
PHYSICAL REVIEW E 88, 032711 (2013)

Stable and flexible system for glucose homeostasis

Hyunsuk Hong,1 Junghyo Jo,2,3,* and Sang-Jin Sin4

1Department of Physics and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Korea
2Asia Pacific Center for Theoretical Physics, Pohang, Korea

3Department of Physics, POSTECH, Pohang, Korea
4Department of Physics, Hanyang University, Seoul, Korea

(Received 9 May 2013; revised manuscript received 17 July 2013; published 18 September 2013)

Pancreatic islets, controlling glucose homeostasis, consist of α, β, and δ cells. It has been observed that α and β

cells generate out-of-phase synchronization in the release of glucagon and insulin, counter-regulatory hormones
for increasing and decreasing glucose levels, while β and δ cells produce in-phase synchronization in the release
of the insulin and somatostatin. Pieces of interactions between the islet cells have been observed for a long time,
although their physiological role as a whole has not been explored yet. We model the synchronized hormone
pulses of islets with coupled phase oscillators that incorporate the observed cellular interactions. The integrated
model shows that the interaction from β to δ cells, of which sign is a subject of controversy, should be positive
to reproduce the in-phase synchronization between β and δ cells. The model also suggests that δ cells help the
islet system flexibly respond to changes of glucose environment.
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I. INTRODUCTION

Life maintains energy through metabolism. Among the two
major fuels of our body, glucose and lipid, glucose is the
primary energy source, particularly for brain cells. Therefore,
maintaining glucose levels constant, glucose homeostasis, is
essential for life. Its failure leads to a metabolic disease,
diabetes. Islets of Langerhans in the pancreas play a critical
role for maintaining the glucose homeostasis. It is composed
of three major cell types: α, β, and δ cells. During fasting
and fed states, α and β cells secrete glucagon and insulin,
respectively, for increasing and decreasing glucose levels.
At first sight, these two reciprocal cells seem sufficient for
controlling glucose levels. However, a third one, δ cell, has
been found, and its role on the glucose homeostasis has yet to
be unveiled.

Like other hormones in the body, the insulin and glucagon
secretions show rhythmic behavior [1]. Their oscillation with
5- to 10-min periods has been repeatedly observed not only
in the cells within islets [2], but also in isolated cells [3]. In
particular, the periodic insulin release has been extensively
studied with mathematical modeling [4]. It has been reported
that glucagon and insulin exhibit out-of-phase synchronization
both in vivo [5] and in vitro [6]. The in vitro study [6]
has also shown that insulin and somatostatin (secreted by
δ cells) have in-phase synchronization. In addition, Menge
et al. demonstrated that the out-of-phase synchronization is
disrupted in diabetes patients, suggesting the physiological
importance of the coordinated insulin and glucagon secretion
[5]. It has long been observed that the endocrine cells interact
with each other through hormones and/or neurotransmitters
[7].

Synchronization between coupled oscillators has long been
studied in physics [8]. In particular, the Kuramoto model
has been introduced to explain collective behavior such as
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synchronization in the population of coupled oscillators [9] and
recently generalized by allowing the coupling with arbitrary
phase shift [10]. In other words, the general model can
have arbitrary signs and strengths of coupling, while the
original model has only positive coupling. Hong and Strogatz
have proposed an interesting specification of the generalized
Kuramoto model in which two populations of conformists
(having positive coupling) and contrarians (negative coupling)
interact and show rich dynamics [11]. As a natural extension,
the synchronization between three symmetrically distinct
populations is of particular interest. Here we introduce a
perfect realization of the three-body interaction in biology.

Using the generalized Kuramoto model, we specifically
answer the following question: Are the observed pieces of
local interactions between α, β, and δ cells sufficient and
consistent to explain the synchronized hormone secretion? We
also explore the role of the third population, δ cells, additional
to the counter-regulating α and β cells in the control system
for homeostasis.

This paper consists of five sections. In Sec. II, synchronized
hormone pulses of α, β, and δ cells are described by the three
coupled phase oscillators. Section III derives a generalized islet
model that considers population of each cell type. Section IV
presents results and predictions of the islet model. Finally,
Sec. V summarizes and discusses the results.

II. ISLET MODEL

To understand the synchronized hormone pulses in the
pancreatic islets, we simply regard the endocrine cells as
intrinsic oscillators producing pulsatile hormones because iso-
lated cells still show oscillations in the absence of neighboring
cells. Then, the attractive or repulsive interaction between the
oscillators plays a role in synchronizing them in phase or out
of phase. Since we are interested in only the phases of the three
interacting oscillators of α, β, and δ cells, their synchronization
dynamics can be described by three coupled oscillators with
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FIG. 1. (Color online) Schematic diagram of α, β, and δ cells in
the pancreatic islets. The red (solid) arrows represent the attractive
interaction from the s cell to the s ′ cell, with the positive strength
(Jss′ > 0), and the blue (dotted) arrows denote the repulsive inter-
action, with the negative strength (Jss′ < 0). The sign of cellular
interactions has been taken from the known facts based on the
observations (see the Table I).

Kuramoto-type interactions [9]:

θ̇1 = ω1 + J21 sin(θ2 − θ1) + J31 sin(θ3 − θ1), (1)

θ̇2 = ω2 + J12 sin(θ1 − θ2) + J32 sin(θ3 − θ2), (2)

θ̇3 = ω3 + J13 sin(θ1 − θ3) + J23 sin(θ2 − θ3). (3)

The subscripts 1, 2, and 3 here correspond to α, β, and δ cells,
respectively.

The variable ω1,2,3 denotes their natural frequencies. Js ′s
represents the coupling (interaction) strength from the s ′
cell onto the s cell (Fig. 1). The sign of the couplings Js ′s
between α, β, and δ cells can be found in the literature
and is summarized in the Table I. We consider here the
case of asymmetric couplings (Js ′s �= Jss ′ ) and further include
repulsive interaction with negative strength (Js ′s < 0), in
addition to the attractive one with positive value (Js ′s > 0).
The repulsive and attractive coupling has also been known to
appear in the neural networks with excitatory and inhibitory
coupling [18], where the positive coupling is for the excitatory
neurons, and the negative one is for the inhibitory neurons.
To facilitate the comparison with the recent reports [6], we
suppose that J12 = J13 = p(>0), −J21 = J23 = q(>0), and
−J31 = −J32 = r(>0) for the interactions between cell types.
It is reasonable to assume that the interaction strengths from
the s cell to the s ′ and s ′′ cell are equivalent as |Jss ′ | = |Jss ′′ |,
because the interactions are realized by the same molecules
secreted from the s cell.

TABLE I. Signs of cellular interactions in the literature.

Parameter Interaction Sign Reference

J12 α → β + [12]
J13 α → δ + [13]
J21 β → α − [14]
J23 β → δ + [15]

0 [16]
J31 δ → α − [17]
J32 δ → β − [17]

To simplify our system, and in reasonable agreement with
observations [3], we assume that the oscillators in Eq. (6) have
the same natural frequency (ω1,2,3 = ω). Then, since we are
interested in the phase differences between cell types, Eq. (1)
is then reduced to

u̇ = (q − p) sin u + r[sin v + sin(u − v)], (4)

v̇ = q[sin u + sin(u − v)] + (r − p) sin v, (5)

where u ≡ θ1 − θ2 and v ≡ θ1 − θ3.
In the following section, we derive a generalized islet model

considering populations of each cell type in the islet. However,
because the population model results in essentially the same
conclusion, readers who are not interested in the sophisticated
analysis may skip Sec. III.

III. POPULATION MODEL

Considering populations of each cell type, we develop a
model of coupled phase oscillators for the cells in the islet
which is governed by

φ̇s
j = ωs

j + 1

N

3∑
s ′=1

Ns′∑
k=1

Js ′s sin
(
φs ′

k − φs
j

)
(6)

for s = 1,2,3, where j = 1, . . . ,Ns , and φs
j represents the

phase or angle of the oscillator j in subpopulation s. The
number Ns is the size of the subpopulation s: N = ∑3

s=1 Ns .
The subpopulation with s = 1,2,3 here corresponds to the
subgroup that consists of α, β, and δ cells, respectively. The
variable ωs

j denotes the natural frequency of the oscillator j in
the subpopulation s, where we assumed that the oscillators
have the same natural frequency (ωs

j = ω). Js ′s represents
the coupling (interaction) strength from the oscillators in the
subpopulation s ′ onto those in the subpopulation s. We note
that a model similar to Eq. (6) has been introduced in previous
studies [10,19].

Here we can set ω to zero without loss of generality by
the phase transformation: φs

j → φs
j + ωt . Equation (6) is then

rewritten as

φ̇s
j = gse

iφs
j + ḡse

−iφs
j , (7)

where gs = i
2N

∑3
s ′=1

∑Ns′
k=1 Js ′se

−iφs′
k and ḡs is its complex

conjugate.
Collective synchronization in the system of coupled oscilla-

tors is conveniently measured by the complex order parameter
[8,9]

Z ≡ Rei� = 1

N

N∑
k=1

eiφk , (8)

where R is a global order parameter that measures the phase
coherence over all oscillators for the whole system, and � is
the average phase. This order parameter Z can be divided into
three terms,

Z(t) = n1z1 + n2z2 + n3z3, (9)

with ns = Ns/N and zs = (1/Ns)
∑Ns

k=1 eiφs
k , where zs repre-

sents a local order parameter for the subpopulation s(=1,2,3).
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We now consider the continuum limit, N → ∞. In this
limit, the order parameter Z(t) can be written as

Z(t) =
∫ 2π

0
eiφf (φ,t)dφ, (10)

where f (φ,t) denotes the probability density function of the
phases that lie between φ and φ + dφ at time t . Following the
Ott-Antonsen ansatz [20], we let

f (φ,t) = 1

2π

{
1 +

∞∑
n=1

[ᾱ(t)neinφ + α(t)ne−inφ]

}
(11)

for some unknown function α that is independent of φ. We
note that Eq. (11) is equivalent to the usual form of the Poisson
kernel [21],

f (φ) = 1

2π

1 − ρ2

1 − 2ρ cos(φ − θ ) + ρ2
, (12)

where ρ and θ are defined via α = ρeiθ , and
∑∞

n=1 ᾱneinφ =
ᾱeiφ/(1 − ᾱeiφ) is used. With this, we find that α(t) in
Eq. (11) can be interpreted as the order parameter Z(t), where
ρ and θ correspond to R and � in Eq. (8), respectively.
On the Poisson submanifold that is expressed by Eq. (11)
each probability density function fs for the subpopulation s

is also a Poisson kernel; therefore, it has the same Fourier
expansion as Eq. (11), with αs instead of α: fs = 1

2π
{1 +∑∞

n=1[ᾱs(t)neinφ + αs(t)ne−inφ]}. Here, αs corresponds to the
local order parameter for the subpopulation s: αs = ρse

iθs =
zs . Substituting Eq. (11) into Eq. (10), we find Z(t) = α(t),
which further yields Z(t) = ∑3

s=1 nsαs(t).
Meanwhile, we expect that the continuity equation is

satisfied for each subpopulation as

∂fs

∂t
+ ∂

∂φ
(fsvs) = 0, (13)

where fs is the probability density function for the sub-
population s and vs is the velocity field given by vs(φ,t) =
gse

iφ + ḡse
−iφ . Substituting fs and vs into Eq. (13), we obtain

[
α̇s − i

(
gsα

2
s + ḡs

)] ∞∑
n=1

nαs
n−1e−inφ + c.c. = 0, (14)

where c.c. denotes the complex conjugate of the first term. We
find that the summation in Eq. (14) does not vanish; thus, the
factor in front of the summation should be zero, which leads
to

α̇s = i
(
gsα

2
s + ḡs

)
. (15)

This means that zs(t) also evolves according to żs = i(gsz
2
s +

ḡs).
We supposed that J12 = J13 = p(>0), −J21 = J23 =

q(>0), and −J31 = −J32 = r(>0) for the interactions be-
tween the subpopulations. For the subpopulation self-
coupling, on the other hand, we let J11 = I1, J22 = I2, and
J33 = I3, where I1,I2,I3 are all larger than p,q,r , which means
that the coupling strength within a group is stronger than that
between the subpopulations. With these interactions, and with
the substitution of αs = ρse

iθs into Eq. (15) for s = 1,2,3, we

find that the dynamics of each subpopulation is governed by

ρ̇1 = 1−ρ2
1

2
[I1n1ρ1 − qn2ρ2 cos u − rn3ρ3 cos v],

θ̇1 = 1+ρ2
1

2ρ1
[qn2ρ2 sin u + rn3ρ3 sin v], (16)

ρ̇2 = 1−ρ2
2

2
[pn1ρ1 cos u + I2n2ρ2 − rn3ρ3 cos(u − v)],

θ̇2 = 1+ρ2
2

2ρ2
[pn1ρ1 sin u − rn3ρ3 sin(u − v)], (17)

ρ̇3 = 1−ρ2
3

2
[pn1ρ1 cos v + qn2ρ2 cos(u − v) + I3n3ρ3],

θ̇3 = 1+ρ2
3

2ρ3
[pn1ρ1 sin v − qn2ρ2 sin(u − v)], (18)

respectively, where u ≡ θ1 − θ2, and v ≡ θ1 − θ3. For one
simple case, we can assume that each subpopulation is in
perfect synchronization (ρ1 = ρ2 = ρ3 = 1). We note that this
assumption is consistent with the experimental observation
that β cells, sharing gap-junction channels with adjacent β

cells, are strongly synchronized (ρ2 = 1) [22]. The long-range
interaction between remote β cells has been mechanically
justified by showing that the gap junctions mediate calcium
waves in islets [23]. On the other hand, no clear evidence for
self-synchronization of α and δ cells has been found. However,
pulsatile glucagon and somatostatin secretions of α and δ

cells imply their self-synchronization (ρ1 = 1 and ρ3 = 1).
Otherwise, asynchronous hormone pulses would compensate
each other, and their averaged pulses would become flat. Then,
since we are interested in the phase differences between cell
types, Eqs. (16)–(18) are then reduced to

u̇ = (qn2 − pn1) sin u + rn3[sin v + sin(u − v)], (19)

v̇ = qn2[sin u + sin(u − v)] + (rn3 − pn1) sin v. (20)

Therefore, we arrived at the same conclusion in Eqs. (4) and
(5), except for weighting population densities to the coupling
strengths (p → pn1, q → qn2, and r → rn3).

IV. MODEL ANALYSIS

We now examine the synchronization patterns of the
islet model in Eqs. (4) and (5). Specifically, we pay at-
tention to the fixed point (u∗,v∗) that is obtained from
u̇ = 0 and v̇ = 0. It is found that (0,0), (0,±π ), (±π,0),
and (±π,±π ) are all fixed points of Eqs. (4) and (5).
Note that some parameter set (p, q, r) allows nontrivial
fixed points (u±, v±), satisfying tan u± = ∓pqh/r(h2 −
2pq) and tan v± = ±(p − q + r)h/(h2 − 2pr) with h =√

2pq + 2qr + 2rp − p2 − q2 − r2. The stability of the fixed
points has been checked, using the linear stability analysis [24].

We find that the stability of the fixed point depends on the
parameter values of p, q, and r: When the interaction by α

cells is dominant (p > q + r) at fasting conditions with low
glucose levels, the system approaches the stable fixed point
(0,0), showing an in-phase synchrony for α-β, α-δ, and β-δ
[Fig. 2(a)].
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FIG. 2. (Color online) Vector flow (a) for the state (0,0) for p >

q + r; (b) the state (π,π ) for q > p + r; and (c) traveling wave (limit
cycle) for p = q = r . Note that solid (open) circles represent stable
(unstable) fixed points. The temporal evolution of u(t) = θ1(t) − θ2(t)
and v(t) = θ1(t) − θ3(t) for the (d) solid red (clockwise limit cycle)
and dotted blue (counterclockwise limit cycle) regions in (c).

On the other hand, when the interaction by β cells is
dominant (q > p + r) at fed conditions with high glucose
levels, the system approaches the stable fixed point (π,π ),
showing an out-of-phase synchrony for both α-β and α-δ,
while an in-phase synchrony for β-δ [Fig. 2(b)]. Note that when
we additionally consider population densities, the inequality
(q > p + r) becomes qn2 > pn1 + rn3. Because most cells
in the pancreatic islets are β cells (n2 > n1 > n3), we naturally
expect that the population dominance of β cells is more likely
to lead the islet system to the (π,π ) state.

At near normal glucose conditions when the dominance of
α and β cell interactions is relaxed (e.g., p = q = r), present is
a new stationary solution of limit cycles with u̇ �= 0 and v̇ �= 0.
The limit cycles in the (u, v) plane [see Fig. 2(c)], oscillate
between the (0, 0) and the (π , π ) states [see Figs. 2(d) and
2(e)]. We summarized these dynamic behaviors depending on
relative coupling strengths in the phase diagram of Fig. 3.

What happens if δ cells are absent? Biologically, this is a
very important question since it may give some clue about
the very reason why δ cells are found in pancreatic islets.
According to our model, when δ cells are absent, Eqs. (16)
and (17) are reduced to

u̇ = (q − p) sin u. (21)

We find that u = π is the stable fixed point for q > p; on
the other hand, u = 0 is the stable fixed point for p > q.
Note that for p = q, traveling wave (TW) states exist with
u �= 0 or π , but u̇ = 0. This TW state has been reported in
Ref. [11]; it is known to be induced by the asymmetry in
the coupling parameters. In the islet system, the coupling
is also an asymmetric one (Js ′s �= Jss ′ ); accordingly, a TW
state is naturally expected to appear. This implies that the

p
/q

r/q

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

(0,0)

(π,π) (0,π)

limit cycle

FIG. 3. (Color online) Phase diagram for relative strengths of p,
q, and r . Stable fixed points (θ1 − θ2, θ1 − θ3) = (0, 0) for p > q + r

(red hatched area); (π , π ) for q > p + r (green hatched area); (0, π )
for r > p + q (blue hatched area); and limit cycles for 2pq + 2pr +
2qr − p2 − q2 − r2 > 0 (gray area). Some regions have both fixed
points and limit cycles as solutions depending on initial conditions.

change from one state (out-of-phase synchrony between the α

and β cells) to another one (in-phase synchrony between the
cells) occurs drastically depending on the range of interaction
strength. In the absence of δ cells, the drastic state change can
be easily seen in the phase diagram (r = 0) of Fig. 3. Note that
this is a very awkward situation where small perturbations
of glucose (influencing relative strengths of p and q) can
result in completely different states of islets. In contrast, in
the presence of δ cells, islets allow flexible changes between
u = 0 and u = π states using limit cycles as shown for r �= 0 in
Fig. 3.

V. DISCUSSION

In summary, we developed a model of coupled phase
oscillators for the cells in pancreatic islets that explains their
synchronized hormone pulses. The model provides a clear
picture about the characteristics of the cell-cell interactions in
the islet and suggests an important role of the third population,
δ cells.

In this paper, the islet system provides a natural extension
of the Kuramoto model. In the original model, every oscillator
has the same positive coupling between them [9]. The next
simplest possible scenario may be to consider interactions
between two distinct populations in which one population
(conformists) has positive coupling, while the other one
(contrarians) has negative coupling. This system has been
demonstrated to show rich dynamics such as out-of-phase
synchrony between conformists and contrarians and TW states
where the phase difference between two populations is fixed,
but each population still oscillates with a new frequency
different from their mean natural frequency [11]. Our study
introduces a third population that is symmetrically distinct
from the conformists and contrarians. The third one should
have a mixed coupling with positive and negative signs
depending on neighbors. The three-population model has
larger flexibility in synchronization than the two-population
model as expected. In addition to the in-phase and out-of-phase
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synchrony solutions, the limit cycle solutions allow three
populations to have periodic phase changes between them.

The islet system is an interesting realization of the three-
population model. Furthermore, the simple model of phase
oscillators makes it possible to understand biological meanings
of symmetries of cellular interactions and functional roles
of each population. One main outcome of our model is the
enlightenment of the sign of the β → δ interaction, J23. So
far, consistency on the sign of interactions between α, β, and
δ cells has been observed, except for the J23 (see Table I). It
has been reported that the interaction is positive in chicken
pancreas [15], while other studies in canine (dog) pancreas
reported it as negligible [16]. Although we cannot exclude
species differences, the technical difficulty of measuring
the infinitesimal amount of somatostatin (∼femtomole) may
explain the inconsistency. It has been reported that birds
have surprisingly abundant δ cells in the islets, compared
with mammal islets (40% vs 10%) [25]. The extreme excess
of δ cells in chicken might make it possible to detect the
stimulating effect of insulin secreted by β cells. In our model,
we have found that if J23 � 0, it is impossible to generate the
reported in-phase synchronization between β and δ cells. The
positive interaction breaks the symmetry between β and δ cells
and gives three symmetrically distinguishable cell populations
(Fig. 1): α cells activate other populations; δ cells suppress
other populations; while β cells stimulate and suppress other
populations. In other words, α cells are only suppressed
by other populations; δ cells are only activated by other
populations; while β cells are both activated and suppressed
by other populations. It is of interest that evolutionarily lower
species have only two reciprocal partners of α and β cells,
while higher species are equipped with symmetrically different
three cell populations [25].

In addition to the conjecture of J23 > 0, we found a
potential role of the third population, δ cells. Regardless of
the existence of δ cells, the islet model with an asymmetric
interaction between α and β cells produces both out-of-phase
and in-phase hormone pulses of α and β cells depending on
the dominance of the inhibitory (repulsive) interaction (β →
α) and the excitatory (attractive) interaction (α → β). The
different synchronization patterns may be beneficial for con-
trolling glucose levels. Under high glucose conditions, insulin

plays a role in decreasing glucose levels. The continuous
action of excess insulin can cause episodes of hypoglycemia
(diminished glucose in blood), which is more dangerous
than hyperglycemia (excessive glucose in blood) because it
results in shock and finally death. Therefore, intermittent
glucagon pulses at the high glucose conditions can prevent
the onset of hypoglycemia. If the glucagon pulses were in
phase with insulin pulses, their actions in the liver, increasing
and decreasing blood glucose levels, would compete, resulting
in inefficient glucose control. On the other hand, under
low glucose conditions, insulin secretion becomes negligible,
remaining just at a basal insulin level, and glucagon plays a role
in increasing glucose levels. The basal insulin helps cells in
the body to absorb available glucose. Therefore, under the low
glucose conditions, the in-phase glucagon and insulin pulses
can be beneficial, because insulin accelerates the immediate
absorption of glucose produced by glucagon. Indeed, the out-
of-phase state in a postprandial condition has been observed
[5], and the in-phase state after an overnight fast has also been
reported [26]. Then, one may wonder which states the islet
takes at normal glucose levels. While the absence of δ cells
allows only the two states of in-phase and out-of-phase, the
presence of δ cells generates an oscillating state between the
two. We suggest that this oscillation maximizes the flexibility
of the islet system to quickly respond to uncertain glucose
inputs. This last point is left for further study.

Finally, note that our simple phenomenological model is
limited to explaining the physiological rationale for hormone
pulsatility, although it has been proposed that periodic ex-
posure to the hormones can prevent desensitization of their
receptors, compared with their continuous exposure [27].
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