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where ρ is a fixed complex number with |ρ| < 1 .
Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities

(0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of additive ρ -
functional equations associated with the additive ρ -functional inequalities (0.1) and (0.2) in
complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[10] concerning the stability of group homomorphisms.

The functional equation

f (x+ y) = f (x)+ f (y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation is
said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for
additive mappings and by Rassias [8] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta
[3] by replacing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

In [4], Gilányi showed that if f satisfies the functional inequality

‖2 f (x)+2 f (y)− f (xy−1)‖ � ‖ f (xy)‖ (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2 f (x)+2 f (y) = f (xy)+ f (xy−1).

See also [9]. Gilányi [5] and Fechner [2] proved the Hyers-Ulam stability of the func-
tional inequality (1.1). Park, Cho and Han [7] proved the Hyers-Ulam stability of addi-
tive functional inequalities.

In Section 2, we investigate the additive ρ -functional inequality (0.1) and prove
the Hyers-Ulam stability of the additive ρ -functional inequality (0.1) in complex Ba-
nach spaces. We moreover prove the Hyers-Ulam stability of an additive ρ -functional
equation associated with the additive ρ -functional inequality (0.1) in complex Banach
spaces.

In Section 3, we investigate the additive ρ -functional inequality (0.2) and prove
the Hyers-Ulam stability of the additive ρ -functional inequality (0.2) in complex Ba-
nach spaces. We moreover prove the Hyers-Ulam stability of an additive ρ -functional
equation associated with the additive ρ -functional inequality (0.2) in complex Banach
spaces.

Throughout this paper, let k be a fixed integer with k � 2 and let G be a k -
divisible abelian group. Assume that X is a real or complex normed space with norm
‖ · ‖ and that Y is a complex Banach space with norm ‖ · ‖ . Assume that ρ is a fixed
complex number with |ρ | < 1.

2. Additive ρ -functional inequality (0.1)

In this section, we investigate the additive ρ -functional inequality (0.1) in complex
Banach spaces.

LEMMA 2.1. A mapping f : G → Y satisfies∥∥∥∥∥ f

(
k

∑
j=1

x j

)
−

k

∑
j=1

f (x j)

∥∥∥∥∥ �
∥∥∥∥∥ρ

(
k f

(
∑k

j=1 x j

k

)
−

k

∑
j=1

f (x j)

)∥∥∥∥∥ (2.1)

for all x1,x2, · · · ,xk ∈ G if and only if f : G → Y is additive.

Proof. Assume that f : G → Y satisfies (2.1).
Letting x1 = x2 = · · · = xk = 0 in (2.1), we get

‖(k−1) f (0)‖ � 0.

So f (0) = 0.
Letting x1 = x2 = · · · = xk = x in (2.1), we get

‖ f (kx)− k f (x)‖ � 0

and so f (kx) = k f (x) for all x ∈ G . Thus

f
(x

k

)
=

1
k

f (x) (2.2)



ADDITIVE ρ -FUNCTIONAL INEQUALITIES 19

for all x ∈ G .
It follows from (2.1) and (2.2) that∥∥∥∥∥ f
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for all x1,x2, · · · ,xk ∈ G . Hence f : G → Y is additive.
The converse is obviously true. �

COROLLARY 2.2. A mapping f : G → Y satisfies
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for all x1,x2, · · · ,xk ∈ G if and only if f : G → Y is additive.

The equation (2.3) is called an additive ρ -functional equation.
We prove the Hyers-Ulam stability of the additive ρ -functional inequality (2.1) in

complex Banach spaces.

THEOREM 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : X →Y
be a mapping such that∥∥∥∥∥ f
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for all x1,x2, · · · ,xk ∈ X . Then there exists a unique additive mapping h : X → Y such
that

‖ f (x)−h(x)‖ � kθ
kr − k

‖x‖r (2.5)

for all x ∈ X .

Proof. Letting x1 = x2 = · · · = xk = 0 in (2.4), we get

‖(k−1) f (0)‖ � 0.

So f (0) = 0.
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Letting x1 = x2 = · · · = xk = x in (2.4), we get

‖ f (kx)− k f (x)‖ � kθ‖x‖r (2.6)

for all x ∈ X . So ∥∥∥ f (x)− k f
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.7)
that the sequence {kn f ( x

kn )} is a Cauchy sequence for all x ∈ X . Since Y is complete,
the sequence {kn f ( x

kn )} converges. So one can define the mapping h : X → Y by
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n→∞
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( x
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)

for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (2.7), we get
(2.5).
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for all x1,x2, · · · ,xk ∈ X . By Lemma 2.1, the mapping h : X → Y is additive.
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Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖h(x)−T(x)‖ = kn
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which tends to zero as n → ∞ for all x ∈ X . So we can conclude that h(x) = T (x) for
all x ∈ X . This proves the uniqueness of h . Thus the mapping h : X → Y is a unique
additive mapping satisfying (2.5). �

THEOREM 2.4. Let r < 1 and θ be nonnegative real numbers, and let f : X →Y
be a mapping satisfying (2.4). Then there exists a unique additive mapping h : X → Y
such that

‖ f (x)−h(x)‖ � kθ
k− kr ‖x‖r (2.8)

for all x ∈ X .

Proof. Letting x1 = x2 = · · · = xk = 0 in (2.4), we get

‖(k−1) f (0)‖ � 0.

So f (0) = 0.
It follows from (2.6) that∥∥∥∥ f (x)− 1
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (2.9)
that the sequence { 1

kn f (knx)} is a Cauchy sequence for all x ∈ X . Since Y is complete,
the sequence { 1

kn f (knx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1
kn f (knx)

for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (2.9), we get
(2.8).
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The rest of the proof is similar to the proof of Theorem 2.3. �
By the triangle inequality, we have∥∥∥∥∥ f
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As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for
the additive ρ -functional equation (2.3) in complex Banach spaces.

COROLLARY 2.5. Let r > 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping such that∥∥∥∥∥ f
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for all x1,x2, · · · ,xk ∈ X . Then there exists a unique additive mapping h : X → Y satis-
fying (2.5).

COROLLARY 2.6. Let r < 1 and θ be nonnegative real numbers, and let f :
X → Y be a mapping satisfying (2.10). Then there exists a unique additive mapping
h : X → Y satisfying (2.8).

REMARK 2.7. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach
space, then all the assertions in this section remain valid.

3. Additive ρ -functional inequality (0.2)

In this section, we investigate the additive ρ -functional inequality (0.2) in complex
Banach spaces.

LEMMA 3.1. A mapping f : G → Y satisfies f (0) = 0 and∥∥∥∥∥k f
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for all x1,x2, · · · ,xk ∈ G if and only if f : G → Y is additive.

Proof. Assume that f : G → Y satisfies (3.1).
Letting x1 = x and x2 = · · · = xk = 0 in (3.1), we get∥∥∥k f

(x
k

)
− f (x)
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and so

f
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1
k

f (x) (3.2)

for all x ∈ G .
It follows from (3.1) and (3.2) that∥∥∥∥∥ f
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for all x1,x2, · · · ,xk ∈ G . Hence f : G → Y is additive.
The converse is obviously true. �

COROLLARY 3.2. A mapping f : G → Y satisfies f (0) = 0 and
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(3.3)

for all x1,x2, · · · ,xk ∈ G if and only if f : G → Y is additive.

The equation (3.3) is called an additive ρ -functional equation.
We prove the Hyers-Ulam stability of the additive ρ -functional inequality (3.1) in

complex Banach spaces.

THEOREM 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : X →Y
be a mapping with f (0) = 0 such that∥∥∥∥∥k f
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for all x1,x2, · · · ,xk ∈ X . Then there exists a unique additive mapping h : X → Y such
that

‖ f (x)−h(x)‖ � krθ
kr − k

‖x‖r (3.5)

for all x ∈ X .
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Proof. Letting x1 = x and x2 = · · · = xk = 0 in (3.4), we get∥∥∥k f
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.7)
that the sequence {kn f ( x

kn )} is a Cauchy sequence for all x ∈ X . Since Y is complete,
the sequence {kn f ( x

kn )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

kn f
( x

kn

)
for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (3.7), we get
(3.5).

The rest of the proof is similar to the proof of Theorem 2.3. �

THEOREM 3.4. Let r < 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping satisfying f (0) = 0 and (3.4). Then there exists a unique additive
mapping h : X → Y such that

‖ f (x)−h(x)‖ � krθ
k− kr ‖x‖r (3.8)

for all x ∈ X .

Proof. It follows from (3.6) that∥∥∥∥ f (x)− 1
k

f (kx)
∥∥∥∥ � krθ

k
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for all x ∈ X . Hence∥∥∥∥ 1
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for all nonnegative integers m and l with m > l and all x ∈ X . It follows from (3.9)
that the sequence { 1

kn f (knx)} is a Cauchy sequence for all x ∈ X . Since Y is complete,
the sequence { 1

kn f (knx)} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1
kn f (knx)
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for all x ∈ X . Moreover, letting l = 0 and passing the limit m → ∞ in (3.9), we get
(3.8).

The rest of the proof is similar to the proof of Theorem 2.4. �
By the triangle inequality, we have∥∥∥∥∥k f

(
∑k
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f (x j)

)∥∥∥∥∥ .

As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for
the additive ρ -functional equation (3.3) in complex Banach spaces.

COROLLARY 3.5. Let r > 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping with f (0) = 0 such that∥∥∥∥∥k f

(
∑k

j=1 x j

k

)
−

k

∑
j=1

f (x j)−ρ

(
f

(
k

∑
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x j

)
−

k

∑
j=1

f (x j)

)∥∥∥∥∥� θ
k

∑
j=1

‖x j‖r (3.10)

for all x1,x2, · · · ,xk ∈ X . Then there exists a unique additive mapping h : X → Y satis-
fying (3.5).

COROLLARY 3.6. Let r < 1 and θ be nonnegative real numbers, and let f : X →
Y be a mapping satisfying f (0) = 0 and (3.10). Then there exists a unique additive
mapping h : X → Y satisfying (3.8).

REMARK 3.7. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach
space, then all the assertions in this section remain valid.
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