

EMS 방식 자기부상 시스템의 외란 저감을 위한 연구

A Study on the Disturbance Reduction of Magnetic Levitation System using the EMS Method

박 응 석^{*}·이 주^{*}·진 창 성^{*} (Eung-Seok Park·Ju Lee·Chang-Sung Jin)

Abstract - From the past, maglev technique study(mainly for transportation like maglev) has been done. In the domestic, urban maglev train is practical steps now. High-speed maglev train(550km/h) development comes complete, followed by Japan. This year, system of High-speed maglev train(550km/h) is expected to be verified. This paper simulate FEM model for EMS(Electro-Magnetic Suspension) maglev system and verify tendency of reducing disturbance.

Key Words : EMS, Maglev System, Propulsion, Disturbance Reduction

1.서 론

최근 자동차의 증가에 따른 교통 체증에 따라 공공 교통수단 으로서의 기능이 충분히 발휘할 수 없는 상황에 다다르고 있다. 이와 더불어 연료의 연소과정에 따른 대기오염이 크게 대두되고 있으며 이를 해결하기 위한 방법이 다각도에서 진행되고 있으며, 그 예로 중대형 철도의 공공 교통시설 건설비용이 매년 증가하고 있다. 하지만 중대형 철도시스템은 고가의 건설비 및 개발비용이 필요하므로 보다 저렴하면서, 대기오염을 줄이고, 수요성을 고려 한 서비스 수준이 높은 교통 시스템이 요구된다.

기존의 철도 시스템은 차륜과 레일 간의 점착에 의한 가감속 이 진행되어왔다. 하지만, 차륜과 레일에 의한 주행안정성에 한계 가 있으며 고속 시 안전확보가 어려워진다. 즉 차륜과 레일에서 생기는 마찰에 따른 소음, 진동을 억제하는 철도 자기부상 시스 템이 필요하다 할 수 있다. 이를 위해 독일과 일본 등 초고속 자 기부상 열차에 대한 연구와 시험을 수행해온 국가들은 자기부상 과 같은 형식의 운송수단이 기존 철도 시스템 및 항공기에 비하 여 장점이 많음을 증명해왔다. 대량 운송이 가능하고 높은 속도 에서도 에너지 소비가 적어 교통 체증 및 국가의 녹색성장 기조 에 부합하는 운송시스템이 되었다.[1] 우리나라에서도 2006년부 터 도시형 자기부상열차 실용화 사업이 시작되어 인천공항에서 시운전을 마치고 상용화 단계를 기다리고 있는 중이다. 인천공항 자기부상 열차에 적용된 자기부상 방식은 상전도 흡인식(EMS:

E-mail: kazamaji@hanyang.ac.kr

Electro-Magnetic Suspension) 방식에 리니어 모터를 사용하여 추진력을 얻는다. 여기서 상전도는 상온에서 전도가 이뤄지는 도 체에 의한 전자석으로 일반적인 전자석을 사용했음을 의미하며 상전도식은 속도에 관계없이 일정한 부상력을 얻을 수 있는 장점 이 있다. EMS 부상방식은 가이드웨이를 차량이 감싼 형태로 전 자석 또는 하이브리드 전자석에 의한 흡인력으로 부상한다. 철 등의 자성체 궤도와, 차체에 고정되어 자기력의 세기를 제어할 수 있는 전자석으로 구성되어 있다.[2],[3] 전자석과 레일 간의 공극을 측정하여, 공극이 작아지면 자기력을 약하게 하여 흡인력 을 작게 하고, 공극이 커지면 자기력을 세게하여 흡인력을 증대 시킴으로써 부상되는 높이를 일정하게 유지한다. 즉 일정한 공극 을 유지하면서 추진을 지속하기 위한 시스템이 절대적으로 필요 하다.[4] 이를 위해 본 연구에서는 실제작을 위한 축소형 자기부 상 시스템 통해, LSM(Linear Synchronous Motor)의 위치에 따 른 부상체의 무게중심이 X축 방향으로 변동할 때 발생하는 부상 체의 XYZ축의 힘을 외란으로 보고 이를 최소화 하기 위한 경향 성을 유한요소해석을 통해 분석하였다.

2. 흡인식 자기부상 시스템

2.1 부상 전자석 설계

그림 1은 축소형 상전도식 EMS 자기부상 전자석의 구성을 보 여준다. 부상 전자석의 Y길이는 일반적으로 하부 코어와 동일한 길이로 설계되지만, 이 부분의 길이를 유한요소 해석을 통해 누 설자속을 최소한으로 하는 최적 거리로 설계하였다. X의 높이는 권선의 턴 수에 따른 점적율을 고려하여 설정하였다. 실제 자력 이 발생하는 철심 가로 길이는 반응표면기법 및 유한요소 해석을 통하여 자화정도를 확인하여 10mm로 설정하였고, 철심 적층길이 는 부상 전자석의 구조에 따라 결정되는 사항으로 25cm을 적용

Copyright © The Korean Institute of Electrical Engineers

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

⁺ Corresponding Author : Mechatronics Group, Defence Program Research and Development Center, Samsung Techwin Co., Korea.

^{*} Dept. of Electrical Engineering, Hanyang Univerity, Korea.

Received : November 15, 2014; Accepted : December 22, 2014

하여 철심 단면적을 계산하였다. 권선의 점적률은 코일간의 간격 및 코일을 감싸고 있는 에폭시를 감안하면 실제 권선이 차지하는 비율로 0.45를 적용하였다. 코어는 코일 면적 계산 후, 코어 수치 값에 따라 가로, 세로 길이를 계산하여 적용하였다. 하부 코어에 서 권선의 간섭을 방지하기 위한 간격으로 가로 2mm, 세로 2.5mm로 설정하였다. 제작된 부상 전자석에 적용되는 흡인력 F_a [N]은 중력 M_a [N]를 고려하여 산정하였으며, 공기중 투자율 μ_0 (4 x 3.14 x 10⁻⁷)[H/m], 턴 수 N, 철심의 단면적 A_c [mm²], 부상을 위한 코일의 입력전류 i(t)[A], 공극의 길이 z(t)[mm]로 구성되며 그 식은 다음과 같다.

그림 1 부상 전자석의 기본 모형 및 자속밀도

Fig. 1 The basic design and magnetic flux density of the levitation magnet

$$F_a(t) = \frac{\mu_0 N^2 A_c}{4} (\frac{i(t)}{z(t)})^2 \tag{1}$$

식 (1)은 기자력 N·I에 대한 식으로 나타낼 수 있으며 전류 밀도 J[mm²]를 고려하여 식 (2)와 같이 나타낼 수 있다. [5]

$$N \bullet I = \sqrt{\frac{F_a(t) \times J \times z^2(t)}{\mu_0 \times A_c}}$$
(2)

부상에 필요한 흡인력은 부상체의 무게(40kg) 및 LSM의 흡인 력을 고려하여 산정될 수 있다. 또한, 유지하고자 하는 공극의 길 이 및 전류밀도를 정하면, 결국 기자력 식에 의거하여 턴 수를 정할 수 있다. 표 1은 최종 설계된 부상 전자석의 주요 사양을 나타내었다. 전자석의 정격 공극은 5mm로 설계하였다.

표 1 부상 전자석 설계 주요 사양

Table 1 Specification of the levitation magnet

세부사항	값		
코일의 높이	28 [mm]		
코어 재질	S60		
코일의 점적율	0.45		
평균 전류	3 [A]		
부상 공극	5 [mm]		
철심의 폭	70[mm]		
철심의 높이	47 [mm]		
철심의 y방향 길이	250 [mm]		
철심의 두께	10 [mm]		
턴 수	365[턴]		

그림 2 부상 전자석을 적용한 자기부상 시스템 기본 모델 Fig. 2 The maglev system basic design using the levitation magnet

그림 2는 부상시스템의 설계를 위한 해석 모델이다. 하나의 부 상체에는 좌우측에 각각 2개씩의 전자석이 편심 배치되어 있어서 부상 및 안내기능을 수행하며, LSM의 영구자석이 중앙에 부착되 어 추진력을 발생한다. LSM의 영구자석은 가격을 고려하여 페라 이트를 적용하였다. 양쪽의 부상전자석의 설계과정에서 오른쪽 부상전자석을 왼쪽 부상전자석에 비해 5[mm] 뒤에 위치시켜, 제 작과정에서 양쪽의 전자석이 위치 공차가 발생하였을 경우를 가 정하였다. 무게는 40[kg]을 기준 공극 5[mm]로, LSM은 최적설 계가 아닌 단순 전자석의 형태로 구성되어 추진 시 발생되는 LSM 흡인력을 100[N]으로 고려하였다. 전체 부상전자석의 필요 한 힘이 300[N]이 되도록 하였으며, 부상 전자석은 4개를 사용 하여 한 개의 전자석이 약 7.5[kg]의 무게를 담당하도록 하였다.

2.2 유한요소 해석 결과 및 분석

부상체의 전체 부상력은 부상전자석 흡인력에 LSM의 흡인력 을 더한 값이다. 따라서 부상체가 추진을 하여 X축으로 이동하면 고정자 측의 LSM을 거쳐 부상체의 영구자석이 이동하게 됨을 의미하고 이 때의 LSM 코일 위치에 따라 부상체가 받는 흡인력 이 변화하게 된다. 추진 시 부상체가 받는 흡인력이 항상 일정하 게 유지되어야 외란 없이 진행이 가능하다. 이를 고려하여 두 LSM 사이의 간격은 일정하며, 그 길이는 LSM 길이의 절반에 해 당하도록 산정 하였다. 또한, 좌우측 전자석의 위치가 제작공차로 5[mm] 차이를 가진 자기 부상 시스템을 무게 중심(G)의 변화 (변수 1)와 LSM 코일 위치(변수 2)를 이동시켜 XYZ축 방향으로 발생하는 힘을 해석하였다. 이 힘은 부상체의 외란을 나타내는 것으로 값이 0에 가까울수록 외란없이 추진될 수 있는 것을 의 미한다. 부상체의 YZ축 무게 중심은 일정하다고 가정하고 X축의 무게 중심만을 변화하였다. LSM 코일의 위치는 D값(부상체의 이 동)을 0[mm], 40[mm], 80[mm], 120[mm], 160[mm]로 바꿔 가면서 하나의 부상전자석당 turns*Idc/2 만큼의 전류를 인가하 여 발생한 힘을 나타내었다.

그림 3 EMS 방식 자기부상 시스템 평면도 Fig. 3 The maglev system plan using the EMS method

5[mm]의 제작공차에 따른 좌우측의 부상력의 차이에 따라 부 상체의 무게중심이 변동 할 수 있으며, 그에 따른 XYZ축별 힘이 발생 및 변동 한다는 가정을 두었다. 여기서 발생하는 힘은 부상 체의 부상 및 추진에 외란으로 작용하게 됨을 염두하였다.

표 2는 자기부상 시스템의 LSM의 자석위치에 따른 부상체 좌 우측 각각의 힘과 부상체가 받는 전체 힘을 나타내었으며, 일정 한 전류가 입력되었을 때 양쪽의 부상전자석의 흡인력은 평균이 242[N]으로 LSM의 흡인력에 상관없이 일정한 힘을 나타낸다. 또한, LSM의 위치에 따라 총 흡인력이 차이를 나타날 수 있지 만, LSM의 간격을 적절히 배치하여 전체 흡인력(F_total)이 일정 하게 유지됨을 확인 할 수 있다.

표 2 LSM 코일 위치에 따른 힘의 크기

Table 2 Specification of the levitation magnet

Force	D=0 [mm]	D=40 [mm]	D=80 [mm]	D=120 [mm]	D=160 [mm]
F_left [N]	122.18	121.86	122.20	122.88	121.13
F_right [N]	121.25	120.70	122.26	119.32	119.91
F_total [N]	367.16	363.93	364.54	359.81	361.04

(a) Z축 발생 힘[N]

그림 4 LSM 코일 위치에 따른 XYZ축 발생 힘

-0.4

Fig. 4 The force of the XYZ axis according to the LSM coil locations

그림 4는 부상체의 무게 중심을 X축으로 변화하면서, LSM 코 일 위치 변화에 따른 XYZ 축별 발생 힘을 나타냈다. 무게중심 X 축 변화를 -150[mm]~150[mm]씩 50[mm] 간격으로 변화를 주었으며, LSM 코일 위치와 무게중심 G의 변화를 동시에 고려하 였다. Y축과 Z축은 그림 4(b),(c)를 통해 무게중심이 0인 기준좌 표축에서 가장 작은 외란을 갖게 됨을 확인할 수 있다. Y축은 경 향성은 일정하지만, X축과 Z축의 발생 힘에 비해 그 크기가 크 기 때문에 자기부상 시스템에 가장 큰 영향을 주는 외란이 됨을 확인 할 수 있다. Z축의 경우, 양의 힘이 크게되면 부상 전자석 이 레일에 붙을 수 있고 힘의 크기가 음의 방향으로 크게 되면 부상을 위해 더 많은 입력전류가 필요하게 된다. X축은 그림 4(a)와 같이 LSM 코일 위치 80[mm]에서 최소의 외란 힘을 갖 게 되는 것을 확인하였다. X축에서는 무게중심의 영향보다 LSM 의 코일 위치에 큰 영향을 받는 것을 알 수 있다. 즉, Y축과 Z축 의 무게중심을 기준좌표축으로 유지하면서 LSM과 영구자석의 위 치 조합에 따라 외란이 최소로 줄어드는 점을 찾을 수 있음을 예측 할 수 있다.

3.결 론

본 논문에서는 EMS 타입 자기부상 시스템의 축소형을 통해 부상체의 무게중심 변동에 따른 부상체의 XYZ축의 힘 즉, 외란 의 차이를 유한요소해석을 통해서 분석하였다. 부상력을 유지하 면서 기구적인 외란을 억제하기 위해서는 기준좌표축을 유지하면 서 적절한 LSM의 코일 위치와 영구자석을 배치하는 것이 중요 하다. 추후 연구에서는 외란을 최소화하는 LSM과 영구자석 간의 최적 위치를 시뮬레이션을 통해 찾아 일정한 추진이 가능한 실제 모델을 제작할 것이다.

감사의 글

이 논문은 2013년도 정부(미래창조과학부)의 재원으로 한 국연구재단의 지원을 받아 수행된 연구임. (No.2013R1A2A1A01015171).

References

- Y. J. Son, M. S. Song, H. S. Lee, S. W. Hwang, "Railway Vehicles Engineering 2nd", Goomibook, ch.10, Sep. 2013.
- [2] J. W. Park, C. H. Kim, C. S. Ahn, H. S. Han, S. J. Yang, "Development of Small Scale Vehicle of Super-speed Maglev Train", pp. 236–237, May. 2013.
- [3] J. M. Jo, Y. J. Han, C. Y. Lee, B. B. Kang, S. C. Park, S. H. Choi, "Design and Analysis of Characteristic for a Miniature Maglev Using Electromagnets and Permanent Magnets", 2010 Autumn Conference & Annual Meeting of the Korean Society for Railway, pp. 435-440, Oct.

2010

- [4] S. H. Lee, I. S. Shin, Y. H. Cho, "Magnetic Force Characteristics Analysis of Magnet for Magnetic Levitation Conveyor", Electrical Machinery & Energy Conversion Systems Conference, pp. 99–101, Oct. 2008
- [5] J. B. Lim, "Zero Power Control of Hybrid-EMS System Using Linear Quadratic servo Method", Hanyang University, 2013

박 응 석(Eung-Seok Park)

1954년 2월22일생. 1973~1999년 철도청(전 기주사). 1999년~현재 ㈜디투엔지니어링 사 장. 2004년 서울산업대학교 전기공학과 졸 업. 2012년 한양대학교 공학대학원 철도시스 템공학과 졸업(석사). 2013년~현재 한양대학 교 대학원 전기공학과 박사과정.

이 주(Ju Lee)

1963년 8월 30일생. 1986년 한양대 전기공 학과 졸업. 1988년 동 대학원 전기공학과 졸 업(석사). 1988~1993년 국방과학연구소 연구 원. 1997년 일본 큐슈대학교 System 정보과 학연구과 졸업(박사). 1997년 한국철도기술 연구원 선임연구원. 1997년~현재 한양대 전 기생체공학부 교수.

진 창 성(Chang-Sung Jin)

1976년 10월 26일생. 2001년 한양대 전기공 학과 졸업. 2003년 동 대학원 전기공학과 졸 업(석사). 2003~2007년 대우일렉트로닉스. 2011년 동 대학원 전기공학과 졸업(박사). 2011년~현재 삼성테크윈 R&D 센터 재직.