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H. Sahoo,10 T. Saito,55 Y. Sakai,11 S. Sandilya,51 L. Santelj,20 T. Sanuki,55 Y. Sato,55 V. Savinov,45 O. Schneider,26

G. Schnell,1,12 C. Schwanda,16 D. Semmler,7 K. Senyo,63 O. Seon,32 M. E. Sevior,30 M. Shapkin,17 T.-A. Shibata,57

J.-G. Shiu,37 B. Shwartz,3 A. Sibidanov,50 Y.-S. Sohn,64 A. Sokolov,17 E. Solovieva,19 S. Stanič,41 M. Starič,20
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A measurement of the rate for the ‘‘wrong-sign’’ decay D0 ! Kþ���þ�� relative to that for the

‘‘right-sign’’ decay D0 ! K��þ�þ�� is presented. Using 791 fb�1 of data collected with the Belle

detector, we obtain a branching fraction ratio of Rws ¼ ½0:324� 0:008ðstatÞ � 0:007ðsysÞ�%. Multiplying

this ratio by the world average value for the branching fraction BðD0 ! K��þ�þ��Þ gives a branching
fraction BðD0 ! Kþ���þ��Þ ¼ ð2:61� 0:06þ0:09

�0:08Þ � 10�4.

DOI: 10.1103/PhysRevD.88.051101 PACS numbers: 13.25.Ft, 12.15.Ff, 14.40.Lb

Studies of mixing in neutral meson systems have had an
important impact on the development of the standard model.
Historically, mixing was first observed in the K0 � �K0 sys-
tem [1], then later in the B0 � �B0 system [2], and most
recently in the B0

s � �B0
s [3] and D0 � �D0 [4–6] systems.

Mixing in the D0 � �D0 system is strongly suppressed due
to Cabibbo-Kobayashi-Maskawa [7] matrix elements and
the GIM mechanism [8]. It has been measured using
several methods [9], one of which compares the time depen-
dence of ‘‘wrong-sign’’ D0 ! Kþ��ðXÞ decays to that of
‘‘right-sign’’ D0 ! K��þðXÞ decays [5,6,10–12]. Wrong-
sign decays can occur either via a doubly Cabibbo-
suppressed (DCS) amplitude such as D0 ! Kþ��ðXÞ or

via D0 mixing to �D0, followed by a Cabibbo-favored (CF)
decay such as �D0 ! Kþ��ðXÞ.
In this article we present a measurement for the rate

of the wrong-sign (WS) decayD0 ! Kþ���þ�� relative
to that of the right-sign (RS) decay D0 ! K��þ�þ��
using a data sample of 791 fb�1 [13]. Assuming negligible
CP violation, the ratio of decay rates can be expressed
as [14]

Rws � �ðD0 ! Kþ���þ��Þ
�ðD0 ! K��þ�þ��Þ

¼ RD þ �y0
ffiffiffiffiffiffiffi
RD

p þ 1

2
ðx02 þ y02Þ; (1)
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where RD is the squared magnitude of the ratio of the DCS
to CF amplitudes,� is a suppression factor that accounts for
strong-phase variation over the phase space (0 � � � 1)

[11], and x0 and y0 are the mixing parameters x � �m= ��

and y � ��=2 �� rotated by the effective strong-phase
difference � between DCS and CF amplitudes: x0 ¼
x cos�þ y sin� and y0 ¼ y cos�� x sin�. The parame-
ters x and y depend only on the mass difference (�M) and
decay width difference (��) between the D0 � �D0 mass

eigenstates, and the mean decay width ( ��). The Belle
Collaboration has previously measured Rws ¼ ½0:320�
0:018ðstatÞþ0:018

�0:013ðsysÞ�% [15]. The measurement presented

here supersedes this previous result. We use an improved
reconstruction code that has a higher reconstruction
efficiency for low momentum tracks. The data used in
this analysis corresponds to an integrated luminosity of
791 fb�1 collected at or near the �ð4SÞ resonance.

The data sample was collected by the Belle detector [16]
located at the KEKB asymmetric-energy eþe� collider
[17]. The Belle detector is a large-solid-angle magnetic
spectrometer consisting of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of aerogel
threshold Cherenkov counters (ACC), a barrel-like ar-
rangement of time-of-flight scintillation counters (TOF),
and an electromagnetic calorimeter (ECL) based on CsI
(Tl) crystals. These detector elements are located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. Muon identification is provided by an array of
resistive plate chambers (KLM) interspersed with iron
shielding that is used as the magnetic flux return. For
charged hadron identification, a likelihood ratio LK �
LðKÞ=ðLðKÞ þLð�ÞÞ is formed based on dE=dx mea-
sured in the CDC and the response of the ACC and TOF.
Charged kaons are identified using a likelihood require-
ment that is about 86% efficient for K� and has a ��
misidentification rate of about 8%.

We reconstruct the decay D�� ! D0��
s , D0 !

K����þ��, in which the charge of the low-momentum
(or ‘‘slow’’) pion ��

s identifies the flavor of the neutral D
candidate. For each event, the D0 ! K����þ�� candi-
date is formed from combinations of four charged tracks.
We require that the likelihood ratio LK be greater than 0.7
for kaons and less than 0.4 for pions. For each track
candidate, the distance of closest approach to the interac-
tion point (IP) along the beam line is required to be less
than 5.0 cm. In the plane transverse to the beam line, the
distance of closest approach is required to be less than
2.0 cm for pion candidates and less than 1.0 cm for kaon
candidates. To suppress backgrounds from semileptonic
decays, we reject tracks satisfying electron or muon iden-
tification criteria based on information from the ECL and
KLM detectors. This veto has an efficiency of 95% for
signal events and reduces the number of electron (muon)
background events by 93% (95%). We require that each
track used to reconstruct the D0 have at least two SVD hits

in both the r�� and z coordinates. We retain events
having a K��� invariant mass (MK3�) satisfying
1:81 GeV=c2 <MK3� < 1:92 GeV=c2.
For D0 ! Kþ���þ��, when the momenta of a

daughter kaon and pion are similar, their masses can be
exchanged without a significant effect upon MK3�. This
misidentification leads to ‘‘feed-through’’ background
from RS D0 ! K��þ�þ�� decays in the WS sample.
To suppress this background, we recalculate MK3� of WS
candidates after swapping the kaon and pion mass assign-
ments and reject events in which jMK3�ðswappedÞ �
mD0 j< 20 GeV=c2. From Monte Carlo (MC) simulation,
we find that this veto has a signal efficiency of 92% while
rejecting 94% of this background.
To suppress backgrounds from the singly Cabibbo-

suppressed decay D0 ! K0
SK

þ�� followed by K0
S !

�þ��, we veto events in which either of the �þ��
daughter combinations has an invariant mass within
20 MeV=c2 (3:3� in resolution) of the K0

S mass. This

veto has an efficiency of 97% for signal events and reduces
the number of K0

S background events in Monte Carlo

by 90%.
To suppress background from random combinations of

tracks, the daughter tracks from the D0 candidate are
required to originate from a common vertex. To reconstruct
the D� candidate, we perform a vertex fit that constrains
the D0 and the �s candidate to the IP of the beams. The
resolution on the mass difference Q � M�sK3� �MK3� �
m� is significantly improved by this requirement. We
require that the �2 probability for each vertex fit be greater
than 0.1% and that Q< 10 MeV=c2. To eliminate D me-
sons produced in B �B events, we require that the momen-
tum of the D� candidate be greater than 2:5 GeV=c in the
center-of-mass frame. After all selection requirements, the
fraction of events containing multiple candidates is 8.6%.
For these events, we select the candidate that minimizes the
sum of �2 values divided by the sum of degrees of freedom
(d.o.f.), where each sum extends over both vertex fits.
We measure RS and WS signal yields by performing a

two-dimensional binned maximum likelihood fit to the
MK3� and Q distributions. The signal and background
probability density functions (PDFs) are determined from
MC samples having sizes four times that of the data set.
Background PDF shapes are determined separately for RS
and WS distributions and fixed in the fit. The backgrounds
are divided into four categories: (1) ‘‘random�s,’’ in which
a CF D0 ! K��þ�þ�� decay is correctly reconstructed
but is subsequently combined with a random slow pion
having the WS charge; (2) ‘‘broken charm,’’ in which a
true D�þ ! D0�þ

s decay is combined with a misrecon-
structed D0; (3) ‘‘combinatoric,’’ consisting of remaining
backgrounds from eþe� ! c �c production; and (4) ‘‘uds,’’
consisting of combinatorial backgrounds from continuum
eþe� ! u �u, d �d, s�s production. As no significant correla-
tions are found between MK3� and Q for the signal or
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backgrounds, we model each PDF as the product of
one-dimensional functions. Background PDF shapes are
parametrized in Q using a threshold function of the form

Q1=2 þ aQ3=2 for the random �s, combinatoric, and uds
components, while a broad Gaussian is used for the broken
charm component. For MK3�, a second-order Chebyshev
polynomial is used for the combinatoric and uds compo-
nents, and an ARGUS function [18] is used for the broken
charm component. The random �s background is parame-
trized in MK3� using the same shape as used for the
signal (see below). We compare data and MC events in
the sideband regions jQ� 5:865 MeV=c2j> 2:0 MeV=c2

for numerous kinematic distributions and find good agree-
ment. These distributions include theD� momentum, the�2

value of the vertex fits, particle identification likelihoods,
the cosine of the angle between the D0 and each of its
daughter particles, and the momentum of each final
state particle. The background normalizations are floated
in the fit.

The RS signal PDF is parametrized in MK3� as the sum
of one Gaussian and two bifurcated Gaussians:

LðMK3�Þ ¼ f1Gð�;�1Þ þ ð1� f1Þf2Gð�;�L
2 ; �

R
2 Þ

þ ð1� f1Þð1� f2ÞGð�;�L
3 ; �

R
3 Þ; (2)

where � is the common mean, �L (�R) is the left (right)
width of the bifurcated Gaussians, and fi is the relative
fraction of each component. In Q, the signal PDF
is parametrized as the sum of a bifurcated Student’s t
distribution and a bifurcated Gaussian:

LðQÞ ¼ f4Sð ��;�L
4 ; �

R
4 ; �1; �2Þ

þ ð1� f4ÞGð ��;�L
5 ; �

R
5 Þ; (3)

where �� is the common mean; �5 is the width of the
bifurcated Gaussian; and f4, �4, and � are the relative
fraction, variance, and skewness, respectively, of the
Student’s t distribution. For the fit to data, the fractions
f2 and f4 are fixed to values obtained from MC simulation
while all other parameters are floated.

The RS signal PDF is also used for the WS signal PDF.
Since the WS and RS samples are fitted simultaneously,
the ratio of WS to RS signal yields is extracted directly
from the fit. We obtain a RS yield of 990594� 1901 events
and a ‘‘raw’’ ratio of WS to RS yields of R0

ws ¼ ð0:339�
0:008Þ%. This value must be corrected for the ratio of
overall efficiencies of RS and WS decays. Projections
of the fit are shown in Fig. 1. The fitted RS yield and R0

ws

value correspond to a WS yield of 3358� 79 events.
The goodness of fit is satisfactory: for WS (RS) decays,
�2=d:o:f: ¼ 1:17 ð1:89Þ for MK3� and 0.90 (1.43) for Q.

As D0 ! Kþ���þ�� and D0 ! K��þ�þ�� decays
proceed largely through intermediate resonances, RS and
WS events are expected to have different distributions
across the phase space. If the detector acceptance and
reconstruction efficiencies vary over phase space, the

overall efficiencies for RS and WS decays will differ
from each other. The ratio of these efficiencies is needed
to correct R0

ws.
To obtain the ratio of efficiencies, we divide RS and WS

events into 576 bins in a five-dimensional phase space.
These dimensions consist of the invariant mass combina-
tions forK���,K���

1 ,K
���

2 ,�
���

1 , and�
���

2 , where
�1 and �2 label the pions with same sign charge, and
jp�1

j> jp�2
j. The binning is chosen to correspond to the

structure present in these variables. The efficiency for each
bin (�i) is obtained using MC. We estimate background in
the data for bin i by multiplying the total background yield
(Nbkg) by the fraction of background events in that bin (fi)

as obtained from MC simulation. The total background
yield is determined from the two-dimensional fit to the
MK3�-Q distribution of data. The total signal yield is
calculated as

N0ðK���Þ ¼ X576

i¼1

Ni � Nbkg 	 fi
�i

; (4)

where Ni is the number of candidate events in bin i. The
reconstruction efficiency for either D0 ! Kþ���þ�� or
D0 ! K��þ�þ�� decays is calculated as
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FIG. 1 (color online). Fit projections for MK3� (left) and Q
(right). The top (bottom) row shows D0 ! K��þ�þ�� (D0 !
Kþ���þ��) candidates. Events plotted for MK3� are required
to lie in the signal region for Q, and vice versa. The peaking
dashed curves show the signal PDF (cyan); the nonpeaking
dashed curves show broken charm and uds backgrounds (red);
the dash-dotted curves include combinatoric backgrounds
(green); and the dotted curves include random �s backgrounds
(blue). The fit residuals ðNo � NpÞ=

ffiffiffiffiffiffi
No

p
are plotted below

each fit projection, where No (Np) is the observed (predicted)

event yield.
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�ðK���Þ ¼ 1

N0
X576

i¼1

ðNi � Nbkg 	 fiÞ; (5)

and thus

Rws ¼ R0
ws 	 �ðK

��þ�þ��Þ
�ðKþ���þ��Þ ¼

N0ðKþ���þ��Þ
N0ðK��þ�þ��Þ : (6)

Only events located within a signal region jmK3� �
mD0 j < 0:01 GeV and jQ � Q0j < 0:002 GeV=c2

are used to determine the efficiency correction. The
efficiency-corrected yields are N0ðKþ���þ��Þ ¼
37297� 881 and N0ðK��þ�þ��Þ ¼ ð1:151� 0:002Þ �
107; thus Rws ¼ ð0:324� 0:008Þ%.

We consider various sources of systematic uncertainty
as listed in Table I. Since we measure the ratio of topo-
logically similar RS and WS decays, many systematic
uncertainties cancel.

To determine the systematic uncertainty associated with
the ratio of efficiencies, we propagate the statistical errors
for �i and fi via a Monte Carlo method as follows. We
generate values for �i and fi in all 576 bins. These values
are sampled from Gaussian distributions having mean
values equal to the nominal parameter values and standard
deviations equal to their uncertainties. We then recalculate
Rws using these sampled values. We repeat this procedure
105 times and plot the resulting distribution of Rws.
The rms of this distribution (� 0:0041) is taken as the
systematic error associated with the efficiency correction.

To estimate the contribution associated with event se-
lection criteria, we vary each selection criterion over a
suitable range and remeasure Rws for each variation. The
identification likelihood ratio LK is varied over the range
0.5–0.9 for kaon candidates and 0.1–0.5 for pion candi-
dates. The momentum requirement for D� candidates is
varied over the range 2:3–2:7 GeV=c. For each selection
criterion, the largest positive and negative deviation of Rws

from the nominal value is taken as the systematic error.

The error due to multiple candidates is obtained by remov-
ing all events containing multiple candidates (8.6% of
events) and refitting for Rws; the deviation observed is
taken as the error. To determine the uncertainty associated
with background PDF shapes (which are taken from MC
and differ for RS and WS events), we vary the parameters
of each background PDF by�1�, where � corresponds to
the statistical error from the fit to MC. For each variation,
the data is refit and the deviation of Rws from the nominal
value is recorded. The uncertainty due to a given back-
ground PDF is taken as the sum in quadrature of all
deviations observed when varying the individual parame-
ters. The systematic error due to uncertainty in the signal
PDF is negligibly small. To check for possible bias in
our fit results, we repeat the fit for Monte Carlo samples
(each corresponding to the size of the data set) having
different values of Rws. Comparing the fit results for Rws

with the true values shows no visible fit bias. The total
systematic error is taken to be the sum in quadrature of all
individual contributions. Our final result is

Rws ¼ ð0:324� 0:008� 0:007Þ%: (7)

Multiplying this value by the well-measured RS branching
fraction BðD0 ! K��þ�þ��Þ ¼ ð8:07þ0:21

�0:19Þ% [19]

gives a WS branching fraction

B ðD0 ! Kþ���þ��Þ ¼ ð2:61� 0:06þ0:09
�0:08Þ � 10�4:

(8)

By combining our measurement of Rws with world average
values [9] for x and y, and recent measurements [20] of �
and �, we extract RD from Eq. (1). We use a MC method
to propagate the errors for the parameters and obtain
RD ¼ ð0:327þ0:019

�0:016Þ%.

In summary, we have measured the wrong-sign ratio
Rws ¼ �ðD0 ! Kþ���þ��Þ=�ðD0 ! K��þ�þ��Þ
using eþe� data collected at or near the �ð4SÞ resonance.
After correcting for differences in reconstruction efficien-
cies between RS and WS events, we obtain Rws ¼
ð0:324� 0:008� 0:007Þ%, where the first uncertainty is
statistical and the second is systematic. This is the most
precise measurement of Rws to date. Using a MCmethod to
extract RD from Eq. (1), we obtain RD ¼ ð0:327þ0:019

�0:016Þ%.

Multiplying Rws by the branching fraction for D0 !
K��þ�þ�� gives BðD0 ! Kþ���þ��Þ ¼ ð2:61�
0:06þ0:09

�0:08Þ � 10�4. This result is substantially more precise

than the current Particle Data Group value of ð2:61þ0:21
�0:19Þ �

10�4 [19].
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TABLE I. Summary of systematic errors for Rws. The total
systematic error is obtained by summing all contributions in
quadrature.

Source þ�R (%) ��R (%)

Kaon ID 0.0008 0.0006

Pion ID 0.0003 0.0024

D� momentum 0.0029 0.0037

Multiple candidates 0.0024 0.0024

uds background 0.0012 0.0002

Combinatoric background 0.0034 0.0025

Slow � background 0.0009 0.0003

Broken charm 0.0010 0.0008

Efficiency correction 0.0041 0.0041

Efficiency binning 0.0014 0.0

Total 0.0070 0.0070
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