic time is identified with the radial variable
in the AdS space. We also showed that our proposal works for theories which are invariant
under Weyl rescaling3. Using this relationship it was shown that the Stochastic quantization
correctly reproduces the radial evolution of the double trace coupling for the boundary theory.

This proposal is based on the direct analogy between the holographic RG equation,

∂ǫψH(φ, r) = −
∫

r=ǫ

ddxHRG(−
δ

δφ
, φ)ψH(φ, r), (1.1)

3In [10], we have dealt with theories which are invariant under the scaling of the background metric as
gµν → λ(r)gµν , where µ and ν are spacetime indices and λ(r) is an arbitrary radial coordinate r-dependent
function.
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where, HRG is Legendre transform of the bulk action in AdS space, ψH = e−SB and SB is the
boundary effective action and on the stochastic side, the Fokker-Planck equation

∂tψS(φ, t) = −
∫

ddxHFP (
δ

δφ
, φ)ψS(φ, t), (1.2)

where, HFP is the Fokker-Planck Hamiltonian, which can be derived from the Fokker-Planck
action by Legendre transform. The stochastic wave-functional is written in terms of the prob-
ability distribution P (φ, t) and the classical action Sc as

ψS(φ, t) = P (φ, t)e
Sc(φ(t))

2 . (1.3)

In fact, the relation between the boundary effective action obtained by solving Hamilton-
Jacobi equations derived from the bulk action and stochastic 2-point correlator obtained from
the solution of Langevin equation addressed in [10] is given by

〈φp(t)φ−p(t)〉−1
H = 〈φp(t)φ−p(t)〉−1

S − 1

2

δ2Sc

δφpδφ−p

, (1.4)

where 〈φp(t)φ−p(t)〉S is stochastic 2-point correlation function, 〈φp(t)φ−p(t)〉−1
H = δ2SB

δφpδφ−p
and

the stochastic time ‘t’ is identified to the radial coordinate ‘r’ in AdS space . From the Fokker-
Planck approach, it is also shown that

SB =

∫ t

t0

dt′ddp LFP (φ(t
′), ∂φ(t′); t′), (1.5)

where LFP is called Fokker-Planck Lagrangian density. This relation with the boundary effec-
tive action is consistent with (1.4).

In this paper we will extend our analysis to conformally coupled scalar4. As we did earlier,
namely cases involving Weyl invariant theories, we will treat AdS metric as a fixed background
except that in this case we will consider conformal coupling of the scalar field with spacetime
scalar curvature. Since the background is maximally symmetric, conformal coupling terms
shows up in the action as a mass term for the scalar field. Interestingly this mass falls within the
window above the Breitenlohner-Freedman bound for any dimensional AdS space which allows
alternative quantization of the scalar field in the AdS space[11, 12, 13, 14, 15, 16, 17]. We can
therefore study double trace coupling obtained by carrying out alternate quantization. From
the stochastic quantization point of view this example poses a new problem. The Langevin
equation for this system turns out to have explicit stochastic time dependence. Nevertheless,
as we will see, it is still possible to use the Langevin equation to determine equal time two-point
correlation function. We will also be able to extract the Fokker-Planck action by eliminating
the noise term using the Langevin equation.

It turns out that the above relations, proposed in [10], are still valid provided the classical
action Sc is obtained in a more general way, which is the crucial ingredient in the above

4Conformally coupled scalar theories have been discussed in the literature, especially in the AdS4 context(see
[18, 19]).
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relation. In fact, one should be careful in choosing the classical action because in general there
are divergences and one may need to add counter terms to regulate them. Similar issue arises
for the classical action Sc in case of conformally coupled scalar in AdS space. In [10], it was
proposed that Sc = −2Ios(φ0), where (1)Ios is bulk on-shell action computed on AdS
boundary(at r = 0, where r is the radial coordinate of AdS space). Moreover,
(2)there as no need to add counter term action in case of examples discussed in
[10], because those examples involved Weyl invariant bulk actions only. It turns
out that Weyl invariant bulk actions do not give rise to divergent terms at the
AdS boundary.5

Conformally coupled scalar action does give rise to divergences near AdS boundary since it
is not exactly Weyl invariant theory even if it does enjoy certain scaling properties. Therefore
the natural question that arises is how do we deal with these divergences. Our prescription is
that the bulk on-shell action, Ios(φ(ǫ)) is obtained at a certain radial cut-off, r = ǫ

without adding any counter terms, where φ(ǫ) is the boundary value of the bulk scalar
field at r = ǫ and then Ios should be written in terms of φ(ǫ). The classical action Sc is
then defined using the same relation, Sc(φ(ǫ)) = −2I(φ(ǫ)) but at the radial cut off.

The new definition of the classical action makes sense since it correctly reproduces the
classical actions for Weyl invariant cases, and so does the expected form of stochastic 2-point
correlation functions. The on-shell action depends on radial cut-off r = ǫ explicitly in general,
and that can be translated to the explicit stochastic time dependence of the classical action Sc

defined on a certain time slice t = ǫ when the radial coordinate r is identified with t.
We will then show that same result can be derived in a more elegant way by doing field

redefinition,
φ(t, p) = Ω(t)fp(t), (1.6)

where Ω(t) is a certain stochastic time t-dependent function6. Interesting feature of this field
redefinition is that the Langevin dynamics in terms of fp(t) does not contain explicit depen-
dence on the stochastic time. In fact in terms of fp(t) the system becomes quite similar to
that studied in the Weyl invariant examples. This analysis gives result consistent with that
obtained without doing the field redefinition. Thus while appropriate Langevin and Fokker-
Planck descriptions can be derived even when there is explicit stochastic time dependence, we
also can access conventional description by doing a field redefinition. In other words, we can
retain essence of our proposed relation between AdS/CFT and stochastic quantization if we
allow for field redefinition.

This paper is organized as follows, in section 2 we will discuss holographic Wilsonian Renor-
malization Group description of conformally coupled scalar in AdSd+1. We solve for double
trace deformation both for zero as well as non-zero momenta. To draw analogy with the field
redefinition that is we will carry out while studying the Langevin dynamics, we will study
effect of field redefinition on the AdS side. In section 3, we study stochastic quantization
by first studying stochastic time dependent Langevin equation and the deriving the Fokker-
Planck action. In section 4, we carry out the field redefinition and show that in the new

5These issues are addressed in the conclusion section of [10].
6In fact, Ω(t) should be restricted by a certain differential equation so that using the field redefinition

consistency between Langevin and Fokker-Planck approaches can be established.
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variable, both the Langevin as well as the Fokker-Planck dynamics take canonical form and
the original dictionary relating stochastic quantization to AdS/CFT can be applied without
any modification.

2 HolographicWilsonian renormalization group(HWRG)

for conformally coupled scalar in AdSd+1

In this section, we derive Hamilton-Jacobi equations for the holographic Wilsonian RG and
their solutions for conformally coupled scalar in AdSd+1.

2.1 Conformally coupled scalar and the radial flow of its double
trace deformations

We start with the full bulk action for a scalar field propagating in AdSd+1 as

S =

∫

r>ǫ

drddx
√
gL(φ, ∂φ) + SB, (2.1)

where SB is the boundary effective action and the bulk Lagrangian density L is defined as

L =
1

2
gµν∂µφ∂νφ+

1

2
m2φ2 +

λ

4
φ

2(d+1)
d−1 , (2.2)

where gµν is Euclidean AdSd+1 metric, which is given by

ds2 = gµνdx
µdxν =

dr2 +
∑d

i=1 dx
idxi

r2
. (2.3)

gµν is the inverse metric, µ, ν... run from 1 to d + 1 whereas i, j... run from 1 to d. ǫ is an
arbitrary radial cut-off. The higher order interaction term in (2.2) is rather ill-defined since
the power of it will be fractional in general. However, it is well defined in a certain bulk
dimensions, for example, it becomes φ4 interaction in AdS4 and φ3 in AdS6 respectively7. In
what follows, we will choose m2 = −d2−1

4
and will set λ = 0 to deal with free theory for a

moment. We point out that there are two different merits when the mass of the scalar field
is chosen to be m2 = −d2−1

4
. Firstly, this mass value is in the window of mass square of the

scalar field −d2

4
≤ m2 ≤ −d2

4
+ 1. In such a case, alternative quantization in the dual

CFT defined on the boundary of AdS space is possible, and then we have two different
fixed points for the double trace deformation coupling in UV region. Secondly, it will show
a scaling property that will be discussed in the next subsection. This allows us to deal with
this theory from a different view point and provides a more rigorous way of defining relation
between SQ and HWRG of this theory.

As usual, in order to derive the Hamilton-Jacobi type HWRG flow equation[4, 5], we take
derivative of the bulk action(2.1) with respect to ǫ (the radial cutoff), and impose the condition

74-dimensional case is conformally coupled scalar in AdS4. For detailed discussion, see [8]
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that the full bulk action S does not depend on the radial cut-off. The Hamilton-Jacobi equation
thus obtained is given by

∂ǫSB = −
∫

r=ǫ

ddx

[

1√
ggrr

(

δSB

δφ(x)

)(

δSB

δφ(x)

)

−√
gL(φ, ∂φ)

]

. (2.4)

It is convenient to solve the above equation in momentum space by using the Fourier transform

φ(xµ) =
1

(2π)d/2

∫ ∞

−∞

ddpe−ipixiφp(r). (2.5)

The HWRG equation in the momentum space then becomes

∂ǫSB = −
∫

r=ǫ

ddp

[

1

2
√
ggrr

(

δSB

δφp

)(

δSB

δφ−p

)

− 1

2

√
ggijpipjφpφ−p +

d2 − 1

8

√
gφpφ−p

]

, (2.6)

where the AdSd+1 metric gij = r2δij and δij is the Kronecker delta function. To solve this
equation, we propose the following form of the boundary effective action:

SB = Λ(ǫ) +

∫

ddp

(2π)d
√
γJ (ǫ, p)φ−p −

∫

ddp

2(2π)d
√
γD(ǫ, p)φpφ−p, (2.7)

where D is the “double-trace” coupling, J is the boundary source term and Λ is the boundary
cosmological constant. Substituting this ansatz into Eq.(2.6) and comparing the coefficients of
expansion in the boundary fields φp, we get the following three equations

∂ǫΛ(ǫ) = −1

2

∫

ddp

(2π)2d
1√
ggrr

J(ǫ,−p)J(ǫ, p), (2.8)

∂ǫJ(ǫ, p) =
1√

ggrr(2π)d
J(ǫ,−p)D(ǫ, p), (2.9)

and ∂ǫD(ǫ, p) =
1√

ggrr(2π)d
D(ǫ, p)D(ǫ,−p)− (2π)d

√
g

(

r2δijpipj −
d2 − 1

4

)

,(2.10)

where J(ǫ, p) ≡ √
γJ (ǫ, p), D(ǫ, p) ≡ √

γD(ǫ, p) and γ = g(ǫ)
grr(ǫ)

is the induced metric on the
r = ǫ hyper-surface.

As demonstrated as in [5], the solution of double trace coupling, D is given by

D(ǫ, p) = −(2π)d
Πφ

φ
, (2.11)

where

Πφ =
√
ggrr∂rφ =

δSB

δφ
(2.12)

is canonical momentum of φ and it satisfies

∂rΠφ =
√
g

(

r2|p|2 − d2 − 1

4

)

φp, (2.13)

in the classical gravity limit of the bulk theory.
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Double trace deformation: zero momentum solution To examine the double trace
deformation term D, we need to solve bulk equations of motion for the conformally coupled
scalar. The bulk equation of motion is given by

0 = gµν∇µ∂νφ(x) +
d2 − 1

4
φ(x)− λ(d+ 1)

2(d− 1)
φ

d+3
d−1 , (2.14)

where∇µ is covariant derivative. In fact, this is also given by combining Eq.(2.12) and Eq.(2.13)
in momentum space in the limit λ = 0,

0 = ∂2rφp −
d− 1

r
∂rφp +

(

d2 − 1

4r2
− p2

)

φp, (2.15)

where p2 =
∑d

i,j=1 pipjδij. In the zero momentum limit, pi = 0, the most general solution is
given by

φ = a1r
d−1
2 + a2r

d+1
2 , (2.16)

where a1 and a2 are arbitrary constants. Using the solution of Hamilton-Jacobi equation (2.11),
the double trace coupling becomes

D(r) =
D(r)√
γ

= −(2π)d
d− 1

2

(

d+1
d−1

r + χ

r + χ

)

, (2.17)

where χ = a1
a2
. There are two different fixed points for the double trace coupling, D(r) at UV

region, r = 0. When χ = 0, the double trace coupling has D(r = 0) = −(2π)d
(

d+1
2

)

at the
UV region and it is a fixed point. Another fixed point is obtained when χ = ∞. In this case,
D(r = 0) = −(2π)d

(

d−1
2

)

. In the IR region, r = ∞, the fixed points exist. When χ = ∞,
D(r = ∞) = −(2π)d

(

d−1
2

)

is fixed point. For the other generic value of χ including χ = 0,
D(r = ∞) = −(2π)d

(

d+1
2

)

is fixed point.
Finally, the double trace deformation part of boundary effective action SB is given by

SDT
B =

1

2

(

d− 1

2rd

)

(

d+1
d−1

r + χ

r + χ

)

φ2. (2.18)

Solution with non-zero momenta The most general solution of this equation of motion
with non-zero momenta pi is

φp = r
d−1
2 [φ0(p) cosh(|p|r) + φ1(p) sinh(|p|r)] , (2.19)

where |p| is norm of pi, φ0(p) and φ1(p) are arbitrary momentum dependent functions. Conju-
gate momentum Πφ(p) is obtained using its definition (2.12) as

Πφ(p) =
d−1
2
φ0(p) + |p|rφ1(p)

r
d+1
2

cosh(|p|r) +
d−1
2
φ1(p) + |p|rφ0(p)

r
d+1
2

sinh(|p|r). (2.20)
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The double trace deformation coupling, D(r, p) is then given by

D(r, p) =
D(r, p)√

γ
= −(2π)d

[

d− 1

2
+ |p|r sinh(|p|r) + φ̃(p) cosh(|p|r)

cosh(|p|r) + φ̃(p) sinh(|p|r)

]

, (2.21)

where φ̃(p) = φ1(p)
φ0(p)

. Finally, the double trace part of the boundary effective action SB becomes

SB = −1

2

∫

ddp

(2π)d
D(r, p)

rd
φpφ−p, (2.22)

where we have explicitly written down only the double trace deformation term in SB and we
will do the same for any SB appearing hereafter unless stated otherwise.

2.2 Re-defined field and its relation with the original field φ

We start from the bulk action(2.1) and define a new field8 f(xµ) which is related to the original
field φ by a field redefinition,

φ(xµ) = Ω(r)f(xµ), (2.23)

where we will choose Ω(r) ≡ r
d−1
2 . Using this field re-definition, the bulk action(2.1) can be

written as

S =

∫

r>ǫ

drddx

(

1

2
δµν∂µf(x)∂νf(x) +

λ

4
f

2(d+1)
d−1 (x)

)

+
d− 1

2

∫

ddx
f 2(x)

2r

∣

∣

∣

∣

∞

ǫ

+ SB, (2.24)

where we have used a relation that gµν = r−2δµν . Up to boundary terms (the second term
in the action(2.24)), the bulk action becomes effectively that of a massless scalar field, f(x)

defined in d+1-dimensional flat Euclidean spacetime with f
2(d+1)
d−1 (x) interaction. Varying this

bulk action with respect to f(x) provides a bulk equation of motion as

0 = δµν∂µ∂νf(x)−
λ(d+ 1)

2(d− 1)
f

d+3
d−1 (x), (2.25)

which, of course, reproduces Eq(2.14) once we substitute the field redefinition Eq.(2.23) into
it. An interesting observation is that once we define a new boundary effective action as

S ′
B = SB − d− 1

2

∫

r=ǫ

ddx
f 2(x)

2r
, (2.26)

then “massive scalar with mass m2 = −d2−1
4

, φ
2(d+1)
d−1 interaction and the boundary action SB in

Euclidean AdSd+1 becomes precisely the same with massless scalar field with f
2(d+1)
d−1 interaction

defined in flat Euclidean upper half of the spacetime with the boundary term S ′
B in the classical

gravity limit”. In the following discussion, we will set λ = 0 so that we will be dealing with
free field f(x).

8The properties of this redefined field are discussed in [8].
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Holographic Wilsonian renormalization group in terms of the field f(x): Recalling
in terms of the new field f(x), our action is that of a free massless field. As a result, our
starting point is

S =
1

2

∫

r>ǫ

drddxδµν∂µf(x)∂νf(x) + S ′
B. (2.27)

The Hamilton-Jacobi equation in momentum space derived from this action becomes

∂ǫS
′
B = −1

2

∫

r=ǫ

ddp

[(

δS ′
B

δfp

)(

δS ′
B

δf−p

)

− |p|2fpf−p

]

, (2.28)

and the ansatz of S ′
B as

S ′
B = Λ′(ǫ) +

∫

ddp

(2π)d
√
γJ ′(ǫ, p)φ−p −

∫

ddp

2(2π)d
√
γD′(ǫ, p)φpφ−p. (2.29)

one can get an equation of the double trace coupling, D′(r, p) ≡ √
γD′(r, p) and its solution as

∂ǫD
′(ǫ, p) =

1

(2π)d
D′(ǫ, p)D′(ǫ,−p)− (2π)d|p|2, (2.30)

D′(ǫ, p) = −(2π)d
Πf

fp
, (2.31)

where

Πf = ∂rfp =
δS ′

B

δf−p
, (2.32)

is the canonical momentum of the re-defined field, f−p. Since equation of motion of fp(r) is
given by

(∂2r − |p|2)fp = 0, (2.33)

its solutions are

fp = b1 + b2r, for zero momentum case, pi = 0, (2.34)

= f0(p) cosh(|p|r) + f1(p) sinh(|p|r), for nonzero momentum case, (2.35)

where b1, b2, f0(p) and f1(p) are arbitrary constants but the last two are momentum dependent.
Properties of fixed points of the double trace coupling have similar behavior as the massless
scalar field defined in 2-dimensional Euclidean space(See examples in [10] for detailed discus-
sion.), and we will not discuss it here. We just list the precise forms of the double trace part
of the boundary effective action for further discussion:

S ′
B =

1

2

(

b̃

1 + b̃r

)

f 2, for zero momentum, pi = 0, (2.36)

=
1

2

∫

|p|ddp
(

sinh(|p|r) + f̃p cosh(|p|r)
cosh(|p|r) + f̃p sinh(|p|r)

)

fpf−p, for nonzero momentum, (2.37)

where b̃ = b2
b1

and f̃p =
f1(p)
f0(p)

.
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2.3 Relations between the schemes with φ and f

In this subsection, we will discuss the relation between holographic Wilsonian renormalization
groups of the primitive field φp(r) and the rescaled field fp(r). As mentioned, the two fields
are related by φp(r) = Ω(r)fp(r) and it turns out that Hamilton-Jacobi equations of the two
fields, (2.6) and (2.28) are also clearly transformed from one to another9. In order to perform
such a transformation, we have used the definition of canonical momenta (2.12), (2.32) in both
scheme, and following useful relations,

δS ′
B(fp)

δf−p
= Ω(ǫ)

δSB(φp)

δφ−p
− (d− 1)

fp

2ǫ
,
δSB(φp)

δφp
=

1

Ω(ǫ)

δSB(fp)

δfp
, (2.38)

and ∂ǫSB(φp) = ∂ǫSB(fp)−
∫

r=ǫ

ddp
δSB(fp)

δfp

∂rΩ(r)

Ω(r)
f−p,

which are derived from (2.26). The first two relations in (2.38) are obvious. The last one uses
the chain rule of differentiation. While the first term on the RHS is the usual change from φ

to f , second term on the RHS depends on the rescaling involved in the field redefinition. In
the second term we extracts the Ω dependent piece from SB (which has explicit r dependence)
and write its contribution as the cut-off is varied. Taking this factors in to account correctly,
one gets the last relation in (2.38).

The main relation between the two schemes is manifestly the relation between each double
trace deformation, namely (2.26). It can be easily proved that the double trace deformation
parts (2.22) and (2.37) in each scheme are related to each other via (2.26) by the field re-
definition φp = Ω(r)fp.

3 Stochastic quantization

In this section, we will develop the Langevin dynamics and the Fokker-Planck approach re-
spectively to reproduce the radial flows of double trace deformation in massive scalar field in
AdS space.

3.1 Langevin equation with explicit time dependence

In this section, we will find the Langevin equation which allows us to derive the stochastic
2-point correlation function which, in turn, is in one to one correspondence with the boundary
effective action obtained in the previous section via the relation obtained in [10]:

〈φp(t)φq(t)〉−1
H = 〈φp(t)φq(t)〉−1

S − 1

2

δ2Sc

δφpδφ−p
, (3.1)

where 〈φp(t)φq(t)〉S is the stochastic two point correlation function, 〈φp(t)φq(t)〉−1
H = δ2SB

δφp(t)δφq (t)

and Sc is called classical action, which will be defined soon.

9To cancel the irrelevant terms in derivation, it is useful to substitute explicit form of Ω(r) = r
d−1
2 .
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The Langevin equation that we want to solve has the following form:

1

Ω(t)

dφp(t)

dt
= − 1

Ω(t)

(

|p| − ∂tΩ(t)

Ω(t)

)

φp(t) + η(t, p), (3.2)

where pi are d-dimensional momenta and η(t, p) is the stochastic noise satisfying 10

〈η(t, p)η(t′, p′)〉 = δ(t− t′)δd(p− p′). (3.4)

Unlike the usual Langevin equation, the equation (3.2) has explicit time dependence appearing
through Ω(t). Consistency with the Fokker-Planck approach requires Ω(t) to satisfy following
condition,

d2∆(t)

dt2
=

(

d2 − 1

4

)

∆
d+3
d−1 (t), (3.5)

where ∆(t) ≡ 1
Ω(t)

(A related discussion will appear in the next subsection).
Since there is explicit time dependence in the Langevin equation, we cannot follow the

usual method of stochastic quantization. We will therefore propose a more general concept for
the classical action given by

Sφ
c =

∫

t̃=t

ddp
1

Ω2(t̃)

(

|p| − ∂t̃Ω(t̃)

Ω(t̃)

)

φp(t̃)φ−p(t̃). (3.6)

This definition is a bit strange when compared with the usual procedure of stochastic quantiza-
tion. Normally the classical action in stochastic quantization has no explicit time dependence.
We will interpret this classical action and the resulting Langevin equation in the following
manner. We define the classical action at t̃ = t time slice. At that time slice, the time depen-
dent factor Ω(t̃) becomes a number as Ω(t). The Langevin equation satisfied by this classical
action at any given time slice is

dφp(t)

dt
= −1

2
Ω2(t)

δSφ
c (φ, t)

δφ−p

+ Ω(t)η(t, p). (3.7)

This is equivalent to the Langevin equation (3.2).
The most general form of the solution of Langevin equation (3.2) is

φp(t) = Ω(t)

∫ t

t0

dt′e−|p|(t−t′)η(t′, p). (3.8)

Using the δ- function correlations of 〈η(t, p)η(t, p′)〉 (3.4), 2-point equal time correlation func-
tion of φp(t) is obtained as

〈φp(t)φp′(t)〉S = Ω2(t)
δd(p− p′)

2|p|
(

1− e2|p|(t0−t)
)

. (3.9)

10As discussed in literature[2, 10], 1 and 2-point functions are given by

〈ηp(t)〉 = 0, 〈ηp(t)ηp′(t′)〉 = δd(p− p′)δ(t− t′). (3.3)

Expectation values of odd number of insertions of η vanishes and any even number of insertions of it will be
re-written as summation of all possible products of pairs of two point functions of η.
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Relation between Langevin dynamics and massive scalar in AdSd+1 with non-zero
momenta: Let us go back to the bulk theory in AdSd+1 of a scalar field with mass m2 =
−d2−1

4
. The most general form of the bulk solution with non-zero momentum is given in (2.19).

This solution diverges in the interior11 . To remove this divergence, we impose a regularity
condition on the solution at the Poincare horizon. This gives a condition φ0(p) + φ1(p) = 0.
This condition forces the solution to decay exponentially as it approaches r = ∞. The regular
solution is then given by

φp(r) = φ0(p)r
d−1
2 e−|p|r. (3.10)

Using bulk equations of motion, boundary on-shell action at radial cut-off r = ǫ can be obtained
as

S =
1

2

∫

r=ǫ

ddp
√
ggrrφp(r)∂rφ−p(r). (3.11)

With substitution of regular solution (3.10) and using explicit expression of the background
metric into (3.11), we get

Ios(r = ǫ) = −1

2

∫

r=ǫ

ddpe−2|p|r

(

|p| − d− 1

2r

)

φ0(p)φ0(−p), (3.12)

= −1

2

∫

r=ǫ

ddp

rd−1

(

|p| − d− 1

2r

)

φp(r)φ−p(r)

This boundary on-shell action is not yet regularized since there is a divergent term in it, namely
the second term in the parenthesis. This divergence occurs as we take r → 0 limit. However, it
turns out that to capture the radial evolution of the corresponding double trace deformation,
we can choose our classical action as

Sc(ǫ) = −2Ios(ǫ), (3.13)

at the radial cut-off r = ǫ. The prescription for stochastic quantization with such classical
action is that (since we will identify the radial variable r to stochastic time t) Sc(ǫ) becomes
classical action defined at t = ǫ time slice. In fact, the classical action (3.6) from bulk on-shell

action (3.13) can be reproduced by substituting Ω(t) = t
d−1
2 .

The stochastic 2-point correlator is known from (3.9), which is given by

〈φp(t)φp′(t)〉S = td−1 δ
d(p− p′)

2|p|
(

1− e2|p|(t0−t)
)

. (3.14)

It is clear that (3.14) precisely reproduce the radial flow of double trace deformation,

〈φp(r)φp′(r)〉−1
H ≡ δ2SB

δφp(r)δφp′(r)
=

1

rd−1

[

d− 1

2
+ |p|r sinh(|p|r) + φ̃(p) cosh(|p|r)

cosh(|p|r) + φ̃(p) sinh(|p|r)

]

(3.15)

via the relation (3.1), when ‘r’ is identified to ‘t’ and the initial time 12 in (3.14) is chosen as

t0 = − 1
|p|

coth−1[φ̃(p)]. Here, the new constant φ̃(p) is φ̃(p) = φ1(p)
φ0(p)

.

11We note that one should impose regularity condition on the bulk solution to evaluate bulk on-shell action,
Ios, however, when on compute HWRG by using the most general solution (2.19), there is no such regularity
issue at all.

12The initial stochastic time is chosen so as to match 2-point stochastic correlations with the double trace
deformation. For more detailed manipulations, see [10]
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3.2 The Fokker-Planck approach

Fokker-Planck action is not precisely of the usual form in this case. In fact, it has deformation
from its original form by time dependent factor Ω(t). In this section, we will derive the correct
form of Fokker-Planck Lagrangian, show that it has the same form with bulk Lagrangian, and
the double trace deformation will be correctly obtained via the relation proposed in [10] ,

SB =

∫ t

t0

dt′ddpLFP (φ(t
′), ∂φ(t′); t′). (3.16)

To derive the Fokker-Planck action, the stochastic partition function is the best starting
point:

Z =

∫

[Dη]exp

(

−1

2

∫ t

t0

ηp(t
′)η−p(t

′)ddpdt′
)

. (3.17)

We substitute the Langevin equation (3.2) into the partition function (3.17) to replace η by
stochastic field φp(t). Functional integral measure part will transform by the Jacobian factor,

J

(

δη

δφ

)

= exp

[

1

4

∫ t

t0

dt′ddp Ω2(t′)
δ2Sc(φ, t

′)

δφp(t′)δφ−p(t′)

]

. (3.18)

The stochastic partition function is given by

Z =

∫

[Dφ]e−S =

∫

[Dφ] exp

[

−
∫ t

t0

dt′
∫

ddpL(φ, ∂φ, t′)

]

, (3.19)

where

L(φ, ∂φ, t) =
1

2Ω2(t)

[(

∂φp(t)

∂t

)(

∂φ−p(t)

∂t

)

+
1

4

(

δSc(φ, t)

δφp

)(

δSc(φ, t)

δφ−p

)

(3.20)

− 1

2
Ω4(t)

δ2Sc(φ, t)

δφp(t)δφ−p(t)
+ Ω2(t)

(

δSc(φ, t)

δφ−p

)(

∂φ−p

∂t

)]

.

The first term on the second line in (3.20) does not depend on field φ and it becomes an overall
constant in the partition function Z. The last term in L is not a total derivative since classical
action contains explicit time dependence. To deal with L more clearly, we plug in the explicit
form of the classical action (3.6). If we now assume that Ω(t) satisfies (3.5), then L(φ, ∂φ, t)
can be brought into the following form13

S =

∫ t

t0

dt′
∫ ∞

−∞

ddpL(φ, ∂φ; t′) =

∫ t

t0

dt′
∫ ∞

−∞

ddpLFP (φ, ∂φ; t
′) +

1

2

∫ t

t0

dt′∂t′S
φ
c (φ, t

′), (3.21)

where LFP is the Fokker-Planck Lagrangian density, which is given by

LFP =
1

2
Ω(t)−

2(d+1)
d−1

[

Ω(t)
4

d−1

(

∂φp

∂t

)(

∂φ−p

∂t

)

+ Ω(t)
4

d−1 |p|2φpφ−p −
d2 − 1

4
φpφ−p

]

. (3.22)

13In the stochastic partition function, the usual form of the exponent is as (3.21). See equation (3.81) in [2].
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We point out that LFP has the same form as that of the bulk Lagrangian density 14 (2.2)

with m2 = −d2−1
4

when Ω(t) = t
d−1
2 and ‘t’ is identified to ‘r’. Ω(t) = t

d−1
2 is the solution of

equation (3.5). Therefore, there is no contradiction with the previous derivation of LFP .
Finally, we develop double trace part of the boundary effective action SB using the pre-

scription (3.16). Since (3.22) is a free theory on a certain time dependent background, it is
enough to evaluate LFP using its classical solutions if one does not consider back reaction.
Equation of motion derived from (3.22) is given by

0 = ∂2t φp −
d− 1

t
∂tφp +

(

d2 − 1

4t2
− |p|2

)

φp, (3.23)

and its most general form of solution is

φp(t) = t
d−1
2 [Φ0(p) cosh(|p|t) + Φ1(p) sinh(|p|t)], (3.24)

with arbitrary d-momenta, pi dependent functions: Φ0(p) and Φ1(p). When we manipulate
SB, we can bring one term to be proportional to (3.23). The remaining term then is a total
derivative and contributes only a boundary term. With this manipulation (3.16) becomes

SB =
1

2

∫

ddp
1

Ω2(t̃)
φp(t̃)∂t̃φ−p(t̃)

∣

∣

∣

∣

t̃=t

t̃=t0

. (3.25)

To evaluate the correct boundary effective action, we set two boundary conditions. (1)The
initial time t0 is set to be

t0 = − 1

|p| coth
−1 Φ̃(p), (3.26)

where Φ̃(p) = Φ1(p)
Φ0(p)

. At t̃ = t0, the solution (3.24) of the equation of motion (3.23) becomes

zero, φp(t0) = 0.15 (2) At t̃ = t, we want φp(t̃ = t) = φp(t). Therefore, it is requested that

φp(t̃) =

(

t̃
d−1
2 [cosh(|p|t̃) + Φ̃(p) sinh(|p|t̃)]

t
d−1
2 [cosh(|p|t) + Φ̃(p) sinh(|p|t)]

)

φp(t). (3.27)

Substituting (3.27) into (3.25) and applying the initial boundary condition (3.26) on it, we get

SB =
1

2

∫

ddp
1

td

(

d− 1

2
+ |p|tsinh(|p|t) + Φ̃(p) cosh(|p|t)

cosh(|p|t) + Φ̃(p) sinh(|p|t)

)

. (3.28)

It is easy to see that (3.28) is precisely the same with (2.22) once stochastic time ‘t’ is identified
to the radial variable ‘r’ in AdS space and φ̃(p) = Φ̃(p).

14Once t is identified to r, then
√
g = Ω(t)−

2(d+1)
d−1 , grr = gii = Ω(t)

4
d−1 provided by Ω(t) = t

d−1
2 .

15For detailed discussion about such choice of the initial time, see [10].
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4 Toward a better-defined Langevin equation via field

re-definition

Even though the Langevin equation (3.2) does not look like that of the usual form, it might
be justified that (3.2) is the correct formulation by the fact that the usual form of Langevin
equation can be derived from it by a field re-definition

φ(t, p) = Ω(t)fp(t), (4.1)

where fp(t) is a new stochastic field. It turns out that the new field fp(t) satisfies a new
Langevin equation

dfp(t)

dt
= −|p|fp(t) + η(t, p), (4.2)

which can be easily derived from (3.2) by using (4.1). The first term on the right hand side of
(4.2) can be written as

|p|fp(t) =
1

2

δSc(φ)

δφ−p

, (4.3)

which implies the classical action can be written as

Sf
c =

∫

ddp|p|fpf−p. (4.4)

This is precisely what the authors present in [10] for the theory of massless scalar field in
2-dimensional flat space. Langevin equation (4.2) has no explicit time dependent factors in it
and nor does the classical action (4.4). Therefore, usual rules of stochastic quantization can be
applied to this classical action without any modifications. We point out that this justification
of the time dependent stochastic dynamics is very similar to that presented in [20].

4.1 Stochastic quantization of f(x)

It turns out that Langevin equation (4.2) together with the classical action (4.4) captures the
radial evolution of double trace operator S ′

B defined in (2.27) in the limit of free field theory.
Euclidean action Sc will be identified to −2Ios as demonstrated in (3.13). Using the bulk
equation of motion(2.25) in momentum space using the Fourier transform as Eq.(2.5) with
λ = 0, its on-shell action at r = ǫ cut-off is given by

Ios =
1

2

∫

r=ǫ

ddpfp(r)∂rf−p(r). (4.5)

The bulk equation of motion in the momentum space is

∂2rfp(r)− p2fp(r) = 0, (4.6)

and the most general form of the solution is given by

fp(r) = f0(p) cosh(|p|r) + f1(p) sinh(|p|r), (4.7)

14



where f0(p)(the boundary value of the bulk field f(x)) and f1(p) are r-independent constants.
This solution should be regular in the interior of AdS space as r → ∞. To prevent divergent
behavior of the solution, we impose a condition f0(p) + f1(p) = 0. Final form of the regular
solution after imposing the regularity condition is

fp(r) = f0(p)e
−|p|r. (4.8)

By using the explicit form of bulk solution (4.8), we get

Ios = −1

2

∫

r=ǫ

ddp|p|fp(r)f−p(r) (4.9)

The Langevin dynamics & the Fokker-Planck approach: To evaluate stochastic 2-
point correlator, we follow the prescription given in [10]. The Euclidean action is given by

Sf
c = −2Ios =

∫

ddp|p|fp(t)f−p(t), (4.10)

where we identify the radial cut-off ǫ with the time slice t. We plug the Euclidean action into
Langevin equation

dfp(t)

dt
= −1

2

δSf
c

δf−p(t)
+ η(p, t) = −|p|fp(t) + η(p, t), (4.11)

where η(p, t) is called the stochastic white noise which provides interactions with the sur-
roundings and has its 2-point correlations as given in (3.4). The most general solution of the
Langevin equation then becomes

fp(t) =

∫ t

t0

dt̃e−|p|(t−t̃)η(p, t̃), (4.12)

Choice of the initial time t0 is obtained by following the prescription given in [10],

t0 = − 1

|p| coth
−1(f̄p), (4.13)

where f̄p an arbitrary momentum dependent function, which should be chosen as f̄p = f̃p to
reproduce the correct double trace deformation, S ′

B for the theory defined in (2.27).
For the final step, we evaluate 2-point correlator using correlation functions of the stochastic

noise, which is given by

〈f0(p)f0(p′)〉S =
1

2|p|δ
d(p− p′)

(

1− f̄p − 1

f̄p + 1
e−2|p|t

)

(4.14)

It turns out that this stochastic 2-point function reproduces the kernel of S ′
B, 〈fpfp′〉−1

H ≡ δ2S′

B

δfpδfp′

correctly through relation (3.1) using 1
2

δ2Sc

δfpδfp′
= |p|δd(p− p′), when r = t and f̄p = f̃p. Fokker-

Planck approach gives result which is consistent with the Langevin dynamics.
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4.2 Transformation of the Fokker-Planck action with field re-scaling

It is rather trivial that the Langevin equation with the original field φp transforms into that
with the rescaled field fp using the field re-definition(4.1). The new Langevin equation gives
the consistent relationship between the radial flow of the double trace deformation of massless
scalar field theory in flat space-time and the corresponding stochastic quantization with the
classical action(4.4) as demonstrated in the last section. In this section, to explain our frame-
work more clearly, we will demonstrate that the scale transformation maps the time dependent
Fokker-Planck action to the new one without explicit time dependence and usual flat space
form. Let us start with the action S defined in (3.21). The action S is comprised of two pieces:
Fokker-Planck action and the total derivative term with respect to t. The total derivative term
has the form of

∫

dt∂tS
φ
c , where S

φ
c is the classical action defined in (3.6). This is the usual

form of the action S derived from the stochastic partition function (3.17) 16. Now what we
want to show is that using the field rescaling (4.1), the action S will transform into the form
of

S = SFP (fp) +
1

2

∫ t

t0

dt′∂t′S
f
c , (4.15)

where SFP is the Fokker-Planck action in terms of the rescaled field fp and Sf
c is the classical

action given in (4.4).
Once the relation (4.1) is plugged into the action S =

∫

dt
∫

ddpL defined in (3.21), it
becomes

L(f, ∂f ; t) =

[

1

2
∂tfp(t)∂tf−p(t) +

1

2
|p|2fp(t)f−p(t)

]

(4.16)

+
1

2
fp(t)f−p(t)

[

Ω′2(t)

Ω2(t)
− d2 − 1

4
Ω− 4

d−1 (t)

]

+
Ω′(t)

Ω(t)
∂t[fp(t)f−p(t)]

+ ∂t

[

1

2
|p|fp(t)f−p(t)−

Ω′(t)

Ω(t)
fp(t)f−p(t)

]

.

We point out that the scale factor Ω(t) is not arbitrary but it is what satisfies the differential
equation (3.5). In terms of Ω(t), it becomes

Ω′′(t)

Ω(t)
− 2

Ω′2(t)

Ω2(t)
= −d

2 − 1

4
Ω− 4

d−1 (t). (4.17)

Using (4.17), the term proportional to −d2−1
4

Ω− 4
d−1 (t) in the second line in (4.16) can be

replaced by the left hand side of (4.17). Then, the second line in (4.16) becomes total derivative
and which precisely cancels the last term in (4.16). Finally, (4.16) becomes

L(f, ∂f ; t) =

[

1

2
∂tfp(t)∂tf−p(t) +

1

2
|p|2fp(t)f−p(t)

]

+ ∂t

[

1

2
|p|fp(t)f−p(t)

]

. (4.18)

The terms in the first square bracket are precisely the Fokker-Planck action and the term in
total derivative is half of the classical action (4.4). Therefore, the Fokker-Planck actions in
both schemes are clearly related by the scale transformation.

16e.g. See [2, 3]
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4.3 Relations between two different schemes of stochastic quanti-

zation with φ and f

In both schemes with the original field φ and the new field f , they satisfy the relations be-
tween their 2-point stochastic correlation functions and double trace couplings in AdS/CFT
respectively. Namely, the theories with field φ satisfies the relation (3.1) and for the new field
fp, the similar relation as

〈fp(t)fq(t)〉−1
H = 〈fp(t)fq(t)〉−1

S − 1

2

δ2Sf
c

δfpδf−p

(4.19)

is satisfied.
In fact, stochastic 2-point correlator in each scheme enjoy the relation as

〈φp(t)φ−p(t)〉S = Ω2(t)〈fp(t)f−p(t)〉S. (4.20)

This is clear from (3.14) and (4.14). The classical actions in both theories also have a relation
as

Sφ
c (φ) = Sf

c (f)−
∫

ddp
∂tΩ(t)

Ω(t)
fpf−p. (4.21)

This relation is also well understood by looking at (3.5), (4.4) and (4.1). (4.21) leads to

δ2Sf
c (f)

δfpδf−p
= Ω2(t)

δ2Sφ
c (φ)

δφpδφ−p
+ 2

∂tΩ(t)

Ω(t)
, (4.22)

where we have used δ
δfp

= Ω(t) δ
δφp

. Using (4.20) and (4.22), one can manipulate the right hand

side of (4.19) and obtain the relation between double trace deformations in the two different
schemes. Then, (4.19) becomes

〈fp(t)f−p(t)〉−1
H = Ω2(t)

(

〈φp(t)φ−p(t)〉−1
H − ∂tΩ(t)

Ω3(t)

)

, (4.23)

where we have used (3.1) to switch the stochastic 2-point function with the double trace defor-
mation in theory with the old field φp. This relation is precisely the same with the relation(2.26)
between two different boundary effective actions, SB and S ′

B obtained as the solutions of their
Hamilton-Jacobi equations. It is clear that one can derive (4.23) from (2.26) using definitions

of the double trace couplings as 〈fp(t)f−p(t)〉−1
H =

δ2S′

B(f)

δfpδf−p
and 〈φp(t)φ−p(t)〉−1

H = δ2SB(φ)
δφpδφ−p

.

In summary,we have shown that all the rescaling arguments in the bulk theories with scalar
field with the specific mass square m2 = −d2−1

4
are consistent with their description with

stochastic quantization, in which one can also have scaling argument and all the quantities are
in one to one correspondence with those quantities in the holographic description.

5 Conclusion

In this paper, we have constructed a precise one to one mapping between holographic Wilsonian
renormalization group(HWRG) of conformally coupled scalar field in AdSd+1 and stochastic
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quantization(SQ) obtained from the classical action by identifying it with the on-shell ac-
tion of the bulk scalar field theory evaluated at a certain radial cut-off of AdS space. Our
Langevin equation and Fokker-Planck Hamiltonian dynamics present explicit stochastic time
dependences in them and they cannot be dealt with the usual methodology of SQ. However,
we have suggested more general definition of classical action and it turns out that SQ with
such classical action reproduces the radial evolution of the boundary effective action of the
conformally coupled scalar obtained from its HWRG computation correctly. Moreover, we
have proved that SQ with such general definition of the classical action is consistent with the
usual stochastic quantization method up to a field redefinition.

This field re-scaling argument continues to be valid even when the theory contains a certain

class of interaction of the field φ of the type Lint ∼ λφ
2(d+1)
d−1 . Thus, it opens a new playground

where one investigates HWRG and SQ of interacting theories and their mathematical relation.
The scaling property seems to be very crucial ingredient to construct exact mapping between
the two schemes.
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