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We report on a search for heavy neutrinos in B-meson decays. The results are obtained using a data

sample that contains 772� 106B �B pairs collected at the �ð4SÞ resonance with the Belle detector at the

KEKB asymmetric-energy eþe� collider. No signal is observed and upper limits are set on mixing of

heavy neutrinos with left-handed neutrinos of the Standard Model in the mass range 0:5–5:0 GeV=c2.

DOI: 10.1103/PhysRevD.87.071102 PACS numbers: 12.60.�i, 13.35.Hb, 14.60.Pq

The masses of particles in the Standard Model (SM) are
generated by the coupling of the Higgs field to the left- and
right-handed components of a given particle. There being
no right-handed neutrino components in the SM, neutrinos
in the SM are strictly massless. However, experimental data
on neutrino oscillations show that neutrinos are not mass-
less, though their masses are very small [1]. Therefore, a
mechanism beyond the SM is needed to establish neutrino
masses. One possibility is the addition of right-handed
neutrinos, which may also have a Majorana mass, naturally
explaining the smallness of the observed neutrino masses
via the so-called ‘‘seesaw’’ mechanism [2]. For example,
the neutrino minimal Standard Model (�MSM) [3] intro-
duces three right-handed singlet heavy neutrinos, so that
every left-handed particle has a right-handed counterpart.
This model explains neutrino oscillations, the existence
of dark matter and baryogenesis with the same set of

parameters. Heavy neutrinos also appear in other extensions
to the SM, such as supersymmetry [4], grand unification
theories [5] ormodelswith exoticHiggs representations [6].
In general, neutrino flavor eigenstates need not coincide

with the mass eigenstates but may be related through a
unitary transformation, similar to the one that applies to the
quark sector,

�� ¼ X
i

U�i�i; � ¼ e;�; �; . . . ;

i ¼ 1; 2; 3; 4; . . . ; (1)

where � denotes the flavor eigenstates and i denotes the
mass eigenstates. Production and decay diagrams for heavy
neutrinos are shown in Fig. 1. The coupling of the heavy
neutrino �4 to the charged current of flavor � is charac-
terized by a quantity U�4. Below, we denote a heavy
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neutrino in the mass range accessible at Belle and its
corresponding coupling constant by �h and U�, respec-
tively. Existing experimental results are reviewed and dis-
cussed in Ref. [7].

In this paper, we describe a direct search for heavy neu-
trino decays �h ! ‘���, ‘ ¼ e, � with the Belle detector.
Themeasurement is based on a data sample that contains 772
million B �B pairs, which corresponds to 711 fb�1, collected
at the �ð4SÞ resonance with the Belle detector operating at
the KEKB asymmetric-energy eþe� collider [8]. The Belle
detector is a large-solid-angle magnetic spectrometer that
consists of a silicon vertex detector (SVD), a 50-layer central
drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter comprised of CsI(Tl) crystals (ECL)
located inside a superconducting solenoid coil that provides a
1.5 T magnetic field. An iron flux return located outside the
coil is instrumented to detect K0

L mesons and to identify
muons (KLM). The detector is described in detail elsewhere
[9]. Tracking at Belle is done using the SVD and CDC.

Backgrounds are studied usingMonteCarlo (MC) samples
of known B �B decays from b ! c processes (generic MC)
that have three times the statistics of the Belle data set. Signal
MC samples of 500,000 events each for different heavy
neutrino masses and production mechanisms are used to
evaluate the response of the detector, determine its accep-
tance and efficiency, and optimize selection criteria. Events
are generated using the EvtGen program [10]. Heavy neutri-
nos are produced and decayed using a phase space model.

At Belle, the most favorable mass range to look for a
heavy neutrino isMðKÞ<Mð�hÞ<MðBÞ [11]. This analy-
sis uses the leptonic and semileptonicB-meson decaysB !
X‘�h, where ‘ ¼ e,� and X may be a charmmesonDð�Þ, a
light meson (�, �, �, etc.) or ‘‘nothing’’ (purely leptonic
decay), with relative rates as given in Ref. [11].

A distinctive feature of the heavy neutrino is its
long expected flight length: for Mð�hÞ ¼ 1 GeV=c2 and

jUej2 ¼ jU�j2 ¼ 10�4 the flight length is c� ’ 20 m.

Therefore, the expected overall reconstruction efficiency
is small. To improve sensitivity, a partial reconstruction
technique is used. A candidate is formed from two leptons
and a pion (‘2‘1�), where ‘1 and � have opposite charge
and form the heavy neutrino candidate with a vertex dis-
placed from the interaction point (IP). The lepton ‘1 is
referred to as the ‘‘signal lepton,’’ while the lepton ‘2, which
comes from the B decay, is referred to as the ‘‘production
lepton.’’ In this analysis, the heavy neutrino is assumed to be
aMajorana fermion andmay decay to a lepton of any charge
regardless of the original B-meson flavor. If the heavy
neutrino were a Dirac fermion, the production and decay
leptons would necessarily have opposite charge.
If the heavy neutrino is light enough to be produced via

B ! Dð�Þ‘�h, these productionmodes are expected to domi-
nate over decays to lightmesons due to the small value of the
ratio of the relevant Cabibbo-Kobayashi-Maskawa matrix
elements jVubj=jVcbj. The background is more severe for
smaller heavy neutrino masses, Mð�hÞ< 2 GeV=c2, so an

analysis using only B ! Dð�Þ‘�h modes is used in this
‘‘small mass’’ regime, while the full inclusive analysis is
used in the ‘‘large mass’’ regime.
To suppress theQEDbackground, the chargedmultiplicity

in the event is required to be larger than four. Charged tracks
positively identified as electrons or muons (as defined in the
next paragraph) with laboratory-frame momentum greater
than 0:5 GeV=c are used as leptons. All other tracks in the
event are treated as pion candidates. Additional selection
criteria for the lepton and pion tracks are described below.
A significant background remains for heavy neutrino

candidates from particles with similar event topology,
notablyK0

S ! �þ��,� ! p��, � ! eþe�. These back-
grounds are suppressed by strict lepton identification re-
quirements. Electrons are identified using the energy and
shower profile in the ECL, the light yield in the ACC and
the specific ionization energy loss in the CDC (dE=dx).
This information is used to form an electron (Le) and
nonelectron (L �e) likelihood; these are combined into a
likelihood ratio Re ¼ Le=ðLe þL �eÞ [12]. Applying a
requirement on Re, electrons are selected with an effi-
ciency and a misidentification rate of approximately 90%
and 0.1%, respectively, in the kinematic region of interest.
Muons are distinguished from other charged tracks by their
range and hit profiles in the KLM. This information is
utilized in a likelihood ratio approach [13] similar to the
one used for the electron identification. Muons are selected
with an efficiency and a misidentification rate of approxi-
mately 90% and 1%, respectively, in the kinematic region
of interest. These requirements are reversed in order to
produce a lepton veto for identifying pion candidates.
We select well-vertexed heavy neutrino candidates using

dr, the distance of closest approach to the IP in the plane
perpendicular to the beam axis for each track; d	, the angle
between themomentumvector and decayvertex vector of the

W +

l +
α

να Uα νh

νh

Uβ

νβ

l −
β

W +
q
−

q

FIG. 1. Heavy neutrino production (top) and decay (bottom)
diagrams.
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heavy neutrino candidate; anddzvtx, the distance between the
daughter tracks at their closest approach in the direction
parallel to the beam. Requirements vary depending on the
presence of SVD hits on the tracks and on the heavy neutrino
candidate flight length. The signal lepton and pion are fit to a
common vertex. Only candidates with 
2

1=ndf < 16, where

2
1 is the goodness of fit and ndf is the number of degrees of

freedom, are accepted. A second vertex fit of the heavy
neutrino candidate and the production lepton is performed
with the vertex constrained to the IP; candidates with

2
2=ndf < 4 are retained.
For combinatorial background, the daughter tracks of

the heavy neutrino candidate often originate from the
vicinity of the IP rather than the candidate’s decay vertex.
In order to suppress this background, the difference be-
tween the radial coordinates of the closest associated hit in
the SVD or CDC of either of the two daughter tracks to the
IP (r‘ or r�) and the candidate’s decay vertex (rvtx) is
calculated: drfh ¼ min ðr‘; r�Þ � rvtx. This requirement is
most effective for large rvtx. The analysis requires drfh >
�2 cm for rvtx > 6 cm.

For the small mass [Mð�hÞ< 2 GeV=c2] analysis, B !
Dð�Þ‘�h events are selected using the recoil mass against the
‘‘� system. This requirement is related to the kinematics of
the decay under study. For B ! X‘�h ! X‘‘� decays, the

mass of X can be obtained from M2
X¼ðECM�E‘‘�Þ2�

P2
‘‘��P2

B�2 ~P‘‘� � ~PB, where ECM and PB are the

B-meson center-of-mass (CM) energy and momentum and
E‘‘� andP‘‘� are the CM energy andmomentum of the ‘‘�
system. The last term in this equation cannot be calculated as
the B direction remains unknown, so we redefine the recoil
mass as M2

X � ðECM � E‘‘�Þ2 � P2
‘‘� � P2

B. For events

with X ¼ Dð�Þ, the MX distribution has overlapping peaks
around the masses of the D and D�, while for background
events the recoil mass has a broader distribution. Events with
1:4 GeV=c2 <MX < 2:4 GeV=c2 are selected as candidates.

To reject protons from the decays of long-lived baryons,
we impose a loose proton veto for the pion candidate. For
each track, the likelihood values Lp and LK of the proton

and kaon hypotheses, respectively, are determined from the
information provided by the hadron identification system
(CDC, ACC, and TOF). A track is identified as a proton if
Lp=ðLp þLKÞ> 0:99. Background events, rejected by

the veto, are concentrated at heavy neutrino masses below
2 GeV=c2 and thus this veto is applied in the small mass
analysis only.

Using the requirements described above, the number of
background events is reduced by a factor of �106 to a
handful of events, as shown in Fig. 3. Their summary is
shown in Table I. The five event types in the table are
(I) both neutrino daughter tracks have recorded hits in
SVD, (II) one of the neutrino daughter tracks has recorded
hits in SVD, (III) none of the neutrino daughter tracks has
recorded hits inSVDand rvtx < 12 cm, (IV) noSVDhits and
12 cm< rvtx < 30 cm, (V) no SVD hits and the decay

radius exceeds rvtx > 30 cm. The reconstruction efficiency
for signal events does not depend significantly on the recon-
struction mode (ee�, ��� or e��), but does depend
strongly on the heavy neutrino mass. For a given mass, the
efficiency also depends on theB-meson decaymode inwhich
the heavy neutrino is produced. Efficiency distributions,
including reconstruction efficiency, for different production
modes are shown in Fig. 2. Efficiency of the requirements
alone does not depend much on mass or production mode.
Table I shows efficiency of the requirements forD‘�h mode
and Mð�hÞ ¼ 2 GeV=c2. The efficiency drops with the ra-
dius rvtx of the decayvertex from the beamaxis. The effective
range of neutrino reconstruction extends to rvtx ’ 60 cm.
If the heavy neutrino lifetime is long enough, then the

number of neutrinos detected in the Belle detector is (in
units where ℏ ¼ c ¼ 1)

nð�hÞ ¼ 2NBBBðB ! X‘�hÞBð�h ! ‘�Þ
�

Z
"ðRÞm�

p
exp

�
�mR�

p

�
dR

’ jU�j2jU�j22NBBf1ðmÞf2ðmÞm
p

Z
"ðRÞdR; (2)

TABLE I. Summary of requirements, their background sup-
pression efficiency, efficiency for signal events and systematic
uncertainties.

Requirement Applied to

Suppression

efficiency

(%)

Signal

efficiency

(%)

Systematic

uncertainty

(%)


2
1=ndf < 16 All 35 99 2.9


2
2=ndf < 4 All 27 85 10.1

Reð‘1Þ> 0:9 All 40 45 2.2

R�ð‘1Þ> 0:99 All 17 35 4.9

Reð‘2Þ> 0:9 All 38 53 3.0

R�ð‘2Þ> 0:9 All 25 38 3.1

Lepton veto All 86 99 1.8

d	< 0:03 cm Type I 39 95 9>>>>>=
>>>>>;
5:8

d	< 0:03 cm Type II 5 80

d	< 0:04 cm Type III 11 85

d	< 0:09 cm Type IV 66 96

d	< 0:15 cm Type V 51 94

dr > 0:09 cm Type I 5 97 9>>>>>=
>>>>>;
3:7

dr > 0:1 cm Type II 7 98

dr > 3 cm Type III 1 79

dr > 3 cm Type IV 10 94

dr > 5 cm Type V 42 95

dzvtx < 0:4 cm Type I 37 94 9>>>>>=
>>>>>;
10:0

dzvtx < 0:4 cm Type II 17 74

dzvtx < 0:5 cm Type III 21 75

dzvtx < 0:9 cm Type IV 36 80

dzvtx < 2 cm Type V 68 83

drfh >�2 cm rvtx > 6 cm 32 84 2.9

Recoil mass Small mass 24 99 4.1

Proton veto Small mass 94 97 1.6
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where NBB is the number of B �B pairs;BðB ! X‘�hÞ is the
total branching fraction for �h production; Bð�h ! ‘�Þ is
the branching fraction of the reconstructed decay; "ðRÞ is
the reconstruction efficiency of the �h decaying at a dis-
tance R from the IP; and m, p and � are the mass,
momentum and full width of the heavy neutrino, respec-
tively. Additionally, to factor out the jUj2 dependence, we
define jU�j2f1ðmÞ � BðB ! X‘�hÞ and jU�j2f2ðmÞ �
�ð�h ! ‘�Þ ¼ Bð�h ! ‘�Þ�, where � and � denote the
flavor of the charged lepton produced in theB and �h decay,
respectively. The exponent in the integrand of Eq. (2) is
approximated by unity. An error introduced by this approxi-
mation is small and is negligible when the flight length is
long enough (for jUj2 & 10�3). Integration is performed

over the full volume used to reconstruct the heavy neutrino
vertex, which depends on the reconstruction requirements.
The expressions for BðB ! X‘�hÞ and �ð�h ! ‘�Þ are
taken from Ref. [11] and require only very general assump-
tions (i.e., they are not specific to �MSM).
The calculated total branching fractions for heavy neu-

trino production BðB ! X‘�hÞ for the small mass and
large mass analyses correspond to

BðB!X‘�hÞsmallmass¼BðB!D‘�hÞþBðB!D�‘�hÞ
(3)

and

BðB ! X‘�hÞlarge mass ¼
X
i

BðB ! Xi‘�hÞ; (4)

respectively, where the summation is done over D, D�, �,
�,�,�0,!,	 and nothing. These are not exact expressions
but rather estimates of lower bounds on BðB ! X‘�hÞ,
which lead to conservative upper limits on jUj2.
The systematic uncertainty of each of the event selection

criteria is estimated from the difference in the efficiencies
obtained in data and MC. A summary of all systematic
uncertainties is presented in Table I. Since all particles
used in the systematic uncertainty study decay relatively
close to the IP compared to the expectation for a heavy
neutrino, we require where possible that the decay vertices
be farther than 4 cm from the IP in the transverse plane to
put more weight on large decay lengths. To estimate the
systematic uncertainty due to tracking, we compare the
number of fully and partially reconstructed D� decays in
the decay chain D� ! D�þ, D ! K0

S��, K0
S ! ��,

where in the latter case one of the pions from the K0
S is

explicitly left unreconstructed. To estimate the systematic
uncertainty of the recoil mass requirement, we reconstruct
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FIG. 2. Efficiency distributions for different production modes.
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FIG. 3. Distributions of Mð�hÞ for ee�, ��� and e��þ�e� reconstruction modes in (a) generic MC (unscaled), and (b) data.
The dotted line shows the boundary between the small mass and large mass methods. The filled (black) histograms are for candidates
with opposite-charge leptons, while the open (white) histograms are for candidates with same-charge leptons.
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B ! DDð�Þ
s ,D ! K0

S� events and study the mass recoiling

against the D meson. The D decay topology is similar to
‘�h here, and we treat the difference in recoil mass effi-
ciency between data and MC as the systematic uncertainty
of the recoil mass requirement. To estimate the systematic
uncertainty of the electron identification, we reconstruct
�0 ! �� events, where one of the photons converts into
eþe� in the detector and one of these conversion particles
is identified as an electron. The difference of the identi-
fication efficiency of the other daughter between data and
MC is treated as a systematic uncertainty. For the muon
identification, we perform a similar study with a J=c !
�þ�� sample. To estimate the systematic uncertainty of
other reconstruction requirements, we apply these require-
ments to K0

S decays, which have a topology similar to

heavy neutrino decays. Correlations between different
systematic uncertainties are found to be small and are

neglected. All systematic uncertainties are summed in
quadrature, leading to total systematic uncertainties of
25.0% and 25.4% for the small mass and large mass
regimes, respectively. The largest contributions to the sys-
tematic uncertainties are 
2

2 (10.1%), dzvtx (10.0%) and

tracking of the heavy neutrino candidate daughter particles
(8.7% per track, added linearly).
After all the event selection criteria were fixed from the

MCstudy, the datawere analyzed and the coupling constants
jUej2, jU�j2 and jUekU�j were obtained separately using

the decaymodes ee�,��� and e��þ�e�, respectively.
Distributions of the heavy neutrino mass in generic MC and
data are shown in Fig. 3. In agreement with MC expecta-
tions, only a few isolated events are observed and we set
upper limits on jUj2 according to Ref. [14], taking into
account the systematic uncertainty calculated above. For
nonempty bins and empty bins far from nonempty bins,
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boundary between the small mass and large mass methods.
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we set Poisson upper limits, assuming small background, as
suggested from the MC study. In the vicinity of nonempty
bins, we use Gaussian fits to interpolate between empty and
nonempty regions. The widths of the Gaussians are fixed
from MC. We use bins of 3 MeV=c2 width, since the mass
resolution evolves from �3 MeV=c2 at Mð�hÞ ¼
1 GeV=c2 to �12 MeV=c2 at Mð�hÞ ¼ 4 GeV=c2. The
resulting upper limits at 90% C.L. on the number of events
and coupling constants are shown in Fig. 4.

In conclusion, upper limits on the mixing of heavy right-
handed neutrinos with the conventional SM left-handed
neutrinos in the mass range 0:5–5:0 GeV=c2 have been
obtained. The maximum sensitivities are achieved around
2 GeV=c2 and are 3:0� 10�5, 3:0� 10�5 and 2:1� 10�5

for jUej2, jU�j2 and jUekU�j, respectively. The corre-

sponding upper limit for the product branching fraction is
BðB ! X‘�hÞ �Bð�h ! ‘�þÞ< 7:2� 10�7 for ‘ ¼ e
or �. A comparison with existing results for jUej2 and
jU�j2 is shown in Fig. 5.
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