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Abstract The irreducible highest weight crystal B(λ) is known to appear as a connected
component within the crystal graph of B(∞)⊗{rλ}. Using the marginally large tableau real-
ization of B(∞), we identify the elements belonging to this connected component, for the
Lie algebra types Cn, Bn, and Dn+1. This gives us a tableau realization of B(λ) that is dif-
ferent from the well known tableau realization by Kashiwara and Nakashima. In particular,
our new description no longer involves half-boxes. We further present a description of B(λ)

through the Kashiwara embedding.

Keywords Crystal base · Classical simple Lie algebra · Marginally large tableau

1 Introduction

The quantum group Uq(g) is a q-deformation of the universal enveloping algebra U(g) of
a Lie algebra g [5, 10] and the irreducible highest weight Uq(g)-module V q(λ) may also
be seen as a deformation of V (λ), the irreducible highest weight g-module. The crystal
base B(λ) of V q(λ) reflects the structure of the Uq(g)-module in a combinatorial man-
ner [11, 12] and hence also gives information concerning the structure of the g-module
V (λ).

Young tableau realizations of B(λ), for the classical simple Lie algebra types, were given
by Kashiwara and Nakashima [15] at an early stage of the crystal base theory development.
There, each B(λ) was described as the set T (λ) of all tableaux of shape λ satisfying a certain
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set of conditions. While these conditions were reasonably simple for the An type, the same
could not be said of the conditions for the other three classical types. The tableau realizations
for the Cn, Bn, and Dn+1 types involved half-boxes and the notion of configurations.

The current work presents new tableau realizations of the crystals B(λ) for the classical
Lie algebra types Cn, Bn, and Dn+1. The tableaux in our realization of B(λ) are not neces-
sarily of shape λ and do not involve half-boxes or configurations. Note that similar results
for the much simpler An and G2 cases are available through the recent works [18] and [17],
respectively.

There are two main ingredients to our new tableau realizations of B(λ). The first is the
result by Nakashima [23], which gives the existence of a strict crystal embedding

B(λ) ↪→ B(∞) ⊗ {rλ}, (1)

where B(∞) is the crystal base of U−
q (g), the negative part of the quantum group, and {rλ} is

a certain single-element crystal. This implies that the crystal graph of B(∞)⊗{rλ} contains
a copy of B(λ) as a connected component.

To identify and present an explicit description of this connected component, one requires
a method to express and to compute with the elements of B(∞). This functionality is pro-
vided by our second ingredient, which is the realization T (∞) of B(∞) consisting of the
marginally large tableaux [7]. Even though the construction of T (∞) relied on the existing
tableau realization T (λ) of B(λ), the tableaux of T (∞) are among the simplest contained
in T (λ) and do not involve half-boxes or configurations. Hence, our final realization ofB(λ)

as an explicitly described subset of T (∞) ⊗ {rλ} is also free of the complications that were
present in the previous realization T (λ).

Note that Nakashima [23] had already expressed the image of the crystal embedding (1)
as the set {

b ⊗ rλ | ε∗
i (b) ≤ 〈hi, λ〉 for any i ∈ I

}
, (2)

for all symmetrizable Kac-Moody algebras and that this was preceded by an essentially
identical result by Kashiwara [14]. However, we had no means of handling the ε∗

i func-
tion, which concerns the ∗-crystal structure on B(∞), on the realizations T (∞), for the Cn,
Bn, and Dn+1 types. This prevented us from attempting to obtain an explicit tableau real-
ization of B(λ) through the description (2) of the image set. On the other hand, since our
work provides a description of the set (2), that has been obtained through an independent
approach, one could hope for implications in the reverse direction. That is, for a crystal ele-
ment T ∈ B(∞) that is presented as an element of T (∞), the set of conditions associated
with our realization of B(λ) must be equivalent to the set of conditions ε∗

i (T ) ≤ 〈hi, λ〉
(i ∈ I ), and one could be able to create a formula for computing the ε∗

i (T ) value by study-
ing this equivalence. In fact, we have obtained a candidate formula through this approach
and plan to develop this further in a future work.

There are a few other realizations of B(λ) for the finite simple Lie algebra types that are
based on the crystal embedding (1). For the An type, Kashiwara and Saito1 gave a matrix
form description of B(∞) and expressed the image set (2) more concretely in terms of these
matrices by computing the ε∗

i values of the matrices explicitly. The embedding was also
used by Nakashima [23] to obtain the polyhedral realizations of B(λ) for the An and rank-2
types, and analogous results for the remaining finite types were obtained by Hoshino [9].

As a corollary to our main result, we are able to present yet another description of B(λ).
There is an embedding of the crystal B(∞) into a certain tensor product of crystals, referred

1Private communication with Y. Saito (August, 2010).
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to as the Kashiwara embedding, and Cliff [4] gave an explicit realization of B(∞) by
describing the image set of this embedding, for the classical Lie algebra types. Because the
realization of B(∞) that was used in describing this image set was very similar to the T (∞)

realization we are using in this work, we were able to identify the subset of the image set
that corresponds to B(λ) ⊂ B(∞) ⊗ {rλ}.

The works [2, 3, 16, 22] showed how the Gindikin-Karpelevich formula could be evalu-
ated as a certain summation indexed by the crystal B(∞). This sum was further simplified
and described combinatorially in [20, 21] by using the marginally large tableau realiza-
tion T (∞) in place of B(∞), for the classical Lie algebra types and the G2 type. The
Casselman-Shalika formula is a companion formula to the Gindikin-Karpelevich formula,
and one may associate a summation indexed by B(λ) to this formula [1–3]. For the An case,
the work [19] expressed the sum using semi-standard tableaux. One possible application of
our realization of B(λ) could be an analogous treatment of the remaining classical types.

The rest of this paper is organized as follows. In Section 2, we recall the existing results
that are used in this paper, and some new notations are introduced in Section 3. The subse-
quent three sections state and prove the correctness of our realizations of B(λ) for the Cn,
Bn, and Dn+1 types. Section 7 presents the realization of B(λ) associated with the Kashi-
wara embedding as a corollary to our main realization result. The final section contains a
rough explanation of how the conditions for our realizations were obtained.

2 Tableau Description of B(∞) and the Embedding of B(λ) in B(∞)

In this section, we recall the basic notation concerning the crystal theory, the description
of B(∞) given in terms of the marginally large tableaux, and a crystal embedding of B(λ)

into a certain tensor product of two crystals. Even though more general results are available,
our review will be restricted to the finite simple Lie algebras types Cn (n ≥ 2), Bn (n ≥ 2),
and Dn+1 (n ≥ 3), since these types are the subject of our study. Unless explicitly stated
otherwise, all our future discussions will hold true for each of these types. Notice that the
subscript for the D type is different from those of the other two types. This is to simplify
our writing and does not imply any restriction on the index range for the D type we are
considering.

Standard notation, as may be found in the textbook [6], will be used, and we assume
knowledge of the basic notions associated with the crystal base theory, such as the fol-
lowing: index set I , simple root αi , coroot hi , fundamental weight �i , set of dominant
integral weights P +, Cartan matrix

(
αi(hj )

)
i,j∈I

, quantum group Uq(g), abstract crystal

with associated Kashiwara operators ẽi , f̃i , and maps wt, εi , ϕi , irreducible highest weight
crystal B(λ), tensor product rule, negative part U−

q (g) of Uq(g), and crystal basis B(∞)

of U−
q (g). However, since this work relies heavily on the tensor product rule, we repeat the

formula here.

ẽi (b1 ⊗ b2) =
{

ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),
(3)

f̃i (b1 ⊗ b2) =
{

f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2).
(4)

Let us now review the marginally large tableau description of B(∞) that was presented
by [7, 8]. The high-level description of the realization can be given as follows. One starts
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with the union ∪λB(λ) and makes certain identifications within this large set, in a manner
that is compatible with the Kashiwara operator actions on B(λ). This careful identifica-
tion allows the set of equivalence classes to be given a crystal structure that is a natural
fusion of those structures on the original crystals B(λ), and the resulting crystal ∪λB(λ)/∼
becomes isomorphic to B(∞). Then, each crystal B(λ) is replaced by its Young tableau
realization T (λ), given by [15], and the equivalence relation on ∪λB(λ) is translated to that
among the tableaux. Finally, the marginally large tableau description of B(∞) is obtained
by selecting appropriate representatives from each of the equivalence classes.

The basic crystals that were used in [15] to create the Young tableau realizations T (λ)

of B(λ) are as follows, for each Lie algebra type.

Cn : (5)

Bn : (6)

Dn+1 : (7)

The work [15] utilized a few other crystals, associated with the spin representations, in
constructing their tableau realizations, but we will only be using the above crystals in this
work.

The set of the above crystal elements, separately collected for each Lie algebra type, will
commonly be written as J . Each set J is given an ordering, where one writes x ≺ y if and
only if y can be reached from x through applications of the f̃i operators, possibly of varying
colors. For example, the Cn-type basic crystal elements are ordered as

J = {1 ≺ 2 ≺ · · · ≺ n ≺ n̄ ≺ · · · ≺ 2̄ ≺ 1̄}. (8)

In the Dn+1 case, no order relation exists between the crystal elements n + 1 and n + 1.
The next definition first appeared in [8] for use with the exceptional Lie algebra types,

but can also be used with the Cn, Bn, and Dn+1 types. Throughout this work, we will refer
to the top row of a tableau as its first row.

Definition 1 Let 1 ≤ i ≤ n. A basic i-column is a single column of i-many boxes, with the
box at its x-th row occupied by the basic crystal element x ∈ J , for each 1 ≤ x ≤ i.

The description for the general tableaux appearing in the realization T (λ) for λ ∈ P + is
quite complicated in that it involves half-boxes and certain configuration conditions, but the
marginally large tableaux, recalled from [7] in the next definition, are among the simplest
of these tableaux.

Definition 2 A tableau of Cn, Bn, or Dn+1 type that consists of n rows with its boxes
occupied by elements of J is marginally large, if it satisfies the following conditions.

1. It is semi-standard, with respect to the ordering ≺, in the sense that its box contents
weakly increase to the right and strictly increase in the downward direction.

2. It contains exactly one basic i-column, for each 1 ≤ i ≤ n.
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3. All entries in its i-th row are less than or equal to ī with respect to the ordering ≺.
4. In the Bn case, the crystal element 0 ∈ J appears at most once in each row.

The set of all marginally large tableaux is denoted by T (∞).

Let us clarify a few points that might be slightly confusing in this definition. First, a
marginally large tableau consists only of full-sized boxes and contains no half-boxes that
are associated with the spin representations. Second, the notion of being semi-standard used
here does not involve the configuration conditions that appeared in the original tableau
realization [15] of B(λ). Third, in the Dn+1 case, to satisfy the semi-standard condition,
the crystal elements n+1 and n+1 cannot appear in the same row, since there is no order
relation defined between them.

It is clear that the first two conditions of Definition 2 imply that the number of i-boxes
in the i-th row is greater than the total number of all boxes appearing in the (i + 1)-th row
by exactly one. This was the approach taken by the earlier work [7] in defining marginally
large tableaux.

The following result from [7, 8] is true for all finite simple Lie algebra types.

Theorem 3 The set T (∞) of all marginally large tableaux forms a crystal and is
isomorphic to the crystal B(∞).

Let us provide an example of marginally large tableau for each of the three Lie alge-
bra types considered in this paper. These figures will be useful to anyone trying to follow
through the detailed computations required in our later proofs.

A C3-type marginally large tableau is of the following form. The shaded parts are
optional and can be of varying sizes, but the three non-shaded parts must always be present.

(9)

A B3-type marginally large tableau is of the following form. The non-shaded parts must
exist, whereas the shaded parts are optional. Note that the crystal element 0 may be absent
from any row, but may not appear more than once in any row.

(10)

A D4-type marginally large tableau is of the following form. The non-shaded parts must
exist, whereas the shaded parts are optional. Either one of 4 or 4̄ may take the place of each
of the letters x, y, and z.

(11)
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In all three cases discussed above, the marginally large tableau corresponding to the
highest weight element b∞ ∈ B(∞) is

T∞ = . (12)

Let us next recall the crystal structure given to the set T (∞). We start with the description
of the Kashiwara operator actions. The reader is assumed to be familiar with the Kashiwara
operator actions on the crystal T (λ), which is to (a) expand a given tableau into its tensor
product form through the far eastern reading, (b) rely on tensor product rule to apply f̃i

or ẽi to one of the boxes, and (c) reorganize the resulting tensor product form into the shape
of the original tableau. Note that since the tableaux in T (∞) do not involve any half-boxes,
we do not have to deal with the somewhat exceptional Kashiwara operator rules that were
associated with the spin representations as was required in the original tableau realization
of [15].

The reader may be aware that, when performing the above part-(b), one often utilizes the
following approach, which is equivalent to the tensor product rule.

1. Under each tensor component, write down its i-signature, where the i-signature of a
crystal element b is a sequence of εi(b)-many 1’s followed by ϕi(b)-many 0’s, reading
from left to right.

2. Successively cancel out every occurrence of (0, 1) pairs from the sequence of mixed
0’s and 1’s, until one arrives at a sequence of 1’s followed by 0’s, reading from left to
right. This is the i-signature of the whole tensor product form.

3. To apply f̃i to the whole product form, one applies it to the single tensor component
corresponding to the leftmost 0 remaining in the shortened i-signature, except that the
f̃i action is set to zero when no 0’s remain.

4. The ẽi is similarly applied to the component corresponding to the rightmost 1, or set to
zero in the absence of remaining 1’s.

Now, the procedure for applying the Kashiwara operator f̃i to a marginally large tableau
is as follows.

1. Apply f̃i to the tableau as usual. That is, write it in tensor product form, use tensor
product rule, and reassemble into original tableau form.

2. If the resulting tableau is not marginally large, locate the box f̃i has acted upon and
insert one basic i-column to its left.

The ẽi operation is similar except that the result could be zero and that one may be required
to remove one basic i-column to retain marginal largeness.

To complete the description of the crystal structure on T (∞), it remains to explain the wt,
ϕi , and εi functions. Let us write the corresponding functions defining the crystal structure
on T (λ) ∼= B(λ) as w̄t, ϕ̄i , and ε̄i . Note that any marginally large tableau T ∈ T (∞)

belongs to exactly one T (λ) for some λ ∈ P +. Let us write shape(T ) = λ when T ∈ T (λ).
The crystal structure on T (∞) is such that wt(T ) = w̄t(T ) − shape(T ), εi(T ) = ε̄i (T ),
and ϕi(T ) = εi(T ) + wt(T )(hi). The definitions imply, in particular, that

ϕi(T ) = ϕ̄i (T ) − shape(T )(hi). (13)

This work will provide a new expression for the crystal B(λ), for any λ ∈ P +, in terms
of the elements of the crystal T (∞). The following result, introduced by Nakashima [23],
is crucial in achieving this goal.
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Theorem 4 For each λ ∈ P +, there exist a unique strict crystal embedding

�λ : B(λ) ↪→ B(∞) ⊗ Rλ,

that maps bλ to b∞ ⊗ rλ.

The symbols bλ and b∞ appearing in this claim denote the highest weight elements
of B(λ) and B(∞), respectively, and the crystal Rλ is the single-element set {rλ} with the
following crystal structure:

ẽi (rλ) = 0, f̃i(rλ) = 0, wt(rλ) = λ, εi(rλ) = −λ(hi), and ϕi(rλ) = 0. (14)

This theorem implies that the connected component in the crystal graph of B(∞) ⊗ Rλ

containing the element b∞ ⊗ rλ is isomorphic to B(λ), and our realization of B(λ) will
be based on this fact. After replacing B(∞) with its tableau realization T (∞) to make the
handling of explicit elements possible, we will find the connected component of T (∞)⊗Rλ

containing T∞ ⊗ rλ, where T∞ denotes the highest weight element of T (∞).
The embedding of Theorem 4 was also introduced by Kashiwara [14], except that the

single-element crystal he used was not the one described by (14). However, the difference is
inessential, and the images of both embeddings can be seen as expressing the crystal B(λ).

3 Notation

The Kashiwara operators will be written as f̃∗ and ẽ∗ when we wish to leave the operator
indices unspecified.

A marginally large tableau of Cn, Bn, or Dn+1 type consists of n rows of boxes, with
each box filled with an element from the basic crystal J associated with the Lie algebra
type under consideration. For each row index 1 ≤ i ≤ n and basic crystal element x ∈ J ,
we will use symbol x

i
to refer to an x-box situated within the i-th row of a marginally

large tableaux, where we are numbering the top row of a tableau as its 1-st row. For each
row index 1 ≤ i ≤ n and basic crystal element x � i, the number of x

i
-boxes in a tableau

will be written as # x
i
. We also define # i

i
= +∞, which is natural in view of the f̃∗

action on marginally large tableaux that inserts basic columns whenever there is a shortage
of i

i
-boxes.

We next introduce the set of integers ti,x , associated with each marginally large tableau.
For each row index 1 ≤ i ≤ n and basic crystal element x ∈ J such that x � i, the integer
ti,x is defined to be the number of all boxes appearing in the i-th row of the given tableau
that contain k ∈ J such that k � x. In particular, ti+1,ī of a marginally large tableau is
always zero for 1 ≤ i ≤ n − 1, and we extend this a single step further to tn+1,n̄ = 0, for
notational convenience. We also set ti,i = +∞, for 1 ≤ i ≤ n, as natural consequences of

the definition # i
i

= +∞. It is clear that any full set of ti,x values can correspond to at
most one marginally large tableau.

The notations # x
i

and ti,x do not make the dependences of these values on the
tableaux explicit, but our uses of these symbols will always be such that the tableau under
consideration is not ambiguous.

For each basic crystal element x ∈ J , in most cases, there is exactly one element that can
be reached from x through a single application of some f̃∗ operator, and this unique element
will be written as x+. More specifically, for the Cn type crystal, we have j+ = j + 1 and
j̄+ = j − 1, in most cases, with the only exceptions being that n+ = n̄ and that 1̄+ is not
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defined. Likewise, for the Bn type crystal, n+ = 0 and 0+ = n̄ are the exceptional cases.
We will not be using the x+ notation with the Dn+1 type crystals.

4 Cn Type

We first present a set of conditions to be applied to marginally large tableaux of Cn type.
Our goal will be to show that, for any λ ∈ P +, the set of tableaux satisfying these conditions
is a realization of B(λ).
Condition-C

A[i, j ] : ti,j + ti+1,j̄+ ≤ λ(hi) + ti+1,j+ + ti+1,j̄ (1 ≤ i < j ≤ n)

B[i, j ] : ti,j ≤ λ(hi) + ti+1,j (1 ≤ i < i + 1 < j ≤ n)

C[i, j ] : ti,j+ + ti,j̄ ≤ λ(hi) + ti,j + ti+1,j̄+ (1 ≤ i < j ≤ n)

D[i, j ] : ti,j̄ ≤ λ(hi) + ti+1,j̄ (1 ≤ i ≤ j ≤ n)

It is possible to write Condition-C slightly more compactly. The definitions # i
i

=
+∞ and ti,i = +∞ imply that relations that could be labeled as B[i, i + 1] and C[i, i] are
empty conditions. When these are added to the above, the ranges of indices become more
uniform, and Condition-C may equivalently be written as follows.

ti,j ≤ λ(hi) + min
{
ti+1,j+ + # j̄

i+1
, ti+1,j

}
(1 ≤ i < j ≤ n)

ti,j̄ ≤ λ(hi) + min
{
ti+1,j̄+ + # j

i
, ti+1,j̄

}
(1 ≤ i ≤ j ≤ n)

However, for the purpose of presenting the details of our proofs, it will be more conve-
nient to fully expand even the x+ notation, separating some of the index ranges into separate
conditions, and to work with the following longer listing of Condition-C.

A[i, j ] : ti,j + ti+1,j−1 ≤ λ(hi) + ti+1,j+1 + ti+1,j̄ (1 ≤ i < j ≤ n − 1)

A[i, n] : ti,n + ti+1,n−1 ≤ λ(hi) + 2ti+1,n̄ (1 ≤ i ≤ n − 1)

B[i, j ] : ti,j ≤ λ(hi) + ti+1,j (1 ≤ i < i + 1 < j ≤ n)

C[i, j ] : ti,j+1 + ti,j̄ ≤ λ(hi) + ti,j + ti+1,j−1 (1 ≤ i < j ≤ n − 1)

C[i, n] : 2ti,n̄ ≤ λ(hi) + ti,n + ti+1,n−1 (1 ≤ i ≤ n − 1)

D[i, j ] : ti,j̄ ≤ λ(hi) + ti+1,j̄ (1 ≤ i ≤ j ≤ n − 1)

D[n, n] : tn,n̄ ≤ λ(hn)

Note that we have removed D[i, n] (1 ≤ i ≤ n − 1), since these are superfluous conditions
that can be obtained by combining A[i, n] and C[i, n].

We will prepare two lemmas and our main result for the Cn-type crystals will follow
quite easily from the two claims.

Lemma 5 If a marginally large tableau T of Cn type satisfies Condition-C, then ϕi(T ) ≥
εi(rλ), for all i ∈ I .
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Proof Note that εn(rλ) = −λ(hn) and that

ϕn(T ) = ϕ̄n(T ) − shape(T )(hn) ≥ 1 − (1 + tn,n̄) = −tn,n̄,

so that D[n, n] implies ϕn(T ) ≥ εn(rλ).
Similarly, the fact εn−1(rλ) = −λ(hn−1) and the observation

ϕn−1(T ) = ϕ̄n−1(T ) − shape(T )(hn−1) ≥ (2tn,n̄ + 1) − (1 + tn−1,n) = 2tn,n̄ − tn−1,n

can be combined with A[n − 1, n], which is tn−1,n ≤ λ(hn−1) + 2tn,n̄, to bring out
ϕn−1(T ) ≥ εn−1(rλ).

Finally, for 1 ≤ i ≤ n − 2, one can combine εi(rλ) = −λ(hi), the observation

ϕi(T ) = ϕ̄i (T ) − shape(T )(hi) ≥ (1 + ti+1,i+2 + ti+1,i+1) − (1 + ti,i+1)

= ti+1,i+2 + ti+1,i+1 − ti,i+1,

and A[i, i + 1], which is ti,i+1 ≤ λ(hi) + ti+1,i+2 + ti+1,i+1, to derive ϕi(T ) ≥ εi(rλ).

The verification of our next lemma is much more time consuming.

Lemma 6 Fix a λ ∈ P + and let T be a marginally large tableau of Cn type that satisfies
Condition-C. If f̃k(T ⊗ rλ) is nonzero, then the marginally large tableau f̃kT satisfies
Condition-C. Similarly, if ẽk(T ⊗ rλ) is nonzero, then the marginally large tableau ẽkT

satisfies Condition-C.

The proof of this lemma consists of a meticulous verification of whether f̃kT and ẽkT

satisfy every sub-condition of Condition-C, sometimes even further divided into multiple
situations. We will first present detailed explanations for two of these situations associated
with one sub-condition and then write the arguments for the rest of the cases more concisely.

Let us start with the sub-condition A[i, j ] with indices belonging to the range 1 ≤ i <

j ≤ n−1. An f̃∗ operation on T has the possibility of incrementing a t∗,∗ value by one, and
an ẽ∗ operation could decrement a t∗,∗ value by one. Since each Kashiwara operator action
has the possibility of changing at most one t∗,∗ value, the only possible manner in which the
resulting tableaux f̃∗T or ẽ∗T may not satisfy A[i, j ] is for one of the following four events
to occur through the Kashiwara operator action: (a) ti,j is incremented by an f̃∗ action, (b)
ti+1,j−1 is incremented by an f̃∗ action, (c) ti+1,j+1 is decremented by an ẽ∗ action, (d)
ti+1,j̄ is decremented by an ẽ∗ action.

We now focus on the situation in which Event-(a) has occurred. Our goal is to show that
such a situation can only be possible when the inequality A[i, j ], which is assumed for T ,
is a strict inequality, so that the new A[i, j ] expression for f̃∗T , which simply has the ti,j of
the original expression replaced by ti,j +1, is satisfied. This needs to be done for all choices
of indices satisfying 1 ≤ i < j ≤ n − 1.

Let us first work under the assumption of j > i + 1. An increase in ti,j is possible only

if Kashiwara operator f̃j−1 was used and it converted a j − 1
i

into a j
i
. Through an

application of the tensor product rule, one can argue that the position of this action implies
that the numbers of various boxes in T satisfy

# j
i+1

+ # j − 1
i+1

< # j̄
i+1

+ # j − 1
i
. (15)

To actually verify this claim, one must reference the crystal structure (5), and work with the
tensor product rule variant that deals with the signatures and the canceling of (+,−)-pairs.
We clarify that the occurrence of f̃j−1 : j − 1

i
�→ j

i
implies, not only (15), but also
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# j − 1
i+1

< # j − 1
i

and many other similar relations, but that the arguments for the

current case only calls for (15). Now, relation (15) may be rewritten in terms of the t∗,∗
values as

ti+1,j − ti+1,j+1 + ti+1,j−1 − ti+1,j−2 + 1 ≤ ti+1,j̄ − ti+1,j−1 + ti,j−1 − ti,j . (16)

Recalling our temporary assumption of i < j − 1, we can combine this with A[i, j − 1]
for T , which is

ti,j−1 + ti+1,j−2 ≤ λ(hi) + ti+1,j + ti+1,j−1, (17)

to conclude
(ti,j + 1) + ti+1,j−1 ≤ λ(hi) + ti+1,j+1 + ti+1,j̄ . (18)

Similarly, in the j = i + 1 case, an increase of ti,i+1 must be associated with the

f̃i : i
i
�→ i + 1

i
(19)

action. Recalling (13), we can argue through the tensor product rule that the position of f̃i

action implies

ϕi(T ) = ϕ̄i(T ) − shape(T )(hi) = (1 + ti+1,i+2 + ti+1,i+1) − (1 + ti,i+1)

= ti+1,i+2 + ti+1,i+1 − ti,i+1.
(20)

On the other hand, the assumption of f̃i (T ⊗ rλ) being nonzero implies that f̃i has acted on
the first component, so that the tensor product rule implies

ϕi(T ) > εi(rλ) = −λ(hi). (21)

Combining the two relations, we can claim

ti,i+1 + 1 ≤ λ(hi) + ti+1,i+2 + ti+1,i+1, (22)

which is the statement A[i, i + 1] for f̃iT .
The discussion given so far shows that f̃∗T satisfies A[i, j ], assuming f̃∗(T ⊗ rλ) is

nonzero, for the case when T �→ f̃∗T increments ti,j . The reader that understands the
arguments given above should be able to reproduce the above two proof segments from the
following condensed expressions.
A[i, j ]: ti,j ↑ (j > i + 1)

1. f̃j−1 : j − 1
i
�→ j

i

2. # j
i+1

+ # j − 1
i+1

< # j̄
i+1

+ # j − 1
i

3. A[i, j − 1]
A[i, j ]: ti,j ↑ (j = i + 1)

1. f̃i : i
i
�→ i + 1

i
2. ϕi(T ) = ti+1,i+2 + ti+1,i+1 − ti,i+1
3. ϕi(T ) > εi(rλ)

The first line describes the targeted inequality and the situation being considered. The
above two examples require one to focus on the situation where the ti,j appearing in A[i, j ]
is incremented through a Kashiwara operator action. This situation is associated with the
more specific operation described by the first item. The position of Kashiwara operator
action implies that the second item must be true. After rewriting the second item in terms
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of t∗,∗, it can be combined with the assumption stated by the third item, and the resulting
inequality will be that the targeted inequality still holds true when ti,j is replaced by ti,j +1.

The rest of the proof for Lemma 6 is given below in the condensed form, with occasional
brief extra explanations.
A[i, j ]: ti+1,j−1 ↑
0. Since ti+1,ī is always zero, it suffices to treat just the j > i + 1 case.

1. f̃j−1 : j̄
i+1

�→ j − 1
i+1

2. # j
i+1

< # j̄
i+1

3. B[i, j ]
A[i, j ]: ti+1,j+1 ↓
1. ẽj : j + 1

i+1
�→ j

i+1

2. # j + 1
i+1

+ # j
i
< # j + 1

i+1
+ # j̄

i+1
3. A[i, j + 1]
The j < n−1 and j = n−1 cases need to be handled separately, when rewriting the above
second item into an inequality involving t∗,∗ terms.
A[i, j ]: ti+1,j̄ ↓

1. ẽj : j̄
i+1

�→ j + 1
i+1

2. # j
i
< # j̄

i+1
3. B[i, j + 1]
A[i, n]: ti,n ↑ (i < n − 1)

1. f̃n−1 : n − 1
i
�→ n

i

2. # n − 1
i+1

+ # n
i+1 < # n − 1

i
+ # n̄

i+1
3. A[i, n − 1]
A[i, n]: ti,n ↑ (i = n − 1)

1. f̃n−1 : n − 1
n−1

�→ n
n−1

2. ϕn−1(T ) = 2tn,n̄ − tn−1,n

3. ϕn−1(T ) > εn−1(rλ)

A[i, n]: ti+1,n−1 ↑
0. Since tn,n−1 is always zero, it suffices to treat just the i < n − 1 case.

1. f̃n−1 : n̄
i+1 �→ n − 1

i+1

2. # n
i+1 < # n̄

i+1
3. B[i, n]
A[i, n]: ti+1,n̄ ↓
1. ẽn : n̄

i+1 �→ n
i+1

2. # n
i
< # n̄

i+1
3. C[i, n]
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The calculations for this case are slightly tricky. The second item is easily seen to be
equivalent to ti,n − ti,n̄ < ti+1,n̄ − ti+1,n−1, but this must be written in the form 2ti,n −
2ti,n̄ + 2ti+1,n−1 ≤ 2(ti+1,n̄ − 1) before being combined with C[i, n], for one to arrive at
ti,n + ti+1,n−1 ≤ λ(hi) + 2(ti+1,n̄ − 1).
B[i, j ]: ti,j ↑
1. f̃j−1 : j − 1

i
�→ j

i

2. # j − 1
i+1

< # j − 1
i

3. A[i, j − 1]
B[i, j ]: ti+1,j ↓
1. ẽj−1 : j

i+1
�→ j − 1

i+1

2. # j̄
i+1

< # j
i+1

3. A[i, j ]
Relations involving t∗,∗ need to be written separately for the j < n and j = n cases.
C[i, j ]: ti,j+1 ↑
1. f̃j : j

i
�→ j + 1

i

2. # j̄
i+1

< # j
i

3. D[i, j ]
C[i, j ]: ti,j̄ ↑

1. f̃j : j + 1
i
�→ j̄

i

2. # j + 1
i
+ # j̄

i+1
< # j + 1

i
+ # j

i
3. C[i, j + 1]
Relations involving t∗,∗ need to be written separately for the j < n−1 and j = n−1 cases.
C[i, j ]: ti,j ↓
1. ẽj−1 : j

i
�→ j − 1

i

2. # j̄
i
< # j

i
3. D[i, j − 1]
C[i, j ]: ti+1,j−1 ↓
0. Since ti+1,ī is always zero, it suffices to treat of just the j > i + 1 case.

1. ẽj−1 : j − 1
i+1

�→ j̄
i+1

2. # j − 1
i
+ # j̄

i
< # j − 1

i+1
+ # j

i
3. C[i, j − 1]
C[i, n]: ti,n̄ ↑
1. f̃n : n

i
�→ n̄

i

2. # n̄
i+1 < # n

i
3. A[i, n]



Crystal B(λ) as a Subset of the Tableau Description of B(∞) for the Classical Lie Algebra Types 149

The calculations for this case are slightly tricky. The second item is easily seen to be equiv-
alent to ti+1,n̄ − ti+1,n−1 < ti,n − ti,n̄, but this must be written in the form 2(ti,n̄ + 1) ≤
2ti,n − 2ti+1,n̄ + 2ti+1,n−1, before being combined with A[i, n], for one to arrive at
2(ti,n̄ + 1) ≤ λ(hi) + ti,n + ti+1,n−1.
C[i, n]: ti,n ↓
1. ẽn−1 : n

i
�→ n − 1

i

2. # n̄
i
< # n

i
3. D[i, n − 1]
C[i, n]: ti+1,n−1 ↓
0. Since tn,n−1 is always zero, it suffices to treat just the i < n − 1 case.

1. ẽn−1 : n − 1
i+1

�→ n̄
i+1

2. # n − 1
i
+ # n̄

i
< # n − 1

i+1
+ # n

i

3. C[i, n − 1]
D[i, j ]: ti,j̄ ↑

1. f̃j : j + 1
i
�→ j̄

i

2. # j + 1
i
< # j + 1

i
3. C[i, j + 1]
Relations involving t∗,∗ need to be written separately for the j < n−1 and j = n−1 cases.
D[i, j ]: ti+1,j̄ ↓
0. Since ti+1,ī is always zero, it suffices to treat just the j > i case.

1. ẽj : j̄
i+1

�→ j + 1
i+1

2. # j
i
< # j̄

i+1
3. C[i, j ]
D[n, n]: tn,n̄ ↑
1. f̃n : n

n
�→ n̄

n
2. ϕn(T ) = −tn,n̄

3. ϕn(T ) > εn(rλ)

This completes the proof of Lemma 6, and our main result for the Cn type follows directly
from the two lemmas we have prepared.

Theorem 7 Let T (∞)λ be the set of all marginally large tableaux of Cn type that
satisfy Condition-C, and let T (∞)λ = {T ⊗ rλ | T ∈ T (∞)λ}. Then, T (∞)λ is
the connected component of the crystal T (∞) ⊗ Rλ, containing the maximal ele-
ment T∞ ⊗ rλ of weight λ, and is hence isomorphic to the irreducible highest weight
crystal B(λ).

Proof The element T∞⊗rλ clearly belongs to T (∞)λ, and the closedness of T (∞)λ under
Kashiwara operator actions is ensured by Lemma 6. As for the connectedness, note that
Lemma 5 implies through the tensor product rule that an ẽk action on an element of T (∞)λ
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will always be applied to the first component. Since T∞ is the unique maximal element of
T (∞), every element of T (∞)λ must be connected to T∞ ⊗ rλ through ẽk actions.

5 Bn Type

The set of conditions to be applied to marginally large tableaux of Bn type is as follows.
Condition-B

A[i, j ] : ti,j + ti+1,j̄+ ≤ λ(hi) + ti+1,j+ + ti+1,j̄ (1 ≤ i < j ≤ n)

B[i, j ] : ti,j ≤ λ(hi) + ti+1,j (1 ≤ i < i + 1 < j ≤ n)

C[i, j ] : ti,j+ + ti,j̄ ≤ λ(hi) + ti,j + ti+1,j̄+ (1 ≤ i < j ≤ n)

D[i, j ] : ti,j̄ ≤ λ(hi) + ti+1,j̄ (1 ≤ i ≤ j ≤ n − 1)

D[n, n] : tn,0 + tn,n̄ ≤ λ(hn)

Note that, as with Condition-C, conditions A[i, j ] and B[i, j ] for the Bn type may also be
merged into

ti,j ≤ λ(hi) + min
{
ti+1,j+ + # j̄

i+1
, ti+1,j

}
(1 ≤ i < j ≤ n). (23)

However, the combination of A[i, n] and C[i, n], results in

ti,n+ + ti,n̄ ≤ 2λ(hi) + ti+1,n+ + ti+1,n̄, (1 ≤ i ≤ n − 1), (24)

which is not compatible with D[n, n], so that C[i, j ] and D[i, j ] cannot be combined into a
single expression as naturally as in the Cn case.

Understanding the detailed proofs to be given below will be easier, when the following
slightly longer presentation of Condition-B is referenced.

A[i, j ] : ti,j + ti+1,j−1 ≤ λ(hi) + ti+1,j+1 + ti+1,j̄ (1 ≤ i < j ≤ n − 1)

A[i, n] : ti,n + ti+1,n−1 ≤ λ(hi) + ti+1,0 + ti+1,n̄ (1 ≤ i ≤ n − 1)

B[i, j ] : ti,j ≤ λ(hi) + ti+1,j (1 ≤ i < i + 1 < j ≤ n)

C[i, j ] : ti,j+1 + ti,j̄ ≤ λ(hi) + ti,j + ti+1,j−1 (1 ≤ i < j ≤ n − 1)

C[i, n] : ti,0 + ti,n̄ ≤ λ(hi) + ti,n + ti+1,n−1 (1 ≤ i ≤ n − 1)

D[i, j ] : ti,j̄ ≤ λ(hi) + ti+1,j̄ (1 ≤ i ≤ j ≤ n − 1)

D[n, n] : tn,0 + tn,n̄ ≤ λ(hn)

As in the previous section, we provide two lemmas from which our main result for the
Bn type follows.

Lemma 8 If a marginally large tableau T of Bn type satisfies Condition-B , then ϕi(T ) ≥
εi(rλ), for all i ∈ I .

Proof Note that εn(rλ) = −λ(hn) and that

ϕn(T ) = ϕ̄n(T ) − shape(T )(hn) ≥ (2 + tn,0 − tn,n̄) − 2(1 + tn,0) = −(tn,0 + tn,n̄),

so that D[n, n] implies ϕn(T ) ≥ εn(rλ). Similarly, the fact εn−1(rλ) = −λ(hn−1) and the
observation

ϕn−1(T ) = ϕ̄n−1(T )−shape(T )(hn−1) ≥ (1+tn,0+tn,n̄)−(1+tn−1,n) = tn,0+tn,n̄−tn−1,n
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can be combined with A[n − 1, n], which is tn−1,n ≤ λ(hn−1) + tn,0 + tn,n̄, to bring out
ϕn−1(T ) ≥ εn−1(rλ). For the remaining 1 ≤ i ≤ n − 2 cases, the final sentence of the proof
of Lemma 5 holds true, word for word. In all cases, we have ϕi(T ) ≥ εi(rλ).

The next lemma provides the closedness of Condition-B under the Kashiwara operator
actions.

Lemma 9 Fix a λ ∈ P + and let T be a marginally large tableau of Bn type that satisfies
Condition-B . If f̃k(T ⊗ rλ) is nonzero, then the marginally large tableau f̃kT satisfies
Condition-B . Similarly, if ẽk(T ⊗ rλ) is nonzero, then the marginally large tableau ẽkT

satisfies Condition-B .

As in the Cn case, the proof of this lemma consists of a case by case verification of
whether f̃kT and ẽkT satisfy every sub-condition of Condition-B . However, the proof
details for many of the cases are identical to the corresponding cases previously discussed
for the Cn type.
A[i, j ]: ti,j ↑ (j > i + 1)

Proof is identical to the corresponding Cn case.
A[i, j ]: ti,j ↑ (j = i + 1)

Proof is identical to the corresponding Cn case.
A[i, j ]: ti+1,j−1 ↑

Proof is identical to the corresponding Cn case.
A[i, j ]: ti+1,j+1 ↓

Proof is identical to the corresponding Cn case.
A[i, j ]: ti+1,j̄ ↓

Proof is identical to the corresponding Cn case.
A[i, n]: ti,n ↑ (i < n − 1)

Proof is identical to the corresponding Cn case.
A[i, n]: ti,n ↑ (i = n − 1)

1. f̃n−1 : n − 1
n−1

�→ n
n−1

2. ϕn−1(T ) = tn,0 + tn,n̄ − tn−1,n

3. ϕn−1(T ) > εn−1(rλ)

A[i, n]: ti+1,n−1 ↑
Proof is identical to the corresponding Cn case.

A[i, n]: ti+1,0 ↓
1. ẽn : 0

i+1 �→ n
i+1

2. 2# n
i
+ # 0

i
< # 0

i+1 + 2# n̄
i+1 and # 0

i+1 = 1
3. C[i, n]
A[i, n]: ti+1,n̄ ↓
1. ẽn : n̄

i+1 �→ 0
i+1

2. 2# n
i
+ # 0

i
< # 0

i+1
+ 2# n̄

i+1
and # 0

i+1
= 0

3. C[i, n]
B[i, j ]: ti,j ↑

Proof is identical to the corresponding Cn case.
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B[i, j ]: ti+1,j ↓
Proof is identical to the corresponding Cn case.

C[i, j ]: ti,j+1 ↑
Proof is identical to the corresponding Cn case.

C[i, j ]: ti,j̄ ↑
Proof is identical to the corresponding Cn case.

C[i, j ]: ti,j ↓
Proof is identical to the corresponding Cn case.

C[i, j ]: ti+1,j−1 ↓
Proof is identical to the corresponding Cn case.

C[i, n]: ti,0 ↑
1. f̃n : n

i
�→ 0

i

2. # 0
i+1

+ 2# n̄
i+1

< 2# n
i
+ # 0

i
and # 0

i
= 0

3. A[i, n]
C[i, n]: ti,n̄ ↑
1. f̃n : 0

i
�→ n̄

i

2. # 0
i+1 + 2# n̄

i+1 < 2# n
i
+ # 0

i
and # 0

i
= 1

3. A[i, n]
C[i, n]: ti,n ↓

Proof is identical to the corresponding Cn case.
C[i, n]: ti+1,n−1 ↓

Proof is identical to the corresponding Cn case.
D[i, j ]: ti,j̄ ↑

Proof is identical to the corresponding Cn case.
D[i, j ]: ti+1,j̄ ↓

Proof is identical to the corresponding Cn case.
D[n, n]: tn,0 ↑
1. f̃n : n

n
�→ 0

n

2. ϕn(T ) = −(tn,0 + tn,n̄) and # 0
n

= 0
3. ϕn(T ) > εn(rλ)

D[n, n]: tn,n̄ ↑
1. f̃n : 0

n
�→ n̄

n

2. ϕn(T ) = −(tn,0 + tn,n̄) and # 0
n

= 1
3. ϕn(T ) > εn(rλ)

This completes the proof of Lemma 9. As before, our main result for the Bn

type follows directly from the previous two lemmas, with a proof identical to that of
Theorem 7.

Theorem 10 Let T (∞)λ be the set of all marginally large tableaux of Bn type that
satisfy Condition-B , and let T (∞)λ = {T ⊗ rλ | T ∈ T (∞)λ}. Then, T (∞)λ is
the connected component of the crystal T (∞) ⊗ Rλ, containing the maximal ele-
ment T∞ ⊗ rλ of weight λ, and is hence isomorphic to the irreducible highest weight
crystal B(λ).
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6 Dn+1 Type

The set of conditions to be applied to marginally large tableaux of Dn+1 type is as follows.
Condition-D

A[i, j ] : ti,j + ti+1,j−1 ≤ λ(hi) + ti+1,j+1 + ti+1,j̄ (1 ≤ i < j ≤ n − 1)

A[i, n] : ti,n + ti+1,n−1 ≤ λ(hi) + ti+1,n+1 + ti+1,n+1(1 ≤ i ≤ n − 1)

B[i, j ] : ti,j ≤ λ(hi) + ti+1,j (1 ≤ i < i + 1 < j ≤ n)

C[i, j ] : ti,j+1 + ti,j̄ ≤ λ(hi) + ti,j + ti+1,j−1 (1 ≤ i < j ≤ n − 1)

C[i, n] : ti,n+1 + ti,n+1 ≤ λ(hi) + ti,n + ti+1,n−1 (1 ≤ i ≤ n − 1)

D[i, j ] : ti,j̄ ≤ λ(hi) + ti+1,j̄ (1 ≤ i ≤ j ≤ n − 1)

E[i, n + 1] : ti,n+1 ≤ λ(hi) + ti+1,n+1 (1 ≤ i ≤ n − 1)

E[n, n + 1] : tn,n+1 ≤ λ(hn)

F[i, n + 1] : ti,n+1 ≤ λ(hi) + ti+1,n+1 (1 ≤ i ≤ n − 1)

F[n, n + 1] : tn,n+1 ≤ λ(hn+1)

Let us provide the two lemmas from which our main result for the Dn+1 type will follow.

Lemma 11 If a marginally large tableau T of Dn+1 type satisfies Condition-D, then
ϕi(T ) ≥ εi(rλ), for all i ∈ I .

Proof The observations

ϕn+1(T ) ≥ (1 + # n + 1
n
) − (1 + # n + 1

n
+ # n + 1

n
+ tn,n̄) = −tn,n+1

ϕn(T ) ≥ (1 + # n + 1
n
) − (1 + # n + 1

n
+ # n + 1

n
+ tn,n̄) = −tn,n+1

may be combined with F[n, n + 1] and E[n, n + 1] to show ϕn+1(T ) ≥ εn+1(rλ) and
ϕn(T ) ≥ εn(rλ), respectively. The observation

ϕn−1(T ) ≥ (1 + tn,n+1 + tn,n+1) − (1 + tn−1,n) = tn,n+1 + tn,n+1 − tn−1,n

may be combined with A[n − 1, n] to show ϕn−1(T ) ≥ εn−1(rλ). For the remaining 1 ≤
i ≤ n − 2 cases, the final sentence of the proof of Lemma 5 holds true, word for word. In
all cases, we have ϕi(T ) ≥ εi(rλ).

The closedness of Condition-D under the Kashiwara operator actions is given next.

Lemma 12 Fix a λ ∈ P + and let T be a marginally large tableau of Dn+1 type that
satisfies Condition-D. If f̃k(T ⊗ rλ) is nonzero, then the marginally large tableau f̃kT

satisfies Condition-D. Similarly, if ẽk(T ⊗ rλ) is nonzero, then the marginally large tableau
ẽkT satisfies Condition-D.

Proofs for some of the cases are identical to the corresponding proofs for the Cn type.
A[i, j ]: ti,j ↑ (j > i + 1)

Proof is identical to the corresponding Cn case.
A[i, j ]: ti,j ↑ (j = i + 1)

Proof is identical to the corresponding Cn case.
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A[i, j ]: ti+1,j−1 ↑
Proof is identical to the corresponding Cn case.

A[i, j ]: ti+1,j+1 ↓
Proof is identical to the corresponding Cn case.

A[i, j ]: ti+1,j̄ ↓
Proof is identical to the corresponding Cn case.

A[i, n]: ti,n ↑ (i < n − 1)

Proof is identical to the corresponding Cn case.
A[i, n]: ti,n ↑ (i = n − 1)

1. f̃n−1 : n − 1
n−1

�→ n
n−1

2. ϕn−1(T ) = tn,n+1 + tn,n+1 − tn−1,n

3. ϕn−1(T ) > εn−1(rλ)

A[i, n]: ti+1,n−1 ↑
Proof is identical to the corresponding Cn case.

A[i, n]: ti+1,n+1 ↓ (# n + 1
i+1

> 0)

1. ẽn : n + 1
i+1

�→ n
i+1

2. # n
i
+ # n + 1

i
< # n + 1

i+1
+ # n̄

i+1
3. E[i, n + 1]
A[i, n]: ti+1,n+1 = ti+1,n̄ ↓ (# n + 1

i+1
= 0)

1. ẽn : n̄
i+1 �→ n + 1

i+1

2. # n
i
+ # n + 1

i
< # n̄

i+1
3. E[i, n + 1]
A[i, n]: ti+1,n+1 ↓ (# n + 1

i+1
> 0)

1. ẽn+1 : n + 1
i+1

�→ n
i+1

2. # n
i
+ # n + 1

i
< # n + 1

i+1
+ # n̄

i+1
3. F[i, n + 1]
A[i, n]: ti+1,n+1 = ti+1,n̄ ↓ (# n + 1

i+1
= 0)

1. ẽn+1 : n̄
i+1 �→ n + 1

i+1

2. # n
i
+ # n + 1

i
< # n̄

i+1
3. F[i, n + 1]

B[i, j ]: ti,j ↑
Proof is identical to the corresponding Cn case.

B[i, j ]: ti+1,j ↓
Proof is identical to the corresponding Cn case.

C[i, j ]: ti,j+1 ↑
Proof is identical to the corresponding Cn case.

C[i, j ]: ti,j̄ ↑
Proof is identical to the corresponding Cn case.
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C[i, j ]: ti,j ↓
Proof is identical to the corresponding Cn case.

C[i, j ]: ti+1,j−1 ↓
Proof is identical to the corresponding Cn case.

C[i, n]: ti,n+1 ↑ (# n + 1
i
= 0)

1. f̃n : n
i
�→ n + 1

i

2. # n + 1
i+1

+ # n̄
i+1 < # n

i
= ti,n − ti,n+1

3. F[i, n + 1]
C[i, n]: ti,n+1 = ti,n̄ ↑ (# n + 1

i
> 0)

1. f̃n : n + 1
i
�→ n̄

i

2. # n + 1
i+1

+ # n̄
i+1

< # n
i
+ # n + 1

i
= ti,n − ti,n̄

3. F[i, n + 1]
C[i, n]: ti,n+1 ↑ (# n + 1

i
= 0)

1. f̃n+1 : n
i
�→ n + 1

i

2. # n + 1
i+1

+ # n̄
i+1

< # n
i
= ti,n − ti,n+1

3. E[i, n + 1]
C[i, n]: ti,n+1 = ti,n̄ ↑ (# n + 1

i
> 0)

1. f̃n+1 : n + 1
i
�→ n̄

i

2. # n + 1
i+1

+ # n̄
i+1

< # n
i
+ # n + 1

i
= ti,n − ti,n̄

3. E[i, n + 1]
C[i, n]: ti,n ↓

Proof is identical to the corresponding Cn case.
C[i, n]: ti+1,n−1 ↓

Proof is identical to the corresponding Cn case.
D[i, j ]: ti,j̄ ↑

Proof is identical to the corresponding Cn case.
D[i, j ]: ti+1,j̄ ↓

Proof is identical to the corresponding Cn case.

E[i, n + 1]: ti,n+1 ↑ (# n + 1
i
= 0)

1. f̃n : n
i
�→ n + 1

i

2. # n + 1
i+1

+ # n̄
i+1 < # n

i
= ti,n − ti,n+1

3. A[i, n]
E[i, n + 1]: ti,n+1 = ti,n̄ ↑ (# n + 1

i
> 0)

1. f̃n : n + 1
i
�→ n̄

i

2. # n + 1
i+1

+ # n̄
i+1 < # n

i
+ # n + 1

i
= ti,n − ti,n̄
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3. A[i, n]
E[i, n + 1]: ti+1,n+1 ↓ (# n + 1

i+1
> 0)

1. ẽn+1 : n + 1
i+1

�→ n
i+1

2. # n
i
+ # n + 1

i
< # n + 1

i+1
+ # n̄

i+1
3. C[i, n]
E[i, n + 1]: ti+1,n+1 = ti+1,n̄ ↓ (# n + 1

i+1
= 0)

1. ẽn+1 : n̄
i+1 �→ n + 1

i+1

2. # n
i
+ # n + 1

i
< # n̄

i+1
3. C[i, n]
E[n, n + 1]: tn,n+1 ↑ (# n + 1

n
= 0)

1. f̃n : n
n

�→ n + 1
n

2. ϕn(T ) = −tn,n+1
3. ϕn(T̄ ) > εn(rλ)

E[n, n + 1]: tn,n+1 = tn,n̄ ↑ (# n + 1
n

> 0)

1. f̃n : n + 1
n

�→ n̄
n

2. ϕn(T ) = −tn,n+1
3. ϕn(T̄ ) > εn(rλ)

F[i, n + 1]: ti,n+1 ↑ (# n + 1
i
= 0)

1. f̃n+1 : n
i
�→ n + 1

i

2. # n + 1
i+1

+ # n̄
i+1

< # n
i
= ti,n − ti,n+1

3. A[i, n]
F[i, n + 1]: ti,n+1 = ti,n̄ ↑ (# n + 1

i
> 0)

1. f̃n+1 : n + 1
i
�→ n̄

i

2. # n + 1
i+1

+ # n̄
i+1

< # n
i
+ # n + 1

i
= ti,n − ti,n̄

3. A[i, n]
F[i, n + 1]: ti+1,n+1 ↓ (# n + 1

i+1
> 0)

1. ẽn : n + 1
i+1

�→ n
i+1

2. # n
i
+ # n + 1

i
< # n + 1

i+1
+ # n̄

i+1
3. C[i, n]
F[i, n + 1]: ti+1,n+1 = ti+1,n̄ ↓ (# n + 1

i+1
= 0)

1. ẽn : n̄
i+1 �→ n + 1

i+1



Crystal B(λ) as a Subset of the Tableau Description of B(∞) for the Classical Lie Algebra Types 157

2. # n
i
+ # n + 1

i
< # n̄

i+1
3. C[i, n]
F[n, n + 1]: tn,n+1 ↑ (# n + 1

n
= 0)

1. f̃n+1 : n
n

�→ n + 1
n

2. ϕn+1(T̄ ) = −tn,n+1

3. ϕn+1(T̄ ) > εn+1(rλ)

F[n, n + 1]: tn,n+1 = tn,n̄ ↑ (# n + 1
n

> 0)

1. f̃n+1 : n + 1
n

�→ n̄
n

2. ϕn+1(T̄ ) = −tn,n+1

3. ϕn+1(T̄ ) > εn+1(rλ)

This completes the proof of Lemma 12, and we can state our main result for the Dn+1
type.

Theorem 13 Let T (∞)λ be the set of all marginally large tableaux of Dn+1 type that satisfy
Condition-D, and let T (∞)λ = {T ⊗ rλ | T ∈ T (∞)λ}. Then, T (∞)λ is the connected
component of the crystal T (∞)⊗Rλ, containing the maximal element T∞ ⊗ rλ of weight λ,
and is hence isomorphic to the irreducible highest weight crystal B(λ).

7 Description of B(λ) Through the Kashiwara Embedding

In the previous sections, we realized B(λ) by describing the connected component within
the crystal graphs of T (∞) ⊗ Rλ that contains the element T∞ ⊗ rλ. In this section, we
give another realization of B(λ) by expressing it as a subset of the image of a Kashiwara
embedding for B(∞). There will be a trivial correspondence between this subset and our
previous connected component.

Kashiwara [13] showed the existence of a unique strict crystal embedding

	ι : B(∞) ↪→ B(∞) ⊗ Bik ⊗ Bik−1 ⊗ · · · ⊗ Bi1, (25)

for certain sequences ι = (ik, ik−1, . . . , i1) of indices from I , and we will refer to this as the
Kashiwara embedding. Here, the crystals Bi = {bi(m) | m ∈ Z}, appearing on the righthand
side, are defined for each i ∈ I . The Kashiwara operators f̃i and ẽi act on elements of Bi by
decrementing or incrementing the inner index m, and operators f̃j and ẽj of non-matching
indices j �= i map every element of Bi to zero. The exact crystal structure will not be
required for our discussion.

Cliff [4] fixed an explicit choice of sequence ι for each of the classical Lie algebra types
and described the full image of the Kashiwara embedding 	ι to give a realization of B(∞).
The notion of large tableaux for the classical types, which the work introduced, took an
important part in this description. To express the image 	ι(b) for an element b ∈ B(∞), the
crystal element b was first represented as a large tableau and a set of integers that give the
numbers of certain boxes appearing in this tableau were defined. Then, the element 	ι(b)

could be written in the form

b∞ ⊗ bik (mk) ⊗ · · · ⊗ bi1(m1), (26)
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where the mi values were determined by the set of box-count integers. Finally,
since the first tensor product term b∞ of 	ι(b) was always fixed, the image
	ι

(
B(∞)

)
could be described through a set of relations concerning the

mi indices.
The tableau representation of b ∈ B(∞) used by [4] in the process described above

is essentially identical to that used by [7] for the tableau realization T (∞) of B(∞). In
fact, when the differences contained in the details are ignored, the relationship between
the two works can be described as follows. The former work [4] was satisfied with
using any choice of large tableau for each b ∈ B(∞) and used the tableau repre-
sentation only as a tool for expressing 	ι(b). On the other hand, the later work [7]
focused on the tableau representations themselves, specified for the marginally large
tableau to be used for each b, gathered them into one set T (∞), and gave the set a
crystal structure.

Once this connection between [4] and [7] is understood, the result of [4] that realizes
B(∞) as the image of the Kashiwara embedding 	ι can easily be rewritten in the language
of this paper. Below, we give concise presentations of these for the three classical types
considered in this paper.

• Cn type

1. ι = (ι1, . . . , ιn−1, ιn) with ιi = (i, . . . , n − 1, n, n − 1, . . . , i)

2. βi = bi(−ti,i)⊗· · ·⊗bn−1(−ti,n−1)⊗bn(−ti,n)⊗bn−1(−ti,n)⊗bn−2(−ti,n−1)⊗
· · · ⊗ bi(−ti,i+1)

3. 0 ≤ ti,i ≤ ti,i+1 ≤ · · · ≤ ti,n ≤ ti,n ≤ ti,n−1 ≤ · · · ≤ ti,i+1

• Bn type

1. ι = (ι1, . . . , ιn−1, ιn) with ιi = (i, . . . , n − 1, n, n − 1, . . . , i)

2. βi = bi(−ti,i ) ⊗ · · · ⊗ bn−1(−ti,n−1) ⊗ bn(−(ti,0 + ti,n)) ⊗ bn−1(−ti,n) ⊗
bn−2(−ti,n−1) ⊗ · · · ⊗ bi(−ti,i+1)

3. 0 ≤ ti,i ≤ ti,i+1 ≤ · · · ≤ ti,n−1 ≤ ti,0+ti,n
2 ≤ ti,n ≤ ti,n−1 ≤ · · · ≤ ti,i+1

• Dn+1 type

1. ι = (ι1, . . . , ιn−1, ιn) with ιi = (i, . . . , n − 1, n + 1, n, n − 1, . . . , i) and ιn =
(n + 1, n)

2. βi = bi(−ti,i ) ⊗ · · · ⊗ bn−2(−ti,n−2) ⊗ bn−1(−ti,n−1) ⊗ bn+1(−ti,n+1) ⊗
bn(−ti,n+1) ⊗ bn−1(−ti,n) ⊗ · · · ⊗ bi(−ti,i+1) and βn = bn+1(−tn,n+1) ⊗
bn(−tn,n+1)

3. 0 ≤ ti,i ≤ · · · ≤ ti,n−1 ≤ ti,n = min
(
ti,n+1, ti,n+1

) ≤ max
(
ti,n+1, ti,n+1

) ≤ ti,n ≤
· · · ≤ ti,i+1 and tn,n = min

(
tn,n+1, tn,n+1

) ≤ max
(
tn,n+1, tn,n+1

)

Some explanations need to be given. The first item for each Lie algebra type
gives the sequence ι, broken into sub-sequences ιi , that were used by [4]. For
any sequence η of indices from I , there is a corresponding product of crys-
tals Bk that could naturally be denoted as Bη. Each βi given by the second
items should be interpreted as an element of the crystal product Bιi . Finally, the
image 	ι

(
B(∞)

)
for each Lie algebra type is being stated as the set of elements

b∞ ⊗ β1 ⊗ β2 ⊗ · · · ⊗ βn satisfying the conditions listed by the corresponding
third item.

The following claim, written with the notation explained in this section, is now a direct
corollary to Theorem 7, Theorem 10, and Theorem 13.
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Corollary 14 The image of the connected component in B(∞) ⊗ Rλ containing b∞ ⊗ rλ,
under the strict crystal embedding

	ι ⊗ id : B(∞) ⊗ Rλ ↪→ B(∞) ⊗ Bι1 ⊗ Bι2 ⊗ · · · ⊗ Bιn ⊗ Rλ,

is the set of elements b∞ ⊗ β1 ⊗ β2 ⊗ · · ·⊗ βn ⊗ rλ, where each βi satisfies one of the three
third items previously listed and one of Condition-C, Condition-B , and Condition-D, as is
appropriate for the Lie algebra type under consideration.

Since the connected component mentioned in this claim is isomorphic to B(λ), we have
obtained another description of crystal B(λ).

8 Discussion

Let us briefly explain how the various conditions that specify our realizations of B(λ) were
obtained.

The most direct approach to obtaining our tableau description of B(λ) would be to
work out examples of the appropriate connected components within the crystal graph
of T (∞)⊗Rλ for specific choices of λ ∈ P + and to generalize whatever patterns that could
be recognized. We had tried this approach, but were not successful in obtaining meaningful
results. Examples that were small enough for us to hand-compute were too small to contain
all characteristics of the general situation, and examples that were large enough, generated
through computer programming, were too complex for us to understand and extract patterns
from.

Our set of conditions were instead devised to make it possible to prove our lemmas.
Our experience with the An case allowed us to have some confidence in the presence of
a few of the conditions. These were the conditions that were, in some sense, related to
our three lemmas concerning the satisfaction of ϕi(T ) ≥ εi(rλ) properties, and accounted
for a very small part of our full set of conditions for any one type. The other conditions
were formulated so that the proof of closedness under Kashiwara operator actions could be
written down for the full set of conditions.

This was not a straightforward process, since the presence of one condition did not
imply the presence of another condition. The only arguments that could be used were in the
opposite direction, where a guessed condition could imply that a condition we had more
confidence in would be preserved under the Kashiwara operator actions. The full set of con-
ditions was obtained by incrementally adding one guessed condition at a time that would
enable us to prove that the existing conditions are preserved under the Kashiwara opera-
tor actions. In many of these steps, we were confronted with multiple conditions that were
equally reasonable in view of the conditions we had collected up to that point, and the whole
process was a tedious repetition of guessed trials and back stepping. Computer-generated
examples were occasionally helpful in ruling out incorrectly guessed conditions and in giv-
ing us confidence in any candidate for a full set of conditions, but they were of little use in
constructing the conditions themselves.

Our eventual success in discovering the correct full set of conditions is largely due to our
previous experience with the An case and the fact that the An-type basic crystal shares some
similarities with the basic crystals for our three targeted types. Attempts are currently being
made to extend the results of this paper to the exceptional finite simple Lie algebra types
that remain untreated. However, the basic crystals for these cases are extremely complicated
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in comparison to those cases that have been treated, and it is not clear at this point as to how
much can be achieved in this direction.
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