ADDITIVE ρ -FUNCTIONAL INEQUALITIES AND EQUATIONS

CHOONKIL PARK

(Communicated by A. Gilányi)

Abstract. In this paper, we investigate the additive ρ -functional inequalities

$$\left\| f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j) \right\| \leq \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right) \right\|$$
(0.1)

and

$$\left\|kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right\| \leq \left\|\rho\left(f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j)\right)\right\|,\tag{0.2}$$

where ρ is a fixed complex number with $|\rho| < 1$.

Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of additive ρ -functional equations associated with the additive ρ -functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the *Cauchy equation*. In particular, every solution of the Cauchy equation is said to be an *additive mapping*. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [3] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

In [4], Gilányi showed that if f satisfies the functional inequality

$$\|2f(x) + 2f(y) - f(xy^{-1})\| \le \|f(xy)\|$$
(1.1)

Keywords and phrases: Hyers-Ulam stability, additive ρ -functional equation, additive ρ -functional inequality.

Mathematics subject classification (2010): Primary 39B62, 39B72, 39B52.

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

See also [9]. Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of the functional inequality (1.1). Park, Cho and Han [7] proved the Hyers-Ulam stability of additive functional inequalities.

In Section 2, we investigate the additive ρ -functional inequality (0.1) and prove the Hyers-Ulam stability of the additive ρ -functional inequality (0.1) in complex Banach spaces. We moreover prove the Hyers-Ulam stability of an additive ρ -functional equation associated with the additive ρ -functional inequality (0.1) in complex Banach spaces.

In Section 3, we investigate the additive ρ -functional inequality (0.2) and prove the Hyers-Ulam stability of the additive ρ -functional inequality (0.2) in complex Banach spaces. We moreover prove the Hyers-Ulam stability of an additive ρ -functional equation associated with the additive ρ -functional inequality (0.2) in complex Banach spaces.

Throughout this paper, let *k* be a fixed integer with $k \ge 2$ and let *G* be a *k*-divisible abelian group. Assume that *X* is a real or complex normed space with norm $\|\cdot\|$ and that *Y* is a complex Banach space with norm $\|\cdot\|$. Assume that ρ is a fixed complex number with $|\rho| < 1$.

2. Additive ρ -functional inequality (0.1)

In this section, we investigate the additive ρ -functional inequality (0.1) in complex Banach spaces.

LEMMA 2.1. A mapping $f: G \rightarrow Y$ satisfies

$$\left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\| \leq \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j})\right) \right\|$$
(2.1)

for all $x_1, x_2, \dots, x_k \in G$ if and only if $f : G \to Y$ is additive.

Proof. Assume that $f : G \to Y$ satisfies (2.1). Letting $x_1 = x_2 = \cdots = x_k = 0$ in (2.1), we get

$$\|(k-1)f(0)\| \leqslant 0.$$

So f(0) = 0.

Letting $x_1 = x_2 = \dots = x_k = x$ in (2.1), we get

$$\|f(kx) - kf(x)\| \leqslant 0$$

and so f(kx) = kf(x) for all $x \in G$. Thus

$$f\left(\frac{x}{k}\right) = \frac{1}{k}f(x) \tag{2.2}$$

for all $x \in G$.

It follows from (2.1) and (2.2) that

$$\left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\| \leq \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j})\right) \right\|$$
$$= \left| \rho \right| \left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|$$

and so

$$f\left(\sum_{j=1}^{k} x_j\right) = \sum_{j=1}^{k} f(x_j)$$

for all $x_1, x_2, \dots, x_k \in G$. Hence $f: G \to Y$ is additive.

The converse is obviously true. \Box

COROLLARY 2.2. A mapping $f: G \rightarrow Y$ satisfies

$$f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j) = \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right)$$
(2.3)

for all $x_1, x_2, \dots, x_k \in G$ if and only if $f : G \to Y$ is additive.

The equation (2.3) is called an *additive* ρ -functional equation.

We prove the Hyers-Ulam stability of the additive ρ -functional inequality (2.1) in complex Banach spaces.

THEOREM 2.3. Let r > 1 and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping such that

$$\left\| f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j) \right\| \leq \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right) \right\| + \theta \sum_{j=1}^{k} \|x_j\|^r \quad (2.4)$$

for all $x_1, x_2, \dots, x_k \in X$. Then there exists a unique additive mapping $h: X \to Y$ such that

$$\|f(x) - h(x)\| \leq \frac{k\theta}{k^r - k} \|x\|^r$$
(2.5)

for all $x \in X$.

Proof. Letting $x_1 = x_2 = \cdots = x_k = 0$ in (2.4), we get

$$\|(k-1)f(0)\| \leqslant 0.$$

So f(0) = 0.

Letting $x_1 = x_2 = \dots = x_k = x$ in (2.4), we get

$$\|f(kx) - kf(x)\| \le k\theta \|x\|^r \tag{2.6}$$

for all $x \in X$. So

$$\left\| f(x) - kf\left(\frac{x}{k}\right) \right\| \leq \frac{k}{k^r} \theta \|x\|^r$$

for all $x \in X$. Hence

$$\left\|k^{l}f\left(\frac{x}{k^{l}}\right) - k^{m}f\left(\frac{x}{k^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \left\|k^{j}f\left(\frac{x}{k^{j}}\right) - k^{j+1}f\left(\frac{x}{k^{j+1}}\right)\right\|$$
$$\leq \frac{k}{k^{r}}\sum_{j=l}^{m-1}\frac{k^{j}}{k^{rj}}\theta\|x\|^{r}$$
(2.7)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$. It follows from (2.7) that the sequence $\{k^n f(\frac{x}{k^n})\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{k^n f(\frac{x}{k^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.7), we get (2.5).

It follows from (2.4) that

$$\begin{aligned} \left\| h\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} h(x_{j}) \right\| \\ &= \lim_{n \to \infty} k^{n} \left\| f\left(\frac{\sum_{j=1}^{k} x_{j}}{k^{n}}\right) - \sum_{j=1}^{k} f\left(\frac{x_{j}}{k^{n}}\right) \right\| \\ &\leq \lim_{n \to \infty} k^{n} \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k^{n+1}}\right) - \sum_{j=1}^{k} f\left(\frac{x_{j}}{k^{n}}\right)\right) \right\| + \lim_{n \to \infty} \frac{k^{n} \theta}{k^{nr}} \sum_{j=1}^{k} \|x_{j}\|^{r} \\ &= \left\| \rho\left(kh\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} h(x_{j})\right) \right\| \end{aligned}$$

for all $x_1, x_2, \cdots, x_k \in X$. So

$$\left\| h\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} h(x_{j}) \right\| \leq \left\| \rho\left(kh\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} h(x_{j})\right) \right\|$$

for all $x_1, x_2, \dots, x_k \in X$. By Lemma 2.1, the mapping $h: X \to Y$ is additive.

Now, let $T: X \to Y$ be another additive mapping satisfying (2.5). Then we have

$$\begin{split} \|h(x) - T(x)\| &= k^n \left\| h\left(\frac{x}{k^n}\right) - T\left(\frac{x}{k^n}\right) \right\| \\ &\leqslant k^n \left(\left\| h\left(\frac{x}{k^n}\right) - f\left(\frac{x}{k^n}\right) \right\| + \left\| T\left(\frac{x}{k^n}\right) - f\left(\frac{x}{k^n}\right) \right\| \right) \\ &\leqslant \frac{2k^{n+1}}{(k^r - k)k^{nr}} \theta \|x\|^r, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \to Y$ is a unique additive mapping satisfying (2.5). \Box

THEOREM 2.4. Let r < 1 and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying (2.4). Then there exists a unique additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\| \leq \frac{k\theta}{k - k^r} \|x\|^r$$
(2.8)

for all $x \in X$.

Proof. Letting $x_1 = x_2 = \cdots = x_k = 0$ in (2.4), we get

$$\|(k-1)f(0)\| \leqslant 0.$$

So f(0) = 0.

It follows from (2.6) that

$$\left\|f(x) - \frac{1}{k}f(kx)\right\| \leq \theta \|x\|^{r}$$

for all $x \in X$. Hence

$$\left\|\frac{1}{k^{l}}f(k^{l}x) - \frac{1}{k^{m}}f(k^{m}x)\right\| \leq \sum_{j=l}^{m-1} \left\|\frac{1}{k^{j}}f(k^{j}x) - \frac{1}{k^{j+1}}f(k^{j+1}x)\right\|$$
$$\leq \sum_{j=l}^{m-1} \frac{k^{rj}}{k^{j}}\theta \|x\|^{r}$$
(2.9)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$. It follows from (2.9) that the sequence $\{\frac{1}{k^n}f(k^nx)\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{\frac{1}{k^n}f(k^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{k^n} f(k^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.9), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.3. \Box

By the triangle inequality, we have

$$\left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\| - \left\| \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j})\right) \right\|$$
$$\leq \left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) - \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j})\right) \right\|.$$

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additive ρ -functional equation (2.3) in complex Banach spaces.

COROLLARY 2.5. Let r > 1 and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping such that

$$\left\| f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j) - \rho\left(kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right) \right\| \leqslant \theta \sum_{j=1}^{k} \|x_j\|^r \quad (2.10)$$

for all $x_1, x_2, \dots, x_k \in X$. Then there exists a unique additive mapping $h: X \to Y$ satisfying (2.5).

COROLLARY 2.6. Let r < 1 and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying (2.10). Then there exists a unique additive mapping $h: X \to Y$ satisfying (2.8).

REMARK 2.7. If ρ is a real number such that $-1 < \rho < 1$ and Y is a real Banach space, then all the assertions in this section remain valid.

3. Additive ρ -functional inequality (0.2)

In this section, we investigate the additive ρ -functional inequality (0.2) in complex Banach spaces.

LEMMA 3.1. A mapping $f: G \rightarrow Y$ satisfies f(0) = 0 and

$$\left\|kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right\| \leq \left\|\rho\left(f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j)\right)\right\|$$
(3.1)

for all $x_1, x_2, \dots, x_k \in G$ if and only if $f : G \to Y$ is additive.

Proof. Assume that $f: G \to Y$ satisfies (3.1). Letting $x_1 = x$ and $x_2 = \cdots = x_k = 0$ in (3.1), we get

$$\left\|kf\left(\frac{x}{k}\right) - f(x)\right\| \leqslant 0$$

and so

$$f\left(\frac{x}{k}\right) = \frac{1}{k}f(x) \tag{3.2}$$

for all $x \in G$.

It follows from (3.1) and (3.2) that

$$\left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\| = \left\| kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|$$
$$\leqslant |\rho| \left\| f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|$$

and so

$$f\left(\sum_{j=1}^{k} x_j\right) = \sum_{j=1}^{k} f(x_j)$$

for all $x_1, x_2, \dots, x_k \in G$. Hence $f : G \to Y$ is additive.

The converse is obviously true. \Box

COROLLARY 3.2. A mapping $f: G \rightarrow Y$ satisfies f(0) = 0 and

$$kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j) = \rho\left(f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j)\right)$$
(3.3)

for all $x_1, x_2, \dots, x_k \in G$ if and only if $f : G \to Y$ is additive.

The equation (3.3) is called an *additive* ρ *-functional equation*.

We prove the Hyers-Ulam stability of the additive ρ -functional inequality (3.1) in complex Banach spaces.

THEOREM 3.3. Let r > 1 and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping with f(0) = 0 such that

$$\left\|kf\left(\frac{\sum_{j=1}^{k} x_j}{k}\right) - \sum_{j=1}^{k} f(x_j)\right\| \leqslant \left\|\rho\left(f\left(\sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f(x_j)\right)\right\| + \theta \sum_{j=1}^{k} \|x_j\|^r \quad (3.4)$$

for all $x_1, x_2, \dots, x_k \in X$. Then there exists a unique additive mapping $h: X \to Y$ such that

$$\|f(x) - h(x)\| \leq \frac{k^r \theta}{k^r - k} \|x\|^r$$
(3.5)

for all $x \in X$.

Proof. Letting $x_1 = x$ and $x_2 = \cdots = x_k = 0$ in (3.4), we get

$$\left\|kf\left(\frac{x}{k}\right) - f(x)\right\| \leqslant \theta \|x\|^r \tag{3.6}$$

for all $x \in X$. So

$$\left\|k^{l}f\left(\frac{x}{k^{l}}\right) - k^{m}f\left(\frac{x}{k^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \left\|k^{j}f\left(\frac{x}{k^{j}}\right) - k^{j+1}f\left(\frac{x}{k^{j+1}}\right)\right\|$$
$$\leq \sum_{j=l}^{m-1} \frac{k^{j}}{k^{rj}} \theta \|x\|^{r}$$
(3.7)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$. It follows from (3.7) that the sequence $\{k^n f(\frac{x}{k^n})\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{k^n f(\frac{x}{k^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.7), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.3. \Box

THEOREM 3.4. Let r < 1 and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying f(0) = 0 and (3.4). Then there exists a unique additive mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\| \leqslant \frac{k^r \theta}{k - k^r} \|x\|^r$$
(3.8)

for all $x \in X$.

Proof. It follows from (3.6) that

$$\left\| f(x) - \frac{1}{k} f(kx) \right\| \leq \frac{k^r \theta}{k} \|x\|^r$$

for all $x \in X$. Hence

$$\begin{aligned} \left\| \frac{1}{k^{l}} f(k^{l}x) - \frac{1}{k^{m}} f(k^{m}x) \right\| &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{k^{j}} f(k^{j}x) - \frac{1}{k^{j+1}} f(k^{j+1}x) \right\| \\ &\leq \frac{k^{r}}{k} \sum_{j=l}^{m-1} \frac{k^{rj}}{k^{j}} \theta \|x\|^{r} \end{aligned}$$
(3.9)

for all nonnegative integers *m* and *l* with m > l and all $x \in X$. It follows from (3.9) that the sequence $\{\frac{1}{k^n}f(k^nx)\}$ is a Cauchy sequence for all $x \in X$. Since *Y* is complete, the sequence $\{\frac{1}{k^n}f(k^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{k^n} f(k^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.9), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.4. \Box

By the triangle inequality, we have

$$\left\|kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j})\right\| - \left\|\rho\left(f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j})\right)\right\|$$
$$\leq \left\|kf\left(\frac{\sum_{j=1}^{k} x_{j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) - \rho\left(f\left(\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f(x_{j})\right)\right\|$$

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the additive ρ -functional equation (3.3) in complex Banach spaces.

COROLLARY 3.5. Let r > 1 and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping with f(0) = 0 such that

$$\left\|kf\left(\frac{\sum_{j=1}^{k}x_{j}}{k}\right) - \sum_{j=1}^{k}f(x_{j}) - \rho\left(f\left(\sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f(x_{j})\right)\right\| \leqslant \theta \sum_{j=1}^{k}\|x_{j}\|^{r} \quad (3.10)$$

for all $x_1, x_2, \dots, x_k \in X$. Then there exists a unique additive mapping $h: X \to Y$ satisfying (3.5).

COROLLARY 3.6. Let r < 1 and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping satisfying f(0) = 0 and (3.10). Then there exists a unique additive mapping $h: X \to Y$ satisfying (3.8).

REMARK 3.7. If ρ is a real number such that $-1 < \rho < 1$ and Y is a real Banach space, then all the assertions in this section remain valid.

Acknowledgements. The author would like to thank the referees for their useful comments and suggestions on the previous manuscript.

REFERENCES

- T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- [2] W. FECHNER, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149–161.
- [3] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [4] A. GILÁNYI, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303–309.
- [5] A. GILÁNYI, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–710.
- [6] D. H. HYERS, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.

- [7] C. PARK, Y. CHO AND M. HAN, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
- [8] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [9] J. RÄTZ, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200.
- [10] S. M. ULAM, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

(Received October 23, 2013)

Choonkil Park Research Institute for Natural Sciences Hanyang University Seoul 133-791 Republic of Korea e-mail: baak@ehanyang.ac.kr

Journal of Mathematical Inequalities www.ele-math.com jmi@ele-math.com