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The precise driving force of the phase transition in indium nanowires on Si(111) has been controversial

whether it is driven by a Peierls instability or by a simple energy lowering due to a periodic lattice

distortion. The present van der Waals (vdW) corrected hybrid density functional calculation predicts that

the low-temperature 8� 2 structure whose building blocks are indium hexagons is energetically favored

over the room-temperature 4� 1 structure. We show that the correction of self-interaction error and the

inclusion of vdW interactions play crucial roles in describing the covalent bonding, band-gap opening, and

energetics of hexagon structures. The results manifest that the formation of hexagons occurs by a simple

energy lowering due to the lattice distortion, not by a charge density wave formation arising from Fermi

surface nesting.
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One-dimensional (1D) electronic systems have attracted
much attention because of the richness of exotic physical
phenomena such as charge density wave formation due
to the Peierls instability [1], non-Fermi liquid behavior
[2], or Jahn-Teller distortion [3]. A prototypical example
of quasi-1D systems is self-organized indium nanowires
on the Si(111) surface [4–6]. Each nanowire is composed
of two zigzag chains of In atoms, and the nanowires are
separated by a zigzag chain of Si atoms (see Fig. 1) [5].
Below �120 K, this quasi-1D system undergoes a revers-
ible phase transition initially from a 4� 1 structure to a
4� 2 structure, then to an 8� 2 structure [6,7], showing
a period doubling both parallel and perpendicular to the
In wires. This ð4� 1Þ $ ð8� 2Þ phase transition is accom-
panied by a metal-insulator transition [6,8,9]. These intrigu-
ing results have stimulated many experimental [9–12] and
theoretical studies [13–21]. However, the precise driving
force of the phase transition has been elusive for a long time.
It has been suggested that the phase transition is driven by a
Peierls instability [6,8–10] or by a simple energy lowering
due to a periodic lattice distortion [13–20]. The former
mechanism involves the strong coupling between lattice
vibrations and electrons near the Fermi level caused by
Fermi surface nesting. Consequently, the charge density
wave formation together with the lattice distortion occurs
because of a larger electronic energy gain compared to an
elastic energy cost. On the other hand, the latter mechanism
involves either the trimer formation [13–16] in In chains
with an elastic energy gain arising from the lattice distortion
or the hexagon formation [17–21] with an elastic energy
gain from the lattice distortion as well as an electronic
energy gain from the band-gap opening.

Despite the above-mentioned controversial issue on the
origin of the phase transition in the In=Sið111Þ system, the
so-called hexagon model describes well several observed
features of the low-temperature phase such as an insulating

character [6,8,9], scanning tunneling microscopy images
[11], and anisotropic optical interband transitions [12].
Initially, González, Ortega, and Flores proposed that a
shear distortion, whereby neighboring In chains are dis-
placed in opposite directions, allows for the formation of
hexagon in the 4� 2 unit cell [17,18]. Since this shear
phonon mode [11] is different from a phonon mode with
the observed [6] Fermi surface nesting vector 2kF ¼ �=ax
(ax is the lattice constant along the In chains), the
Peierls mechanism is unlikely to be the driving force of
the phase transition in the In=Sið111Þ system. Moreover,
the stabilization of the 8� 2 structure by doubling the unit
cell perpendicular to the In wires is irrelevant with an
electron-phonon coupling due to the observed Fermi sur-
face nesting along the direction parallel to the In wires. The
density-functional theory (DFT) calculations of González,
Ortega, and Flores showed that the 4� 2 or 8� 2 hexagon
structure is energetically favored over the 4� 1 structure
[17,22], but subsequent more accurate DFT calculations
[20,21] within the local density approximation (LDA) [23]

FIG. 1 (color online). Top view of the optimized (a) 4� 1 and
(b) 8� 2 structures of the In=Sið111Þ surface system. The dark
and gray circles represent In and Si atoms, respectively. For
distinction, Si atoms in the subsurface are drawn with small
circles. Each unit cell is indicated by the solid line.
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as well as generalized gradient approximation [24] (GGA)
did not support the energetic preference of the hexagon
structures (see Table I). According to a LDA calculation
with keeping the In 4d electrons frozen, the 8� 2 hexagon
structure was predicted to be energetically favored over the
4� 1 structure [20]. However, this result is an artifact of
the relatively less accurate scheme. Because of the proper
prediction for the energy stability between the 4� 1 and
8� 2 structures, the LDA scheme with a frozen core of
In 4d electrons has been employed to calculate the
entropy difference [25] or the energy barrier between the
two structures [26]. We note, however, that the LDA and
GGA calculations with the treatment of the In 4d states as
valence electrons predicted that the 4� 2 and 8� 2 hexa-
gon structures are less stable than the 4� 1 structure [20].

In this Letter, we present a new theoretical study which
extends the previous work by considering a hybrid
exchange-correlation functional [27] and by taking van
der Waals (vdW) [28] interactions into account. We will
show that the correction of self-interaction error (SIE)
cures over-delocalization of surface-state electrons inher-
ent in the DFT and therefore describes adequately the
covalent bonding, band-gap opening, and energetics of
hexagon structures. Furthermore, we find that the vdW
interactions between In atoms play an important role in
further stabilizing the 4� 2 and 8� 2 hexagon structures.
Since the formation of hexagons and the enhanced stabili-
zation of the 8� 2 structure are not associated with an
electron-phonon coupling due to Fermi surface nesting, we
can say that the phase transition in the In=Sið111Þ system is
driven by a simple energy lowering due to the hexagon
formation rather than by a Peierls-like mechanism.

The present vdW corrected hybrid DFT calculations were
performed using the FHI-aims [29] code for an accurate,
all-electron description based on numeric atom-centered
orbitals, with ‘‘tight’’ computational settings. For the

exchange-correlation energy, we employed the hybrid func-
tional of Heyd-Scuseria-Ernzerhof (HSE) [27] as well as the
GGA functional of Perdew-Burke-Ernzerhof (PBE) [30].
The k-space integrations in various unit-cell calculations
were done equivalently with 64 k points in the surface
Brillouin zone of the 4� 1 unit cell. The Si(111) substrate

(with theSi lattice constanta0 ¼ 5:482 �A) wasmodeledbya
six-layer slab (not including the Si surface chain bonded to

the In chains) with�15 �A of vacuum in between the slabs.
Each Si atom in the bottom layer was passivated by one H
atom. All atoms except the bottom layer were allowed to
relax along the calculated forces until all the residual force

components were less than 0:02 eV= �A.
We begin to optimize the 4� 1, 4� 2, and 8� 2 struc-

tures using the PBE functional. The optimized 4� 1 and
8� 2 structures are displayed in Figs. 1(a) and 1(b),
respectively. We find that the 4� 2 and 8� 2 structures
show the formation of hexagons. Unlike previous pseudo-
potential calculations [13,14,20], the present all-electron
calculations were not able to find the stabilization of
trimers in the 4� 2 and 8� 2 structures, which were
converged to the 4� 1 structure. The calculated total
energies (in meV per 4� 1 unit cell) of the 4� 2 and
8� 2 structures relative to the 4� 1 structure are given in
Table I. We find that the 4� 2 and 8� 2 structures are less
stable than the 4� 1 structure with�E4�2�4�1 ¼ 33 meV
and �E8�2�4�1 ¼ 26 meV, respectively, consistent with
those (48 and 27 meV in Table I) obtained by a previous
GGA calculation [20] with the Perdew-Wang exchange-
correlation functional [24]. The calculated interatomic
distances of In atoms are given in Table II. In the 4� 1
structure, the In-In distance dIn1–In3 (dIn2–In4) within an In

chain is 3.045 (3.047) Å, while dIn3�In4 between the two In

chains is 3.115 Å. However, in the 4� 2 (8� 2) structure,
the In-In distances between the two In chains are shortened

as dIn3–In4 ¼ 3:054 ð3:030Þ and dIn7–In8 ¼ 3:027 ð3:011Þ �A,

leading to the formation of a hexagon [see Fig. 1(b)].

TABLE I. Calculated total energies (in meV per 4� 1 unit
cell) of the 4� 2 and 8� 2 structures relative to the 4� 1
structure, together with the band gaps (in eV). For comparison,
the previous LDA [23] and GGA [24] results are also given.
‘‘valence d (core d)’’ represents the treatment of the In 4d states
as valence (core) electrons.

4� 2 8� 2

�E Eg �E Eg

PBE 33 No 26 0.08

PBEþ vdW 22 0.05 13 0.08

HSE 3 0.10 �15 0.19

HSEþ vdW �23 0.21 �40 0.21

LDA (Refs. [17,18]) �80 �100
GGA—valence d (Ref. [20]) 48 27 0.05

GGA—core d (Ref. [20]) 36 25

LDA—valence d (Ref. [20]) 15 2

LDA—core d (Ref. [20]) 5 �12

TABLE II. Calculated interatomic distances (in Å) of In atoms
in the 4� 1, 4� 2, and 8� 2 structures using PBE. The results
obtained using PBEþ vdW are also given in parentheses. The
labeling of In atoms is shown in Fig. 1.

4� 1 4� 2 8� 2

In1–In3 3.045 (3.040) 2.949 (2.904) 2.941 (2.912)

In2–In4 3.047 (3.053) 2.999 (3.006) 2.996 (2.994)

In3–In4 3.115 (3.092) 3.054 (3.041) 3.030 (3.017)

In3–In5 3.018 (2.993) 2.999 (2.975)

In2–In8 3.024 (3.005) 2.995 (2.983)

In5–In7 3.010 (3.021) 3.028 (3.026)

In8–In6 2.952 (2.913) 2.952 (2.928)

In7–In8 3.027 (3.029) 3.011 (3.011)

In1–In70 3.171 (3.201) 3.128 (3.153)

In4–In70 3.294 (3.306) 3.347 (3.348)

In4–In60 3.130 (3.178) 3.119 (3.160)
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We note that each In-In distance in the 8� 2 structure
slightly changes compared to the corresponding one in the
4� 2 structure because of the formation of hexagons in
two opposite orientations (see Table II).

To examine the influence of vdW interactions on
the geometry and energetics, we use the PBEþ vdW
scheme developed by Tkatchenko and Scheffler [28],
where the vdW coefficients and radii are determined using
the self-consistent electron density [31]. As shown in
Table II, several In-In distances obtained using PBE and
PBEþ vdW exhibit some differences by less than 0.05 Å.
The calculated PBEþ vdW total energies of the 4� 2 and
8� 2 structures relative to the 4� 1 structure are
also listed in Table I. We find that the 4� 2 and 8� 2
structures are still less stable than the 4� 1 structure
with �E4�2�4�1 ¼ 22 meV and �E8�2�4�1 ¼ 13 meV,
respectively. Thus, the inclusion of vdW interactions
within the PBEþ vdW scheme does not reverse the stabil-
ity of the 4� 2 (or 8� 2) and 4� 1 structures.

The calculated surface band structures of the 4� 2
structure obtained using the PBE and PBEþ vdW calcu-
lations are displayed in Figs. 2(a) and 2(b), respectively. It
is seen that PBE gives a metallic feature while PBEþ vdW
gives an insulating feature with a band gap opening (Eg)

of 0.05 eV. The PBE and PBEþ vdW calculations for the
8�2 structure give almost the same value of Eg ¼ 0:08 eV

(see Figs. 1(a) and 1(b) of the Supplemental Material [32]).
For the 4� 1 structure, both PBE and PBEþ vdW predict
well the observed metallic feature [9], where three surface
bands cross the Fermi level (see Figs. 2(a) and 2(b) of the
Supplemental Material [32]). Thus, we can say that PBE
cannot predict the observed [6,8,9] insulating feature for
the low-temperature phase, consistent with a previous
pseudopotential calculation [21].

The local and semilocal DFT schemes have sometimes
failed to provide a reasonable description of the energetics

of different structures involved in the phase transition or
the kinetics of chemical reactions because of their intrinsic
SIE [33,34]. Especially, the GGA tends to stabilize artifi-
cially delocalized states due to the SIE, since delocaliza-
tion reduces the self-repulsion. It is thus likely that the
present PBE functional would give a lower energy for the
metallic 4� 1 structure, compared to the 4� 2 and 8� 2
structures. In order to correct the SIE, we use the hybrid
HSE functional [27] to calculate the total energies of the
4� 1, 4� 2, and 8� 2 structures with the PBE geome-
tries [35]. We find that the correction of SIE enhances
the stability of the 4� 2 and 8� 2 structures relative to
the 4� 1 structure, giving rise to �E4�2�4�1 ¼ 3 meV
and �E8�2�4�1 ¼ �15 meV, respectively. This enhanced
HSE stability of the 4� 2 (8� 2) structure is caused
by the electronic energy gain arising from an increased
band gap of Eg ¼ 0:10 ð0:19Þ eV, as shown in Fig. 2(c)

(Fig. 1(c) of the Supplemental Material [32]). Thus, HSE
predicts well the observed [6,8,9] insulating feature for the
4� 2 and 8� 2 structures.
To see the effects of the SIE on the charge

density distribution, we plot the charge density difference
defined as

�� ¼ �HSE � �PBE; (1)

where �HSE (�PBE) is the charge density obtained using the
HSE (PBE) functional. The results for the 4� 1 and 4� 2
structures are displayed in Figs. 3(a) and 3(b), respectively.
We find a conspicuous difference between the 4� 1 and
4� 2 structures for ��. It is seen that the insulating 4� 2
structure has a larger �� between In atoms compared with
the metallic 4� 1 structure, indicating that the relatively
localized surface states in the former are more affected by
the SIE than the delocalized surface states in the latter. This
fact also reflects that in the 4� 2 structure, the correction
of the SIE by HSE recovers the charge localization in the
covalent bonding between In atoms. As a consequence, we
obtain an increase of band gap with Eg ¼ 0:10 eV, leading

to a decrease of �E4�2�4�1 ¼ 3 meV compared to the

FIG. 2. Surface band structure of the 4� 2 structure obtained
using (a) PBE, (b) PBEþ vdW, (c) HSE, and (d) HSEþ vdW.
The inset in (a) shows the surface Brillouin zone for the 4� 1
and 4� 2 unit cells within that for the 1� 1 unit cell. The
energy zero represents the Fermi level.

(a) (b)

FIG. 3 (color online). Charge density difference between �HSE

and �PBE for the (a) 4� 1 and (b) 4� 2 structures. The dark
(gray) color represents the isosurface of 0.02 ð�0:02Þ e= �A3.
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PBE result (�E4�2�4�1 ¼ 33 meV). For the 8� 2 struc-
ture, �� shows a similar pattern with the 4� 2 case
(see Fig. 3 of the Supplemental Material [32]), yielding
Eg ¼ 0:19 eV and �E8�2�4�1 ¼ �15 meV. We note that

there is a general trend that the 8� 2 structure is more
stable than the 4� 2 structure (see Table I). This indicates
some energy gain caused by the correlation between two
In nanowires in the 8� 2 structure, as pointed out by a
previous theoretical study [20].

Using the HSEþ vdW scheme, we calculate the total
energies of the 4� 1, 4� 2, and 8� 2 structures with
the PBEþ vdW geometries [35]. We find that the 4� 2
and 8� 2 structures are more stable than the 4� 1 struc-
ture with �E4�2�4�1 ¼ �23 meV and �E8�2�4�1 ¼
�40 meV, respectively. Since the total energy is composed
of the HSE energy (EHSE) and the vdW energy (EvdW)
which is given by a sum of pairwise interatomic C6R

�6

terms, the total energy difference between the 4� 2 (or
8� 2) and 4� 1 structures is determined by

�E ¼ �EHSE þ�EvdW: (2)

Figure 4 shows �EvdW in �E4�2�4�1 and �E8�2�4�1,
together with its components originating from In-In,
In-Si, and Si-Si atoms. We find that �EHSE in
�E4�2�4�1 (�E8�2�4�1) is �4 ð�18Þ meV, while
�EvdW in �E4�2�4�1 (�E8�2�4�1) is �19 ð�22Þ meV.
Therefore, the inclusion of vdW interactions largely enhan-
ces the stabilization of the 4� 2 and 8� 2 structures.
We note that the �EHSE values (� 4 and �18 meV) in
�E4�2�4�1 and �E8�2�4�1 are somewhat different from
those (3 and�15 meV) obtained from the HSE calculation
due to the use of two different PBEþ vdW and PBE
geometries. As shown in Fig. 4, the component of �EvdW

originating from In-In atoms in the 4� 2 and 8� 2 struc-
tures is significantly larger in magnitude than those origi-
nating from In-Si and Si-Si atoms. Thus, we can say that
the vdW interactions between In atoms play an important
role in stabilizing the formation of hexagons.

As shown in Fig. 2(d) (Fig. 1(d)) in the Supplemental
Material [32]), theHSEþ vdW band structure of the 4� 2

(8� 2) structure gives Eg ¼ 0:21 ð0:21Þ eV, in good

agreement with a recent scanning tunneling spectroscopy
measurement of Eg ¼ 0:2 eV [36]. We note that the

HSEþ vdW magnitude of �E8�2�4�1 is 40 meV per
4� 1 unit cell, which is equal to 10 meV per In atom.
Although the precise ð4� 1Þ $ ð8� 2Þ phase transition
temperature can be estimated by comparing the vibrational
free energies of the 4� 1 and 8� 2 structures [25], the
HSEþ vdW magnitude of �E8�2�4�1 is well comparable
with the thermal energy at the observed phase transition
temperature of �120 K [6,7]. Therefore, the HSEþ vdW
scheme is likely to give a good band gap and energetics of
the low-temperature phase in the In=Sið111Þ system.
In summary, using the HSE and HSEþ vdW schemes,

we investigated the energy stability of the low-temperature
and room-temperature structures in the In=Sið111Þ system,
which has not been adequately described by previous DFT
calculations [20,21].We found that the correction of the SIE
cures the delocalization error not only to give the insulating
feature for the 4� 2 and 8� 2 structures but also to reverse
the stability of the 4� 1 and 8� 2 structures. We also
found that the vdW interactions between In atoms enhance
the stability of hexagon structures. Our results demonstrate
that the formation of hexagons in the In=Sið111Þ system
occurs by a simple energy lowering due to the lattice dis-
tortion rather than by a Peierls instability. We notice that
the Sn=Sið111Þ and Sn=Geð111Þ surfaces have been the
object of a large number of studies for determining the exact
crystallographic arrangement, the electronic structure, and
the mechanism of the phase transition [37]. We anticipate
that the correction of the self-interaction error and the
inclusion of vdW interactions would give a more accurate
description for the structural and electronic properties of
such prototype two-dimensional electron systems.
This work was supported by a National Research

Foundation of Korea (NRF) grant funded by the Korean
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[18] C. González, F. Flores, and J. Ortega, Phys. Rev. Lett. 96,
136101 (2006).

[19] S. Riikonen, A. Ayuela, and D. Sánchez-Portal, Surf. Sci.
600, 3821 (2006).

[20] A. A. Stekolnikov, K. Seino, F. Bechstedt, S. Wippermann,
W.G. Schmidt, A. Calzolari, and M.B. Nardelli, Phys.
Rev. Lett. 98, 026105 (2007).

[21] J.-H. Cho and J.-Y. Lee, Phys. Rev. B 76, 033405 (2007).
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