DB ri=

ISSN 1975-8359(Print) / ISSN 2287-4364(0Online)
The Transactions of the Korean Institute of Electrical Engineers Vol. 64, No. 2, pp. 289~296, 2015
http://dx.doi.org/10.5370/KIEE.2015.64.2.289

Eol=0|2g 7HIOESH HEHEQ HIAE Ao
Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory
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Abstract - In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and
yvaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in
the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model
reduction with control input. Also, we derlve decoupled error dynamics with auxiliary input. The controller is designed in
order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate

the effect of proposed method.
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Planar motors have been used for manufacturing at
especially semiconductor industry. Planar motor is composed
of puck and platen. The platen consists of teeth whose
intervals are uniform. The puck contains four forcers which
are symmetrically placed on each side. The puck is levitated
on the platen by air bearings as shown in Fig. 1. X and Y
axis motion are composed of resultant forces at each axis.
Yaw mothion is generated by interaction of the different
forcers.

Several feedback control methods were developed have
been studied to improve the position tracking and yaw
regulation performance. An adaptive control is used for
minimization of ripple and analyzing the control performance
[1], [2]. A PD/PID controllers is designed in conjunction
with commutation and delay compensation schemes [3], [4].
These methods require the current feedback and position
feedback
measured by laser interferometer. Alternately, measurements

feedback. Position and yaw can be clearly
of currents can be corrupted by pulse width modulation
switching noise. Thus, low pass filters and current observer

are used to reduce the noise [5]. However, the use of the
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filters cause the phase lag in the current tracking. The use
of the
implementation and the computation time. Therefore, using

current  estimation increases complexity of
only X, Y position feedback, the control method without
current measurement is key work.

In this paper, we propose a simplified nonlinear control for
planar motors based on singular perturbation theory to
improve the position tracking and yaw regulation performance
using only X, Y position and yaw feedback. Since mechanical
and electrical dynamics are generally slow and fast in the
planar motor, respectively, the singular perturbation theory can
be applied to the position tracking control of planar motor. In
practically all well designed planar motors, we can put the
inductance, L, into the small scalar parameter of singular
perturbation system [9]. We design the input voltage, which
includes auxiliary input, in order to transform to the three
single-input single-output systems at the complex nonlinear
multi-input multi-output system. The origin of boundary layer
stable. The

controller is designed so as to guarantee stability of the

system is globally exponentially nonlinear
simplified single-input single-output (SISO) system for each
motion. We mathematically prove that the origin of tracking
error dynamics is globally exponentially stable. Simulation
results are performed to evaluate the performance of the

proposed method.

2. Modeling and Controller Design

In this section, we represent planar motor dynamics and
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tracking error dynamics. we prove the singular perturbation
theory in order to make reduced order model. The auxiliary
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Fig. 1 Planar motor

control input is used to couple the reduced order model.
The dynamics of planar motor can be represented in the
state space form as follows [8]
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where

S, =sin(8), G, = cos(0),

z, =z+r,5 1, :a:+7"y59,

Y :?J""Tysev% :y—‘rrySH,'y:Q?ﬂ—,

S =sin(yz,), O, = cosly, ),

Srl—sm(w )7Q,::c05(~/x2)-,

S, =sinlw,), G, = cos(w,),
( (

S, =sin VW), G, = cos )

and x and y are the position [m] of the center of the
motor on the platen. xv and yv are the velocity [m/s] of
the center of the motor on the platen. 6 is the yaw [rad]

rotation and 6, is the yaw rate of the center of the motor
on the platen. i, T By B By and zl are phase currents

[A] in phase A and B of the forcer X, X, ¥;and ;.

- v, and v, are input voltages [V] in

A )

5 h.,/ Ay,

phase A and B of the forcer)(l7)('27)/1and Y;, andd,,d, and

d, are unknown constant load forces [N] and torque [ N-m

b, Yo, Y,

1. r,and r, are the distance from where z‘and ¢’ are

desired positions of X and Y axes, 2% and ¢/ are desired

velocities, #’and ¢/ are the desired yaw and yaw rate. We
have added the additional integral term of the mechanical

errors, e,,,e,, and e, into the mechanical subsystem to

2y
decrease of the position errors. The desired currents,

i -4 will be defined.
W

a,

From (1) and (2), we can derive the tracking error
dynamics of the position and yaw as follows
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We define the desired currents and desired torque in
order to simplify tracking error dynamics of the position

and yaw as follows
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Then, the tracking error dynamics of the position and

yaw are rewritten as
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In the following theorem, we propose the nonlinear
controller based on singular perturbation theory for position
tracking of planar motor and prove the globally exponential
stability.

Theorem 1: Consider planar motor dynamics (1). Suppose
that the auxiliary control law and control law are given by
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where kz; k.x.; kﬁ, kyl, ky.; ky‘{, kel, Icg2 and ke;; are  positive
numbers. Then e, e,e€e, e, and ¢, are globally
exponentially stable.

Proof: Substitute the control laws,
v, 0, 50, 50, 50, v, v, and v, of (7) into the current error

dynamics. In order to make the singular perturbation model
of a dynamical system, the derivatives of the current error
dynamics are multiplied by a small positive parameter L.
Thus, the singular perturbation model becomes
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We can obtain the quasi-steady states at inductance L =

0 as follows
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exponentially stable.
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where dt:E is a new time variable. Since R is
always  positive  parameter, the  equilibrium  point
y, >y, =0 of the boundary-layer system (12) is globally

From the definition, we can obtain

=e, e, =¢, as follows
. _BIC.T K/(_S'r,lga +C;l_b nga +C;ng)+d
€, = M ’
eyx :7B'yeyk 7,{(7 3/16(1,/ + C’:hebu n Y2 a, + Y2 b, +d-l/

M

_ (13)
— (,eg%rrmfi( S, e +C e +Shea C;zeb )
€= : . :
TR (— S[/‘eam + (/Lleb% + 51/26% — C;/Zebu)) +d,

+ 7 - -

Substituting quasi-steady-state e, ,..,e, of (9) into the

tracking error dynamics of the (13) results in the
reduced-order model as
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law (6), the mechanical

tracking error dynamics results in the reduced-order model.

From the auxiliary control

The load forces and load torque perturbation, denoted by
d,d, and d, are assumed to be zero for all analysis

purposes as

2
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Since each error dynamics are decoupling, We can put
the reduced tracking error dynamics into the matrix form
respectively as follows
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Decoupled error dynamics are linear state equations. The
controllability matrix of the error dynamics is given by

C =B ABAB],
G =[BA,BAB), an
G =845 A;B,].
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Since each controllability matrix is full rank, we design

control law in order to move

eigenvalues of tracking error dynamics as follows
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Then, the dynamics of e, e, and e, are given by
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Therefore, The origin of reduced order error dynamics,

e,, =0, is globally exponentially stable.

Remark 1: If the unknown disturbances, d,.d, and d,,

are non-vanishing perturbation, the

proposed method

guarantees uniformly ultimately boundedness of the tracking

error dynamics.

3. Simulation Results

Table 1 Planar motor Parameters and Control gains

Parameter Value Unit
M 1.8 kg
J 2.2x107° kg « m?
B, B, 1x107° N s/m
B, 1x107° Nemses
Parameters dr d, 5 N
dy 1 Nem
P 6.4x10"* m
R 2 Q
L 7x10"* H
K 17 N/A
k ok, 2.0 10°
Ky ok, 1.8 10°
Gains i B o
K, 2200
Ky, 220
Ky, 22
293
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Fig. 5 Desired and real positions of x and y

To evaluate the position tracking and yaw regulation
performances of the proposed method, simulations were
performed using MATLAB/Simulink. The control frequency is
5 kHz. The eigenvalues of closed loop  are
A, =[—11.37 —101.59+295.58; —101.59—295.58i]

24, =[=11.37 —101.59+295.58i— 101.59 — 295.58i] ,
Ay =[—9990 —5.0+8.7 —5.0—8.7i]. The parameters of planar
motor and proposed controller gains were listed in Table 1.
Sine wave profile was shown in Fig. 2. Sine wave profile
was used to evaluate position tracking and yaw regulation
of circular motion. Since the load force and torque are
unknown disturbance, step function was represented for
analysis. The position tracking error and yaw regulation
with and without load were shown in Fig. 4. Desired and
real position of planar motor was shown in Fig. 5. Error
position of x, v and 6 was used to identify the effect of
load force and torque shown in Fig. 6. The position
tracking error of x and y was the peak and valley. We
propose arbitrary load torque and force in order to identify
unknown constant effect. Since the load force of x and y
were added at 1.0 sec. and 3.0 sec. as step function, there
were the peaks of the position tracking error of x and y
respectively. However, the position tracking error of x and y

www.dbpia.co.kr
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also asymptotically converged to zero. When the load torque
of yaw were added from 2.0 [sec] to 4.0 [sec], the yaw
regulation was the valley and peak respectively at each
time. However, the yaw well regulated.

3. Conclusion

In this paper, we propose the position and yaw control
method for the planar motor. The proposed controller was
designed with the nonlinear control in order to improve
position tracking error and yaw regulation. The proposed
singular perturbation theory was used to make the reduced
order model. Since the electrical dynamics was neglected
using singular perturbation theory, this model was not
required both a nonlinear observer and a current feedback.
The simulation results showed that the position tracking
and vyaw regulation performance were improved by the
proposed method. We observed that the position x, y and
yaw were decoupled.
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