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Given a genus two Heegaard splitting for a nonprime 3-manifold, we define a special

subcomplex of the disk complex for one of the handlebodies of the splitting, and then

show that it is contractible. As applications, first we show that the complex of Haken

spheres for the splitting is contractible, which refines the results of Lei and Lei-Zhang.

Secondly, we classify all the genus two Heegaard splittings for nonprime 3-manifolds,

which is a generalization of the result of Montesinos–Safont. Finally, we show that the

mapping class group of the splitting, called the Goeritz group, is finitely presented by

giving its explicit presentation.

Introduction

Every closed orientable 3-manifold M can be decomposed into two handlebodies V and

W by cutting M along a closed orientable surface Σ embedded in it. This is called a

Heegaard splitting for the manifold M, and denoted by the triple (V, W;Σ). The surface

Σ is called a Heegaard surface and its genus is called the genus of the splitting. A
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separating 2-sphere P in M is called a Haken sphere for the splitting (V, W;Σ) if P

intersects the Heegaard surface Σ in a single essential circle. If (V, W;Σ) is a genus two

Heegaard splitting for M that admits a Haken sphere, then M is one of the 3-sphere, S2 ×
S1, lens spaces or their connected sums. In particular, if the manifold M is nonprime,

then M is a connected sum whose summands are lens spaces or S2 × S1.

In this paper, we study the genus two Heegaard splittings for nonprime

3-manifolds. Given a genus two Heegaard splitting (V, W;Σ) for a closed orientable

nonprime 3-manifold M, we define a special subcomplex of the disk complex for each of

the handlebodies V and W, which we will call the semi-primitive disk complex, and then

show that it is contractible. The semi-primitive disk complex is an analog of the primi-

tive disk complexes studied in the authors’ previous works [4–8, 19] to find presentations

of certain kinds of mapping class groups, including some Goeritz groups.

Understanding the structure of the semi-primitive disk complexes with their

properties, we produce several applications. First, we prove that the complex of

Haken spheres is contractible for the genus two Heegaard splitting for any nonprime

3-manifold. The complex of Haken spheres is the simplicial complex whose vertices are

isotopy classes of Haken spheres, and it has been an interesting problem to understand

the structure of it since Scharlemann [26] showed that the complex for the genus two

Heegaard splitting for the 3-sphere is connected. In Lei [20] and Lei-Zhang [21], it was

shown that the complexes of Haken spheres are connected for genus two Heegaard split-

tings for nonprime 3-manifolds. In Theorem 3.1 in this work, we refine their results in

an alternative way, showing that those complexes are actually contractible.

Secondly, we classify all the genus two Heegaard splittings for nonprime 3-

manifolds. Indeed, any nonprime 3-manifold M admits at most two different genus two

Heegaard splittings, and it is known from Montesinos–Safont [23] that, if M is the con-

nected sum of two lens spaces L(p, q1) and L(p, q2), then there exists a unique genus two

Heegaard surface for M up to homeomorphism if and only if q2
1 ≡ 1 or q2

2 ≡ 1 (mod p).

Including this result, we determine all the nonprime 3-manifolds that admit unique

Heegaard surfaces up to homeomorphism, which is stated in Theorem 4.2.

The final application is to obtain a presentation of the mapping class group of

a genus two Heegaard splitting for a non-Haken 3-manifold, using the semi-primitive

disk complex. Such a group is called a (genus two) Goeritz group. Precisely, the Goeritz

group of a Heegaard splitting (V, W;Σ) for a manifold M is the group of isotopy classes

of orientation-preserving homeomorphisms of M that preserve V and W setwise. In

Theorem 5.1 in this work, we show that the genus two Goeritz groups for any nonprime

3-manifolds are all finitely presented by giving their explicit presentations.
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The Goeritz groups have been interesting objects in the study of Heegaard

splittings. For example, some interesting questions on Goeritz groups were proposed

by Minsky in [11]. A Goeritz group will be “small” when the gluing map of the two

handlebodies that defines the Heegaard splitting is sufficiently complicated. Indeed,

Namazi [24] showed that the Goeritz group is actually a finite group when the Heegaard

splitting has “high” Hempel distance. Here, we just simply mention that the Hempel

distance is a measure of complexity of the gluing map that defines the splitting. We

refer to [14] for its precise definition. Namazi’s result is improved by Johnson in [16]

showing that the Goeritz group is finite if the Hempel distance of the splitting is at

least four. We refer the reader to [17, 18] for related topics. The Goeritz groups of Hee-

gaard splittings of low Hempel distance are not as “small” as in the case of the high

Hempel distance.

For example, it is easy to see that the Goeritz group of the genus g Heegaard

splitting for #g(S2 × S1), which is the double of the genus g handlebody V , is isomorphic

to the mapping class group of V . We note that the Hempel distance of this splitting

is zero. The mapping class group of a handlebody of genus at least two is, of course,

not finite. A finite generating set of this group is obtained by Suzuki [29] and its finite

presentation is obtained by Grasse [12] and Wajnryb [30] independently. See also [15, 22].

It is natural to ask if a given Goeritz group is finitely generated or presented,

and so finding a generating set or a presentation of it has been an important problem.

But beyond the case of #g(S2 × S1), the generating sets or the presentations of the groups

have been obtained only for few manifolds with their splittings of small genus. In the

case of the 3-sphere, it is known that the Goeritz group for the genus two splitting

is finitely presented from the works [1, 4, 10, 26]. Further, a finite presentation of the

Goeritz group of the genus two Heegaard splitting is obtained for each of the lens spaces

L(p, 1) in [5] and S2 × S1 in [7]. In addition, finite presentations of the genus two Goeritz

groups of some other lens spaces are given in [8]. For the higher genus Goeritz groups of

the 3-sphere and lens spaces, it is conjectured that they are all finitely presented but it

is still an open problem.

This paper is organized as follows. In Sections 1 and 2, we introduce semi-

primitive disks with their various properties, and then show that the semi-primitive disk

complexes are contractible, by giving an explicit description of them. In Section 3, the

complex of Haken spheres are shown to be contractible (Theorem 3.1), and in Section 4,

we give a classification of the genus two Heegaard splittings for nonprime 3-manifolds

(Theorem 4.2). In the final section, a finite presentation is given for the Goeritz group of

each nonprime 3-manifold with its genus two Heegaard splitting (Theorem 5.1).
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By disks, pairs of disks, triples of disks properly embedded in a handle-

body, we often mean their isotopy classes throughout the paper. Also, we often speak

of Haken spheres of a Heegaard splitting to mean their isotopy classes preserving

the Heegaard splitting. When we choose representatives of their isotopy classes, we

assume implicitly that they intersect each other minimally and transversely. More-

over, by homeomorphisms we often mean their isotopy classes when it is obvious

from context.

We use the standard notation of lens spaces as follows. Let V and W be ori-

ented solid tori. Let (m, l) be the pair of a meridian and a longitude of V . We orient

m and l in such a way that the pair (m, l) yields the orientation of ∂V induced by

that of V . The homology classes [m] and [l] of m and l induce a basis of H1(∂V). In

the same manner, we have the pair (m′, l ′) of a meridian and a longitude of W. The

lens space L(p, q) is a 3-manifold obtained by identifying the boundaries of V and W

using an orientation-reversing homeomorphism ϕ : ∂V → ∂W that induces an isomor-

phism ϕ∗ : H1(∂V) → H1(∂W) represented by
( q p

s −r

)
, where qr + ps = 1. In particular, ϕ

maps m′ to a (p, q)-curve with respect to (m, l) on ∂V , that is, ϕ∗[m′] = p[l] + q[m] in

H1(∂V). We note that the image of m by ϕ−1 is a (p, r)-curve with respect to (m′, l ′) on ∂W.

By definition, a lens space is equipped with a canonical orientation induced from those

of V and W. This orientation induces a canonical orientation of the connected sum of two

lens spaces. Throughout the paper, we will not regard S3 = L(1, 0) nor S2 × S1 = L(0, 1)

as lens spaces.

1 Semi-Primitive Disks

An element of a free group Z ∗ Z of rank 2 is said to be primitive if it is a member of

a generating pair of the group. Primitive elements of Z ∗ Z have been well-understood.

For example, we refer the reader to [25]. A key property of the primitive elements is that,

fixing a generating pair {x, y} of Z ∗ Z, any primitive element has a cyclically reduced

form which is a product of terms each of the form xε yn and xε yn+1, or else a product of

terms each of the form yεxn and yεxn+1, for some ε ∈ {1,−1} and some n∈ Z. The following

is a direct consequence of this property.

Lemma 1.1. Fix a generating pair {x, y} of Z ∗ Z. Let w be a cyclically reduced word

on {x, y}. If w contains both x and x−1, both y and y−1 or both x±2 and y±2 simultane-

ously, then the element represented by w is neither trivial nor a power of a primitive

element. �
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Let V be a genus two handlebody, and let D and E be disjoint disks in V such

that D ∪ E cuts V into a 3-ball. We fix an orientation on each of ∂ D and ∂E , and then

assign letters x and y to ∂ D and ∂E , respectively. Let l be an oriented simple closed

curve on ∂V which intersects ∂ D ∪ ∂E minimally and transversely. Then l determines a

word on {x, y} that can be read off by the intersections of l with ∂ D and ∂E . We note that

this word is well-defined up to cyclic conjugation. The following is a simple criterion for

triviality and primitiveness of the elements represented by l, which can be considered

as a simpler version of Lemma 2.3 in [6].

Lemma 1.2. In the above setting, if a word w determined by the simple closed curve l

contains a subword of the form xypx−1 for some p∈ N, or x2y2, then any word determined

by l is cyclically reduced. Moreover, the element represented by w is neither trivial nor

a power of a primitive element. �

The idea of the proof is that, if w contains one of those subwords, then any word

determined by l cannot contain x±1x∓1 and y±1y∓1, and any cyclically reduced word

containing both x and x−1 or both x2 and y2 cannot represent a power of a primitive

element by Lemma 1.1.

Let (V, W;Σ) be a genus two Heegaard splitting for a nonprime 3-manifold.

Recall that, by [13], the splitting (V, W;Σ) admits a Haken sphere. A nonseparating disk

D in V is said to be semi-primitive if there exists a Haken sphere P of (V, W;Σ) disjoint

from D. The next lemma follows from the definition.

Lemma 1.3. Let (V, W;Σ) be a genus two Heegaard splitting for a nonprime 3-manifold.

Let D be a semi-primitive disk in V . Then an element of π1(W) determined by ∂ D is either

trivial or a power of a primitive element. �

We remark that there is a semi-primitive disk D in V such that ∂ D represents

the trivial element of π1(W) if and only if the manifold has a S2 × S1 summand. In this

case, ∂ D also bounds a disk in W.

Lemma 1.4. Let (V, W;Σ) be a genus two Heegaard splitting for a nonprime 3-manifold.

Let D be a nonseparating disk in V . Then D is semi-primitive if and only if there exists

a nonseparating disk E ′ in W disjoint from D. �

Proof. The “only if” part is trivial. Let E ′ be a non-separating disk in W disjoint from

D, and let Σ ′ be the four-holed sphere obtained by cutting Σ along ∂ D ∪ ∂E ′. Let d+

and d− (e′+ and e′−, respectively) be the two boundary circles of Σ ′ coming from ∂ D
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(∂E ′, respectively). Let αP be an arbitrary simple arc in Σ ′ connecting d+ and d−. Then,

up to isotopy, there exists a unique simple arc α′
P in Σ ′ connecting e′+ and e′− such

that αP ∩ α′
P = ∅. We note that the frontier γP of a regular neighborhood of d+ ∪ αP ∪ d−

coincides with the frontier of a regular neighborhood of e′+ ∪ α′
P ∪ e′− in Σ ′. It follows

that γP bounds a disk in each of V and W. This implies that there exists a Haken sphere

P of (V, W;Σ) such that P ∩ Σ = γP . �

In the proof above, every simple closed curve γQ in Σ ′ that separates d+ ∪ d−

and e′+ ∪ e′− is the frontier of a regular neighborhood of the union of d+ ∪ d− (e′+ ∪ e′−,

respectively) and a simple arc αQ (α′
Q, respectively) in Σ ′ connecting d+ and d− (e′+ and

e′−, respectively). Thus every essential, separating, simple closed curve in Σ disjoint

from ∂ D ∪ ∂E ′ bounds separating disks in both V and W.

1.1 Connected sum of two lens spaces

Throughout this section, we always assume that (V, W;Σ) is a genus two Heegaard split-

ting for the connected sum of two lens spaces.

Lemma 1.5. Let D be a semi-primitive disk in V . Then there is a unique nonseparating

disk E ′ in W disjoint from D. �

Proof. By Lemma 1.4, such a disk E ′ exists. To see the uniqueness, assume that there

exist nonisotopic, nonseparating disks E ′
1 and E ′

2 in W disjoint from D. We assume that

E ′
1 and E ′

2 intersect each other transversely and minimally. If they have nonempty inter-

section, a disk obtained from E ′
1 by a surgery along an outermost subdisk of E ′

2 cut-

off by E ′
1 ∩ E ′

2 is also a nonseparating disks in W disjoint from D. This disk has fewer

intersection with E ′
1 than E ′

2 had, and so by repeating surgeries if they still have inter-

section, we obtain a nonseparating disk E ′ in W disjoint from E ′
1 and from D. Since

∂ D does not intersects E ′
1 ∪ E ′, the circle ∂ D bounds a disk D′ in W. This implies that

D ∪ D′ is a nonseparating sphere in the connected sum of two lens spaces, whence a

contradiction. �

The next theorem will play an important role in Section 2.

Theorem 1.6. Let D and E be semi-primitive disks in V that intersect each other trans-

versely and minimally. Then at least one of the two disks obtained from E by a surgery

along an outermost subdisk of D cut-off by D ∩ E is a semi-primitive disk. �
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4350 S. Cho and Y. Koda

Fig. 1. The case where (p1, q1) = (3, 1) and (p2, q2) = (2, 1). The circles ∂E1, ∂E2 and ∂E3 determine

the words x2y3, x2yx2y2, (x2y)3, respectively.

Proof. Let C be an outermost subdisk of D cut-off by D ∩ E . Each Haken sphere P of

(V, W;Σ) disjoint from E cuts the handlebody V into two solid tori V1 and V2, and W into

W1 and W2. We assume that E is the meridian disk of V1, and that V1 ∪ W1 and V2 ∪ W2

are punctured lens spaces. Let E0, E ′ and E ′
0 be the meridian disks of solid tori V2, W1

and W2, respectively, which are disjoint from P . We choose a Haken sphere P among

all Haken spheres disjoint from E so that |C ∩ E0| is minimal. Assume that ∂E ′ (∂E ′
0,

respectively) is a (p2, q2)-curve ((p1, q1)-curve, respectively) with respect to the meridian

∂E (∂E0, respectively) and a fixed longitude on ∂V1 (∂V2, respectively). We may assume

that 1 ≤ q1 < p1 and 1 ≤ q2 < p2. Each element of π1(W) can be represented by a word

on {x, y}, where x and y are determined (up to sign) by the meridian disks E ′ and E ′
0,

respectively. If E0 is disjoint from C , then E0 is one of the disks obtained from E by a

surgery along C , and is a semi-primitive disk, so we are done.

Assume that C ∩ E0 = ∅. Let C0 be an outermost subdisk of C cut-off by C ∩ E0

such that C0 ∩ E = ∅. Let Σ0 be the four-holed sphere obtained by cutting Σ along ∂E ∪
∂E0. Let e+ and e− (e0

+ and e0
−, respectively) be the boundary circles of Σ0 coming from

∂E (∂E0, respectively). Then C0 ∩ Σ0 is the frontier of a regular neighborhood of the

union of one of e+ and e−, say e+, and a simple arc α0 connecting e+ and one of e0
+ and

e0
−, say e0

+. Up to isotopy, the arc α0 does not intersect ∂E ′
0, otherwise a word of ∂ D

would contain the subword yxp2 y−1 (after changing the orientations if necessary), which

contradicts Lemmas 1.2 and 1.3. We denote by E1 the disk obtained from E0 by a surgery

along C0 that is not E . We remark that |C ∩ E1| < |C ∩ E0| and that ∂E1 determines a word

of the form xp2 yp1 (after changing the orientations if necessary). See Σ0 in Figure 1.

We define inductively a sequence of disks E2, E3, . . . , E p1 in V as follows. For

i ∈ {1, 2, . . . , p1 − 1} let Σi be the four-holed sphere obtained by cutting Σ along ∂E ∪ ∂Ei.

Let e+ and e− (e+
i and e−

i , respectively) be the boundary circles of Σi coming from ∂E
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(∂Ei, respectively). Then there exists a unique simple arc αi in Σi connecting e+ and

one of e+
i or e−

i such that αi is disjoint from ∂E ′
0 and is not parallel to any arc com-

ponent of ∂E ′ ∩ Σi. We may assume that αi connects e+ and e+
i by exchanging e+

i and

e−
i if necessary. Let Ei+1 be the disk obtained by the band sum of E and Ei along αi.

The disk Ei+1 is not isotopic to Ei−1 since the arc αi is not parallel to any arc com-

ponent of ∂E ′ ∩ Σi (see Figure 1). We note that the circle ∂E2 determines the word

xp2 yq1 xp2 yp1−q1 . The circle ∂E3 determines the word xp2 yq1 xp2 yq1 xp2 yp1−2q1 if 1 � q1 � p1/2,

and xp2 y2p1−q1 xp2 yp1−q1 xp2 yp1−q1 if p1/2 < q1 < p1. Also, the circle ∂E p1−1 determines the

word (xp2 y)p1−q1 y(xp2 y)q1−1. Finally, the circle ∂E p1 determines a word of the form (xp2 y)p1 ,

which is apparently a power of a primitive element of π1(W).

We show that E p1 is a semi-primitive disk and in fact there exists a Haken sphere

disjoint from E p1 and E . Let Σp1 be the four-holed sphere obtained by cutting Σ along

∂E ∪ ∂E p1 . By the construction, the two boundary circles e+ and e− of Σp1 coming from

∂E are contained in the same component of Σp1 cut-off by ∂E ′
0 ∩ Σp1 . Hence, there exists

an arc αQ in Σp1 connecting e+ and e− such that αQ ∩ ∂E ′
0 = ∅. We denote by γQ the fron-

tier of a regular neighborhood of e+ ∪ αQ ∪ e−. Apparently, γQ is disjoint from E ∪ E ′
0.

See the four-holed sphere Σ3 in Figure 1. Thus, it follows from the remark right after

Lemma 1.4 that there exists a Haken sphere Q in (V, W,Σ) such that Q ∩ Σ = γQ. In

particular, Q is disjoint from E p1 , and hence E p1 is a semi-primitive disk.

Now we claim that, for i ∈ {1, 2, . . . , p1 − 1}, C ∩ Ei = ∅, and Ei+1 is obtained from

Ei by surgery along an outermost subdisk Ci of C cut-off by C ∩ Ei such that Ci ∩ E = ∅.

The latter claim follows immediately from the former one, since, if C intersects Ei, then

Ci ∩ Σi is the frontier of a regular neighborhood of e+ ∪ αi in Σi, and so the same reason

to the case of α0 implies the latter claim. Suppose that Ei is the first disk disjoint from

C for contradiction.

First, assume that i ∈ {1, 2, . . . , p1 − 2}. Since C does not intersect Ei, the inter-

section C ∩ Σi is a simple arc with both end points on eε1 , where ε1 ∈ {+,−}. Then C ∩ Σi

is the frontier of a regular neighborhood of eε1
i ∪ βε1ε2 , where ε2 ∈ {+,−} and βε1ε2 is a sim-

ple arc in Σi connecting eε1 and eε2
i . We see that βε1ε2 is disjoint from ∂E ′

0 ∩ Σi, otherwise

C ∩ Σi would give a word containing yxp2 y−1 and hence D is not a semi-primitive disk

by Lemmas 1.2 and 1.3, a contradiction. If ε1 = ε2, then we may isotope C ∩ Σi on Σi so

that C ∩ Σi is disjoint from Ei−1 (see Figure 2). This contradicts the assumption that C

intersects Ei−1. Thus, we have ε1 = ε2. We assumed that i � p1 − 2, and hence there exists

at least one arc component of C cut-off by ∂E ′
0 that does not intersect ∂E ′, which means

a word determined by C ∩ Σi contains y2. Therefore, C ∩ Σi gives a word containing

xp2 y2, and so containing x2y2. Again, this implies that D is not a semi-primitive disk by
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Fig. 2. The case where (p1, q1) = (5, 2), (p2, q2) = (2, 1) and i = 3.

Lemmas 1.2 and 1.3, whence a contradiction. (We note that, when i = p1 − 1, the word

determined by C ∩ Σp1−1 is of the form yxp2 yxp2 · · · yxp2 y, and so it does not contain y2.)

Next, assume that i = p1 − 1. In this case, C is disjoint from E p1−1 and intersects E p1−2.

Then one of the resulting disks obtained by surgery on E along C is E p1−1, and the other

one is the semi-primitive disk E p1 . In particular, C is disjoint from E p1 . This contra-

dicts the minimality of |C ∩ E0| since we are assuming that C ∩ E0 = ∅. Hence, we get the

claim.

However, this is impossible since now we have the inequalities |C ∩ E p1 | < |C ∩
E p1−1| < · · · < |C ∩ E0| and this contradicts, again, the minimality of |C ∩ E0| . �

Lemma 1.7. Let D and E be disjoint, nonisotopic semi-primitive disks in V . Then there

exists a unique Haken sphere of (V, W;Σ) disjoint from D ∪ E . �

Proof. The uniqueness follows immediately from Lemma 1.5. To show the existence of

a Haken sphere of (V, W;Σ) disjoint from D ∪ E , we choose a Haken sphere P among all

Haken spheres disjoint from E so that |D ∩ E0| is minimal as in the proof of Theorem 1.6.

Also, we take the disks E ′ and E ′
0 in W as in the proof of Theorem 1.6. Each element of

π1(W) are represented by a word on {x, y}, where x and y are determined (up to sign) by

the meridian disks E ′ and E ′
0. If D = E0, we are done. Assume that D = E0 and D ∩ E0 = ∅.

Then the disk D is the band sum of E and E0 along an arc, say α0, which connects ∂E

and ∂E0. Since we assumed that D is semi-primitive, the arc α0 is disjoint from E ′
0 by

the same reason to the case of the arc α0 in the proof of Theorem 1.6 (after changing

the orientations if necessary). Considering ∂ D as a circle lying in the four-holed sphere

Σ cut-off by ∂E ∪ ∂E0, which is the same case to the circle ∂E1 in Σ0 in Theorem 1.6,

we observe that a word determined by ∂ D must contain a subword of the form x2y2.

By Lemmas 1.2 and 1.3, the disk D cannot be semi-primitive, a contradiction. Finally,
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assume that D ∩ E0 = ∅. Then by the same argument as the proof of Theorem 1.6 for the

disk D instead of the outermost subdisk C , we can deduce a contradiction. �

Lemma 1.8. Let D, E and F be pairwise disjoint, pairwise nonisotopic, nonseparating

disks in V . If D and E are semi-primitive disks, then F is not a semi-primitive disk. �

Proof. By Lemma 1.7, there exists a (unique) Heken sphere P of (V, W;Σ) disjoint from

D ∪ E . Thus, we have the meridian disks D′ and E ′ of the two solid tori W cut-off by

P ∩ W that are disjoint from P . Then the nonseparating disk F is the band sum of D and

E along an arc, say α0, which connects ∂ D and ∂E . This is exactly the case of “D = E0

and D ∩ E0 = ∅” in the proof of Lemma 1.7. Here, D, E , F , D′ and E ′ correspond to E0, E ,

D, E ′
0 and E ′, respectively, in the proof of Lemma 1.7. Thus, by the same reasoning, we

see that F is not semi-primitive. �

1.2 Connected sum of S2 × S1 and a lens space

Throughout this section, we always assume that (V, W;Σ) is a genus two Heegaard split-

ting for the connected sum of S2 × S1 and a lens space. A nonseparating disk D in V is

called a reducing disk if ∂ D bounds a disk in W. We remark that a reducing disk is also

a semi-primitive one and the boundary circle of a reducing disk represents the trivial

element of π1(W).

Lemma 1.9. Let D be a reducing disk in V . Let E be a nonseparating disk in V that is

not isotopic to D.

(1) If E is disjoint from D, then there exists a Haken sphere of (V, W;Σ) disjoint

from D ∪ E . In particular, E is a semi-primitive disk but is not a reducing

disk.

(2) If E intersects D, then E is not a semi-primitive disk. �

Proof. (1) Let Σ ′ be the four-holed sphere obtained by cutting Σ along ∂ D ∪ ∂E . Let d+

and d− be the two boundary circles of Σ ′ coming from ∂ D. Let αP be an arbitrary simple

arc in Σ ′ connecting d+ and d−. Since D is a reducing disk, the frontier γP of a regular

neighborhood of d+ ∪ αP ∪ d− bounds a disk in each of V and W. This implies that there

exists a Haken sphere P of (V, W;Σ) such that P ∩ Σ = γP , which is disjoint from D ∪ E .
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Fig. 3. (i) The arc α0; (ii) The disk E ′′
1; (iii) The arc C ∪ Σ ′.

(2) Let D′ be a disk in W bounded by ∂ D. Let C be an outermost subdisk of E

cut-off by D ∩ E . Then a standard cut-and-paste argument allows us to have a non-

separating disk E1 in V that is not isotopic to D and disjoint from C ∪ D. By (1), E1 is

a semi-primitive disk. Let P be a Haken sphere of (V, W;Σ) disjoint from D ∪ E1. Let

E ′
1 be the semi-primitive disk in W disjoint from P that is not isotopic to D′. Let Σ ′ be

the four-holed sphere obtained by cutting Σ along ∂ D ∪ ∂E1. Let d+ and d− (e1
+ and e1

−,

respectively) be the two boundary circles of Σ ′ coming from ∂ D (∂E1, respectively). We

note that ∂E ′
1 ∩ Σ ′ cuts Σ ′ into a finite number of rectangles and a single rectangle with

two holes d+ and d− (see Figure 3(i)). Then C ∩ Σ ′ is the frontier of a regular neighbor-

hood of the union of an arc α0 in Σ ′ connecting one of d+ and d−, say d+ and one of e+
1

and e−
1 , say e+

1 , and the boundary circle e+
1 .

Assume that α0 meets ∂E ′
1. Let α1 be a subarc of α0 connecting d+ and ∂E ′

1 such

that the interior of α1 is disjoint from ∂E ′
1. Let E ′′

1 ⊂ W be the band sum of E ′
1 and D′

along α1. E ′′
1 is a semi-primitive disk and we have |α0 ∩ ∂E ′′

1 | < |α0 ∩ ∂E ′
1| (see Figure 3(ii)).

Repeating this process finitely many times, we obtain a semi-primitive disk Ê ′
1 in W

disjoint from both D and α0.

We give letters x and y to the circles ∂ D′ and ∂ Ê ′
1, respectively, after fixing an

orientation of each of them. Then a word on {x, y} determined by ∂E contains a subword

of the form xypx−1, which is determined by the subarc C ∩ Σ ′ after changing the orien-

tations if necessary, (see Figure 3 (iii)). By Lemma 1.2, E is neither a reducing disk nor a

semi-primitive disk. �

By Lemma 1.9, (V, W;Σ) admits a unique reducing disk. The next lemma follows

immediately from the definition of a reducing disk and the proof of Lemma 1.4.
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Lemma 1.10. Let D be the reducing disk in V . Then any non-reducing, semi-primitive

disk in V is disjoint from D up to isotopy. �

2 The Complex of Semi-Primitive Disks

Let V be a handlebody. The disk complex K(V) of V is the simplicial complex whose

vertices are the isotopy classes of essential disks in V such that the collection of

distinct k + 1 vertices spans a k-simplex if they admit a set of pairwise disjoint rep-

resentatives. The full-subcomplex D(V) of K(D) spanned by the vertices correspond-

ing to nonseparating disks is called the nonseparating disk complex of V . In [22], it

is shown that both K(V) and D(V) are contractible. Moreover, we have the following

theorem.

Theorem 2.1 ([4, 22]). A full subcomplex L of the disk complex K(V) is contractible

if, given any two representative disks E and D of vertices of L intersecting each other

transversely and minimally, at least one of the disks from surgery on E along an outer-

most subdisk of D cut-off by D ∩ E represents a vertex of L. �

Let M1 be a lens space or S2 × S1, and let M2 be a lens space. Let (V, W;Σ) be a

genus two Heegaard splitting for M1#M2. The semi-primitive disk complex SP(V) of V

is the full subcomplex of D(V) spanned by the vertices corresponding to semi-primitive

disks of V . We remark that the Goeritz group G of (V, W;Σ) acts on SP(V) simplicially.

Theorem 2.2. Let M1 be a lens space or S2 × S1, and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2.

(1) If M1 is a lens space, then SP(V) is a tree.

(2) If M1 = S2 × S1, then SP(V) is the cone of a tree. �

Proof. (1) That SP(V) is contractible is a straightforward consequence of Theorems 1.6

and 2.1. That it is a 1-complex follows from Lemma 1.8.

(2) Let D be the unique reducing disk in V . Let SPD(V) denote the full sub-

complex of D(V) spanned by the vertices corresponding to nonreducing semi-primitive

disks. By Lemmas 1.9 and 1.10, the complex SPD(V) is the link of the vertex correspond-

ing to D in D(V). It is shown in [4, 22] that the link of any vertex of D(V) is a tree, and

hence SPD(V) is a tree. �
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3 The Complex of Haken Spheres

Let (V, W;Σ) be a genus two Heegaard splitting for a closed orientable 3-manifold

M. The complex H of Haken spheres of the splitting (V, W;Σ) is defined to be the

simplicial complex whose vertices consists of the isotopy classes of Haken spheres

such that the collection P0, P1, . . . , Pk of distinct k + 1 vertices spans a k-simplex if

|Pi ∩ Σ ∩ Pj| = 4 for all 0 � i < j � k. It is shown that the complex of Haken spheres of

the genus two splitting for S3 is connected by Scharlemann [26], and it turns out that

the complex actually deformation retracts to a tree from the works [1, 4]. Lei [20] and

Lei-Zhang [21] showed that the complex of Haken spheres of the genus two splitting

for a nonprime 3-manifold is connected. In this section, we refine the results of Lei

and Lei-Zhang. That is, we show that the complexes of Haken spheres for nonprime

3-manifolds are connected in a new way, and further show that they are actually con-

tractible. We use the results on the semi-primitive disk complexes developed in the

previous section.

Theorem 3.1. Let M1 be a lens space or S2 × S1 and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2. Then the complex H of Haken spheres of

the splitting (V, W;Σ) is contractible. The dimension of H is 1, that is, H is a tree, if M1

is a lens space, and is 3 if M1 is S2 × S1. �

Proof. Let us assume first that M1 is a lens space. In Theorem 2.2, we have seen that

the semi-primitive disk SP(V) is a tree. Let SP ′(V) be the first barycentric subdivision

of the tree SP(V). The tree SP ′(V) is bipartite, of which we call the vertices of countably

infinite valence (the vertices of the original SP(V)) the black vertices, and the vertices

of valence 2 the white ones. By Lemma 1.7, the set of the white vertices one-to-one

corresponds to the set of Haken spheres.

Let D be a semi-primitive disk in V . We note that D represents a black vertex of

the tree SP ′(V). By Lemma 1.5, there exists the unique semi-primitive disk E ′ in W dis-

joint from D. The set of white vertices in the link of D in SP ′(V) one-to-one correspond

of the set of the Haken spheres disjoint from D ∪ E ′. Let Σ ′ be the four-holed sphere

obtained by cutting Σ off along ∂ D ∪ ∂E ′. Let d+ and d− (e′+ and e′−, respectively) be

the two boundary circles of Σ ′ coming from ∂ D (∂E ′, respectively). Let HD be the full

subcomplex of the complex H spanned by the vertices corresponding to Haken spheres

disjoint from D. We assign each vertex of HD an element of Qodd ∪ {∞} in the following

way. Fix a Haken sphere P of (V, W;Σ) disjoint from D ∪ E ′. Set μ = P ∩ Σ ′ and fix a
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Fig. 4. The surface Σ ′ and its covering space Σ̃ ′.

separating simple closed curve ν in Σ ′ such that ν separates d+ ∪ e′+ and d− ∪ e′−, and

that |μ ∩ ν| = 2 after minimizing the intersection. Let Σ̃ ′ be the covering space of Σ ′ such

that

(1) the components of the preimage of μ (ν, respectively) are the vertical (hori-

zontal, respectively) lines in the Euclidean plane;

(2) the set of components of the preimage of ∂ D correspond to the set of points

whose coordinates consist of integers (see Figure 4).

We note that, once we put a lift of d− at the origin (0, 0), the set of the coordinates

corresponding to the lifts of d+ is {(s, t) | s ∈ Z, t ∈ Zodd}, where Zodd is the set of odd

integers. For each arc connecting d+ and d−, we assign the slope s/t ∈ Qodd ∪ {∞} of its

preimage with respect to the above covering map, where Qodd is the set of irreducible

rational numbers having odd numerators. Since the set of Haken spheres disjoint from

D ∪ E ′ one-to-one corresponds to the set of simple arcs in Σ ′ connecting d+ and d− as in

the proof of Lemma 1.4, the above assignment provides an assignment of each vertex of

HD to an element of Qodd ∪ {1/0}.
We now briefly review some well-known facts on the Farey complex. The Farey

complex F is the flag complex whose vertex set is Q ∪ {1/0}. Two vertices s1/t1 and s2/t2

are connected by an edge if and only if s1t2 − s2t1 = ±1. See the left-hand side in Figure 5.

The assignment of each vertex of HD(V) with an element of Q ∪ {1/0} described above

allows us to get an embedding of HD(V) into F . The image of HD(V) is the full subcom-

plex Fodd of F spanned by Qodd ∪ {1/0}. See the right-hand side in Figure 5. It is easy to

check that Fodd is a tree. It follows that there exists a natural simplicial isomorphism

from H to the simplicial complex obtained from SP ′(V) by replacing the star of each
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Fig. 5. The Farey complex F and its subcomplex Fodd.

Fig. 6. The shape of the complex H of Haken spheres when M1 is a lens space.

black vertex with the tree simplicially isomorphic to Fodd (see Figure 6). Consequently,

H is a tree.

Next, assume that M1 = S2 × S1. Recall that, by Lemma 1.9, there exists the

unique reducing disk D in V . Let ΣD be the two-holed torus obtained by cutting Σ along

∂ D. Let d+ and d− be the two components of ∂ΣD. Let A(ΣD) be the simplicial complex

whose vertices are isotopy classes of simple arcs in ΣD connecting d+ and d− such that

the collection of distinct k + 1 vertices spans a k-simplex if they admits a set of pair-

wise disjoint representatives. Each simple arc αP in ΣD connecting d+ and d− determine

a unique Haken sphere P of (V, W;Σ). By the uniqueness of D, this correspondence

gives a simplicial isomorphism A(ΣD) →H. It is shown that A(ΣD) is a contractible

three-dimensional simplicial complex in [9, 27], and so is H. �

We remark that the argument developed in [22] allows us to show easily that H
is also a tree for the genus two Heegaard splitting (V, W;Σ) for (S2 × S1)#(S2 × S1).

In the remaining of this section, we analyze the action of the Goeritz group on

the set of Haken spheres of genus two Heegaard splittings for later works.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2015/12/4344/675581 by library_hanyang user on 11 April 2022



Genus Two Heegaard Splittings for NonPrime 3-Manifolds 4359

Lemma 3.2. Let (V, W;Σ) be a genus two Heegaard splitting for the connected sum of

two lens spaces L(p1, q1) and L(p2, q2). For any two Haken spheres P and Q of (V, W;Σ)

with |P ∩ Σ ∩ Q| = 4, there exists an element of the Goeritz group of (V, W;Σ) that maps

P to Q. �

Proof. The Haken sphere P cuts V into two solid tori V1 and V2, and W into W1 and W2.

We may assume that V1 ∪ W1 and V2 ∪ W2 are punctured lens spaces. Let D and E be the

meridian disks of V1 and V2, respectively, disjoint from P . Similarly, let D′ and E ′ be the

meridian disks of W1 and W2, respectively, disjoint from P . �

Claim. Up to isotopy, Q is disjoint from D ∪ E ′ or E ∪ D′.

Proof of Claim. Let C0 be an outermost subdisk of the disk Q ∩ V cut-off by P ∩ Q ∩ V ,

which is contained in either V1 or V2. Assume first that C0 is contained in V1. Then

there exists exactly one more such a subdisk C1 of Q ∩ V , and it is also contained in

V1. Since |P ∩ Σ ∩ Q| = 4, we have V1 ∩ Q = C1 ∪ C2, and hence Q is disjoint from D. Fur-

ther, if D0 is an outermost subdisk of the disk Q ∩ W cut-off by P ∩ Q ∩ W, then D0

must be contained in W2, otherwise ∂ D would bound a meridian disk in W1, which

forms a nonseparating sphere with the disk D in the punctured lens space V1 ∪ W1,

a contradiction. Further, by the same reason to the case of C0 and C1, there exists

exactly one more subdisk D1 of Q ∩ W, and it is also contained in W2. Thus Q is also

disjoint from E ′. If C0 is contained in V2, then, by the same argument, Q is disjoint

from E ∪ D′.

By the claim, we assume that Q is disjoint from D ∪ E ′ without loss of generality.

Let Σ ′ be the four-holed sphere obtained by cutting Σ along ∂ D ∪ ∂E ′. Let d+ and d− (e′+

and e′−, respectively) be the two boundary circles of Σ ′ coming from ∂ D (∂E ′, respec-

tively). Then P ∩ Σ ′ (Q ∩ Σ ′, respectively) is the frontier of a regular neighborhood of the

union of d+ ∪ d− and a simple arc αP (αQ, respectively) in Σ ′ connecting d+ and d−. Since

|P ∩ Σ ∩ Q| = 4, we may assume that αP ∩ αQ = ∅. Set μ = P ∩ Σ ′. Let ν be a simple closed

curve in Σ such that ν separates d+ ∪ e′+ and d− ∪ e′−, and ν intersects μ transversely

in two points (see Figure 7(i)). We note that a half-Dehn twist about μ extends to an

orientation-preserving homeomorphism of L(p1, q1)#L(p2, q2) that preserves V . Up to a

finite number of half-Dehn twists about μ and isotopy, a single Dehn twist τν about ν

maps αP to αQ (see Figure 7(ii)). However, τν extends to a homeomorphism of neither of V

nor W. To see this, recall that each simple closed curve l in Σ determine a (possibly not
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Fig. 7. The arcs αP and αQ in Σ ′.

reduced) word w(l) on {x, y} ({z, w}, respectively) that can be read off from the intersec-

tion of l with ∂ D′ and ∂E ′ (∂ D and ∂E , respectively) after fixing orientations of the sim-

ple closed curves. Note that this word gives the element of π1(W) = 〈x, y〉 (π1(V) = 〈z, w〉,
respectively) represented by the loop l. On the surface Σ ′, ∂ D′ (∂E , respectively) con-

sists of p1 (p2, respectively) parallel simple arcs δ′
1, δ′

2, . . . , δ
′
p1

(ε1, ε2, . . . , εp2 , respectively).

Then the subword w(τν(δ
′
i)) (w(τν(ε j)), respectively) of w(τν(∂ D′)) (w(τν(∂E)), respectively)

determined by the subarc τν(δ
′
i) (τν(ε j), respectively) of τν(∂ D′) (τν(∂E), respectively) is

xp1 (wp2 , respectively) for each i ∈ {1, 2, . . . , p1} ( j ∈ {1, 2, . . . , p2}, respectively). Here, we

move τν(∂ D′) (τν(∂E), respectively) slightly by isotopy so that τν(∂ D′) (τν(∂E), respectively)

and ∂ D′ (∂E , respectively) intersect each other transversely and minimally at points

in the interior of Σ ′. See the left-hand side in Figure 8. This implies that w(τν(∂ D′)) =
xp1

2
(w(τν(∂E)) = wp2

2
, respectively). Thus, τν(∂ D′) (τν(∂E), respectively) cannot bound

a disk in W (in V , respectively), and hence τν cannot extend to a homeomorphism

of V nor W.

But now we consider the composition τ∂E ′ ◦ τ∂ D ◦ τν . We may choose the Dehn

twists τ∂ D and τ∂E ′ so that the word w(τ∂E ′ ◦ τ∂ D ◦ τν(δ
′
i)) (w(τ∂E ′ ◦ τ∂ D ◦ τν(ε j)), respectively)

is an empty word after cancellation. See the right-hand side in Figure 8. This implies that

the word w(τ∂E ′ ◦ τ∂ D ◦ τν(∂ D′)) (w(τ∂E ′ ◦ τ∂ D ◦ τν(∂E)), respectively) represents the trivial

element of π1(W) (π1(V), respectively). Hence by Loop Theorem, τ∂E ′ ◦ τ∂ D ◦ τν(∂ D′) (τ∂E ′ ◦
τ∂ D ◦ τν(∂E), respectively) bounds a disk in W (V , respectively). Apparently, τ∂E ′ ◦ τ∂ D ◦ τν

fixes ∂ D and ∂E ′. Consequently both τ∂E ′ ◦ τ∂ D ◦ τν(∂ D) and τ∂E ′ ◦ τ∂ D ◦ τν(∂E) bound disks

in V . Therefore by Alexander’s trick, this composition extends to a homeomorphism of

V . Similarly, τ∂E ′ ◦ τ∂ D ◦ τν(∂ D′) bounds a disk in W and hence this composition extends

to a homeomorphism of W. As a consequence, the map τ∂E ′ ◦ τ∂ D ◦ τν extends to an

orientation-preserving homeomorphism of L(p1, q1)#L(p2, q2) that preserves V . �
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Fig. 8. The maps τ∂E ′ ◦ τ∂ D ◦ τν extends to homeomorphisms of both V and W.

Lemma 3.3. Let M1 be a lens space or S2 × S1 and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2. Then the Goeritz group of (V, W;Σ) acts

transitively on the set of Haken spheres of (V, W;Σ). �

Proof. The case where M1 is a lens space follows from Theorem 3.1 and Lemma 3.2.

Assume M1 = S2 × S1. Let P be a Haken sphere of (V, W;Σ). Then P cuts V into two

solid tori V1 and V2, and W into W1 and W2. We may assume that V1 ∪ W1 is a punctured

S2 × S1. Let D and E be the meridian disks of V1 and V2, respectively, disjoint from P .

Similarly, let D′ and E ′ be the meridian disks of W1 and W2, respectively, disjoint from

P . In this case, we may assume that ∂ D = ∂ D′. As we have seen in Section 1.2, D is the

unique reducing disk in V . Let ΣD be a two-holed torus obtained by cutting Σ along ∂ D.

We denote the boundary circles of ΣD by d+ and d−. Then there exists a simple arc αP

in ΣD connecting d + and d− such that P ∩ ΣD is the frontier of a regular neighborhood

of d+ ∪ αP ∪ d−. Let Q be another Haken sphere of (V, W;Σ). By the same argument as

above, there exists a simple arc αQ in ΣD connecting d + and d− such that Q ∩ ΣD is the

frontier of a regular neighborhood of d+ ∪ αQ ∪ d−. Then there exists a hoeomorphism ϕ

of ΣD defined by pushing d+ in such a way that ϕ maps αP to αQ (see Figure 9).

The homeomorphism ϕ extends to a slide of a foot of a handle of each of V and

W, and so ϕ extends to a homeomorphism of M1#M2 that preserves V and W, and takes

P to Q up to isotopy. �

4 Classification of Genus Two Heegaard Splittings

For i ∈ {1, 2}, let Mi be a lens space L(pi, qi) or S2 × S1, and let (Vi, Wi;Σi) be a genus

one Heegaard splitting for Mi. By [3], Σi is the unique genus one Heegaard surface for

Mi up to isotopy, and there exists an orientation-preserving homeomorphism of Mi that
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Fig. 9. Pushing d+ along the guide arc maps αP to αQ.

interchanges Vi and Wi if and only if qi
2 ≡ 1 (mod pi) or Mi = S2 × S1. Let Bi be a 3-ball

embedded in Mi so that Bi ∩ Σi is a single disk properly embedded in Bi. A genus two

Heegaard splitting (V, W,Σ) for M1#M2 is created by gluing V1 and V2 to obtain V , and

W1 and W2 to obtain W, by an appropriate orientation-reversing map ∂ B1 → ∂ B2 after

removing the interiors of B1 and B2 from M1 and M2, respectively. Also, another genus

two Heegaard splitting (V ′, W′;Σ ′) for M1#M2 is created by gluing V1 and W2 to obtain

V ′, and W1 and V2 to obtain W′ in the same way. From [13], it is known that each genus

two Heegaard surface for M1#M2 is one of the above two Heegaard surfaces Σ and Σ ′

modulo the homeomorphisms of M1#M2. However, it is shown in [2] that Σ and Σ ′ do not

always coincide modulo homeomorphisms of M. In [23], genus two Heegaard surfaces

for L(p1, q1)#L(p2, q2) modulo the homeomorphisms of L(p1, q1)#L(p2, q2) are classified

when p1 = p2 as follows.

Theorem 4.1 ([23]). Let M be the connected sum of two lens spaces L(p, q1) and

L(p, q2). Then there exists a unique genus two Heegaard surface for M modulo home-

omorphisms of M if and only if q1
2 ≡ 1 or q2

2 ≡ 1 (mod p), and two Heegard surfaces

otherwise. �

The following is a generalization of Theorem 4.1 to the case of all nonprime 3-

manifolds which admit genus two Heegaard splittings.

Theorem 4.2. Let M be a connected sum of M1 and M2, where Mi is a lens space L(pi, qi)

or S2 × S1 for i ∈ {1, 2}. Then there exists a unique genus two Heegaard surface for M

modulo homeomorphisms of M if and only if one of Mi is S2 × S1 or a lens space L(pi, qi)

with qi
2 ≡ 1 (mod pi), and two Heegard surfaces otherwise. �

Proof. The “if” part follows trivially from the descriptive comments at the beginning of

this section.
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Now we prove the “only if” part. Suppose that both of Mi are lens spaces L(pi, qi)

with qi
2 ≡ 1 (mod pi). Let (V, W;Σ) and (V ′, W′;Σ ′) be the two Heegaard splittings of

M = L(p1, q1)#L(p2, q2) obtained from the genus one Heegaard splittings (Vi, Wi;Σi) of

L(pi, qi), i = 1, 2, as described in the beginning of this section. The construction provides

the Haken spheres P and P ′ for the splittings (V, W;Σ) and (V ′, W′;Σ ′), respectively.

We give an orientation of P and P ′ so that the L(p1, q1)-summand lies in the negative

side. Suppose that there exists a homeomorphism f of M that maps Σ ′ to Σ . Then,

by Lemma 3.3, there exists a homeomorphism g of M that preserves Σ and that maps

f(P ′) to P . We may assume that P and g ◦ f(P ′) have the same orientation. Moreover, we

may assume that g ◦ f induces a homeomorphism of L(p1, q1) that preserves V1 and W1.

Since q1
2 ≡ 1 (mod p1), g ◦ f is orientation preserving. Now g ◦ f induces an orientation-

preserving homeomorphism of L(p2, q2) that interchanges V2 and W2, contradicting q2
2 ≡

1 (mod p2). �

5 Genus Two Goeritz Groups

Let (V, W;Σ) be a genus two Heegaard splitting for the connected sum of two lens

spaces. A Haken sphere P of (V, W;Σ) is said to be reversible if there exists an element

g of G fixing P setwise such that g restricted to P is an orientation-reversing homeomor-

phism on P . We say that the splitting (V, W;Σ) is symmetric if it admits a reversible

Haken sphere. By Lemma 3.3, if the splitting (V, W;Σ) admits a reversible Haken sphere,

then every Haken sphere of (V, W;Σ) is reversible.

For a genus two Heegaard splitting (V, W;Σ) for the connected sum of two lens

spaces, we fix the following notations throughout the section (see Figure 10).

(1) Disjoint, nonparallel semi-primitive disks D and E in V ,

(2) the disjoint semi-primitive disks D′ and E ′ in W such that D ∩ E ′ = E ∩ D′ = ∅
(such D′ and E ′ are determined uniquely by Lemma 1.5),

(3) the Haken sphere P of (V, W;Σ) disjoint from D ∪ E (the existence and

uniqueness of P follows from Lemma 1.7) and

(4) a Haken sphere Q1 (Q2, respectively) of (V, W;Σ) disjoint from D ∪ E ′ (E ∪
D′, respectively) such that |P ∩ Σ ∩ Q1| = 4 (|P ∩ Σ ∩ Q2| = 4, respectively) (the

existence of Q1 and Q2 follows from the proof of Lemma 1.4).

In Figure 10, the four-holed sphere Σ ′ is obtained by cutting Σ along ∂ D ∪ ∂E ′ and the

boundary circles d+ and d− (e′+ and e′−, respectively) come from ∂ D (∂E ′, respectively).

By α ∈ G, we denote the hyperelliptic involution of both V and W. By β ∈ G, we denote

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2015/12/4344/675581 by library_hanyang user on 11 April 2022



4364 S. Cho and Y. Koda

Fig. 10. Fixed notations for the connected sum of two lens spaces.

the extension of a half-Dehn twist about the disk P ∩ V . By γ1 ∈ G (γ2 ∈ G, respectively),

we denote an element of order 2 that preserves D ∪ E ′ (E ∪ D′, respectively) and that

interchanges P and Q1 (P and Q2, respectively) (the existence of this element will be

proved in Lemma 1.4). When P is reversible, we denote by δ ∈ G an element of order 2

that reverses P .

Also, for a genus two Heegaard splitting (V, W;Σ) for the connected sum of S2 ×
S1 and a lens space, we fix the following notations throughout the section (see Figure 11).

(1) The reducing disk D in V and the disk D′ in W bounded by ∂ D (D is unique by

Lemma 1.9),

(2) disjoint, nonisotopic, semi-primitive disks E1 and E2 in V ,

(3) a semi-primtive disk E ′ in W such that ∂E ′ has the same type with respect to

E1 and E2 (the existence of E ′ will follow from the proof of Lemma 5.6) and

(4) Haken spheres P and Q of (V, W;Σ) disjoint from D ∪ E1 such that |P ∩ Σ ∩
Q| = 4 (the existence of P and Q follows from the proof of Lemma 1.9(1)).

In Figure 11., the four-holed sphere Σ ′ is obtained by cutting Σ along ∂ D ∪ ∂E1 and the

boundary circles d+ and d− (e1
+ and e1

−, respectively) come from ∂ D (∂E1, respectively).

By α ∈ G, we denote the hyperelliptic involution of both V and W. By β ∈ G (τ ∈ G, respec-

tively), we denote the extension of a half-Dehn twist (Dehn twist, respectively) about the

disk P ∩ V (D, respectively). By γ ∈ G, we denote an element of order 2 that interchanges

P and Q (the existence of this element is proved in Lemma 5.4). By σ ∈ G, we denote an

element of order 2 that preserve E ′ and that interchanges E1 and E2 (the existence of

this element will be proved in Lemma 5.6).

Now we are ready to state the main theorem, which provides presentations

of genus two Goeritz groups of all nonprime 3-manifolds. (Recall that the genus two

Goeritz group of (S2 × S1)#(S2 × S1) is the mapping class group of the genus two handle-

body and its presentation is already known.)
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Fig. 11. Fixed notations for the connected sum of S2 × S1 and a lens space.

Theorem 5.1. Let M1 be a lens space or S2 × S1, and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2. Then the Goeritz group G of (V, W;Σ) has

the following presentation:

(1) If M1 is a lens space,

(a) 〈α | α2〉 ⊕ 〈β, γ1, γ2 | γ1
2, γ2

2〉 if (V, W;Σ) is not symmetric;

(b) 〈α | α2〉 ⊕ 〈β, γ1, δ | γ1
2, δ2, δβδ = αβ〉 if (V, W;Σ) is symmetric;

(2) If M1 = S2 × S1, 〈α | α2〉 ⊕ 〈β, γ, σ | γ 2, σ 2〉 ⊕ 〈τ 〉. �

We remark that, from Section 4, once a genus two Heegaard splitting for M =
L(p1, q1)#L(p2, q2) is given, we may easily determine whether the splitting is symmetric

or not. If L(p1, q1) ∼= L(p2, q2) (as oriented manifolds), no genus two Heegaard splitting

of M is symmetric. If L(p1, q1) ∼= L(p2, q2), exactly one genus two Heegaard splitting of

M is symmetric and the other, if any, is not.

Throughout the section, for suitable subsets A1, A2, . . . , Ak of M1#M2, we denote

by G{A1,A2,...,Ak} the subgroup of its Goeritz group G consisting of elements that preserve

each of A1, A2, . . . , Ak setwise.

Lemma 5.2. Let M1 be a lens space or S2 × S1 and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2.

(1) If M1 is a lens space, then G{D,P } = 〈α | α2〉 ⊕ 〈β〉.
(2) If M1 is S2 × S1, then G{D,P } = 〈α | α2〉 ⊕ 〈β〉 ⊕ 〈τ 〉. �

Proof. Let g be an element of G{D,P }.

(1) Since g preserves D, g is orientation preserving on P . We may assume that g maps

each of the disks D, D′, E and E ′ to itself. Moreover if g is orientation preserving on
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D (E , respectively), then so is on D′ (E ′, respectively). Hence by taking a composition

with α and β, if necessary, we may assume that g fixes D ∪ D′ ∪ E ∪ E ′. Now, Σ cut-

off by D ∪ D′ ∪ E ∪ E ′ consists of several disks and a single annulus. By Alexander’s

trick, boundary-preserving homeomorphisms on a disk is unique up to isotopy. Also,

boundary-preserving homeomorphisms on an annulus are determined by Dehn twist

about its core circle up to isotopy. This implies that g is a power of β.

(2) Let l be a simple closed curve in Σ disjoint from P that intersects ∂ D in a single point.

Let g be an element of G{D,P }. Since g preserves D, g is orientation preserving on P . We

may assume that g maps each of the disks D, D′, E and E ′ to itself. Moreover if g is ori-

entation preserving on D (E , respectively), then so is on D′ and l (E ′ and l, respectively).

Hence modulo the action of α and τ , g fixes D ∪ D′ ∪ l ∪ E ∪ E ′. The remaining argument

is exactly the same as (1). �

Lemma 5.3. Let M1 be a lens space or S2 × S1, and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2.

(1) Suppose that M1 is a lens space. Let Q′
1 be a Haken sphere of (V, W;Σ) dis-

joint from D ∪ E ′ such that |P ∩ Σ ∩ Q′
1| = 4. Then a power of β maps Q1 to

Q′
1.

(2) Suppose that M1 is S2 × S1. Let Q′ be a Haken sphere of (V, W;Σ) disjoint

from D ∪ E such that |P ∩ Σ ∩ Q′| = 4. Then a power of β maps Q to Q′. �

Proof. (1) Let Σ ′ be the four-holed sphere obtained by cutting Σ along ∂ D ∪ ∂E ′. Let d+

and d− (e′+ and e′−, respectively) be the two boundary circles of Σ ′ coming from ∂ D (∂E ′,

respectively). Let αP , αQ1 and αQ′
1

be simple arcs in Σ ′ connecting d+ and d− such that

the frontiers of regular neighborhoods of d+ ∪ αP ∪ d−, d+ ∪ αQ1 ∪ d− and d+ ∪ αQ′
1
∪ d−

are P ∩ Σ , Q1 ∩ Σ and Q′
1 ∩ Σ , respectively. We may assume that αP ∩ αQ1 = αP ∩ αQ′

1
= ∅

since |P ∩ Σ ∩ Q1| = |P ∩ Σ ∩ Q′
1| = 4. Since αP cuts Σ ′ into a pair of pants, a certain

power of β carries αQ1 to αQ′
1
. The proof of (2) is exactly the same as (1). �

Lemma 5.4. Let M1 be a lens space or S2 × S1 and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2.

(1) If M1 is a lens space, then G{D,P ,Q} = 〈α | α2〉, and G{D,P∪Q} = 〈α | α2〉 ⊕ 〈γ1 | γ1
2〉.

(2) If M1 is S2 × S1, then G{D,P ,Q} = 〈α | α2〉 ⊕ 〈τ 〉, and G{D,P∪Q} = 〈α | α2〉 ⊕ 〈γ | γ 2〉 ⊕
〈τ 〉. �
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Proof. (1) We first show the existence of the element γ1 ∈ G. Let β ′
1 denote a half-Dehn

twist about the sphere Q1. By Lemma 3.3, there exists an element g ∈ G that carries

P to Q1. We may assume without loss of generality that g maps D to D and E ′ to E ′.

By Lemma 5.3, a certain power β ′
1

n of β ′
1 carries g(Q1) to P . We remark that β ′

1
n ◦ g inter-

changes P and Q1 and this map carries D to D and E ′ to E ′. Up to isotopy, we may assume

that (β ′
1

n ◦ g)2 fixes D ∪ E ′ ∪ P ∪ Q1. Then by cutting Σ along ∂ D ∪ ∂E ′ and considering

simple arcs connecting the two holes coming from ∂ D as in the proof of Lemma 5.3, we

can easily check that (β ′
1

n ◦ g)2 restricted to Σ is a power of Dehn twist along ∂E ′. Hence

(β ′
1

n ◦ g)2 is isotopic to the identity. This implies that β ′
1

n ◦ g is the required element γ1.

Since τ is commutative with any element of G that preserves D, (2) follows from the same

argument as (1). �

Lemma 5.5. Let M1 be a lens space or S2 × S1, and let M2 be a lens space. Let (V, W;Σ)

be a genus two Heegaard splitting for M1#M2. Let D be a semi-primitive disk in V .

(1) If M1 is a lens space, then G{D} = 〈α | α2〉 ⊕ 〈β, γ | γ 2〉.
(2) If M1 is S2 × S1, then G{D,E1} = 〈α | α2〉 ⊕ 〈β, γ | γ 2〉 ⊕ 〈τ 〉. �

Proof. (1) By Lemma 1.5, E ′ is the unique non-separating disk in W disjoint from D. This

implies that each element of GD preserves E ′. Let Σ ′ be the four-holed sphere obtained by

cutting Σ along ∂ D ∪ ∂E ′. Let d+ and d− (e′+ and e′−, respectively) be the two boundary

circles of Σ ′ coming from ∂ D (∂E ′, respectively). As in the proof of Theorem 3.1, let HD

be the full subcomplex of the complex H of Haken spheres of (V, W;Σ) spanned by

the vertices corresponding to Haken spheres disjoint from D. Then HD is a tree as we

have seen in Lemma 3.1. Let H′
D(V) be the first barycentric subdivision of GD. The group

GD acts on H′
D(V) simplicially. Moreover, the quotient of H′

D(V) by the action of GD is

a single edge. Then by the Bass–Serre theory on groups acting on trees [28], we have

G{D} = G{D,P } ∗G{D,P ,Q1} G{D,P∪Q1}. Now, (1) follows from Lemmas 5.2 and 5.4.

(2) Cutting Σ along D ∪ E1 instead of D ∪ E ′, we get the presentation by almost the same

argument as (1). �

Lemma 5.6. Let (V, W;Σ) be the genus two Heegaard splitting for the connected sum

of S2 × S1 and a lens space. Let E1 and E2 be disjoint, nonisotopic, semi-primitive and

nonreducing disks in V . Then there exists an element of the Goeritz group G of the

Heegaard splitting (V, W;Σ) that interchanges E1 and E2. �
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Proof. It is easy to see that there exists a nonreducing semi-primitive disk Ê2 in V such

that E1 and Ê2 can be interchanged by an element of G. Thus, it suffices to show that

there exists an element of G that preserves E1 and that maps E2 to Ê2. Let ΣD be a two-

holed torus obtained by cutting Σ along ∂ D. We denote the boundary circles of ΣD by d+

and d−. Since both E2 and Ê2 are meridian disks of the solid torus obtained by cutting

V along D, there exists a pushing of d+ in ΣD that preserve ∂E1, and that maps ∂E2 to

∂ Ê2. As we have seen in Lemma 3.3, every pushing map of d+ extends to a slide of a foot

of a handle of each of V and W, thus it extends to a homeomorphism of (S2 × S1)#L(p, q)

that preserves V . �

Finally, the following two lemmas follow from Lemmas 1.7 and 5.5.

Lemma 5.7. Let (V, W;Σ) be a genus two Heegaard splitting for the connected sum of

two lens spaces.

(1) If (V, W;Σ) is not symmetric, then G{D,E} = G{D∪E} = 〈α | α2〉 ⊕ 〈β〉 .

(2) If (V, W;Σ) is symmetric, then G{D,E} = 〈α | α2〉 ⊕ 〈β〉 and G{D∪E} = 〈α | α2〉 ⊕
〈β, δ | δ2, δβδ = αβ〉. �

Lemma 5.8. Let (V, W;Σ) be the genus two Heegaard splitting for the connected sum

of S2 × S1 and a lens space. Then G{D,E1,E2} = 〈α | α2〉 ⊕ 〈τ 〉 and G{D,E1∪E2} = 〈α | α2〉 ⊕ 〈σ |
σ 2〉 ⊕ 〈τ 〉. �

Proof of Theorem 5.1. (1a) By Theorem 2.2, SP(V) is a tree. By Lemmas 3.3, the vertices

modulo the action of G consists of two classes, one contains D and the other contains

E . Also, any edge of SP(V) is equal to the edge {D, E} modulo the action of G. Therefore,

the quotient of SP(V) by the action of G is an edge. Now by the Bass–Serre theory and

Lemmas 5.5 and 5.7, we have

G = G{D} ∗G{D,E} G{E}

= (G{D,P } ∗G{D,P ,Q1} G{D,P∪Q1}) ∗G{D,P } (G{E,P } ∗G{D,E,Q2} G{E,P∪Q2})

= (〈α | α2〉 ⊕ 〈β, γ1 | γ1
2〉) ∗〈α|α2〉⊕〈β〉 (〈α | α2〉 ⊕ 〈β, γ2 | γ2

2〉)

= 〈α | α2〉 ⊕ 〈β, γ1, γ2 | γ1
2, γ2

2〉.

(1b) Again by Theorem 2.2, SP(V) is a tree. Let SP ′(V) be the first barycentric subdivision

of SP(V). We note that the vertices of SP ′(V) consists of the vertices of SP(V) and the
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barycenters of the edges of SP(V), each of which corresponds to an unordered pair of

vertices. By Lemmas 3.3, every vertex of SP ′(V) is equal to the vertex D or the barycenter

{D, E}, and any edge of SP ′(V) is equal to the edge {D, {D, E}} modulo the action of G.

Therefore, the quotient of SP ′(V) by the action of G is an edge. By the Bass–Serre theory

and Lemmas 5.5 and 5.7, we have

G = G{D} ∗G{D,E} G{D∪E}

= (G{D,P } ∗G{D,P ,Q1} G{D,P∪Q1}) ∗G{D,P } (G{D∪E})

= (〈α | α2〉 ⊕ 〈β, γ1 | γ1
2〉) ∗〈α|α2〉⊕〈β〉 (〈α | α2〉 ⊕ 〈β, δ | δ2, δβδ = αβ〉)

= 〈α | α2〉 ⊕ 〈β, γ1, δ | γ1
2, δ2, δβδ = αβ〉.

(2) We note that G = G{D}. Let SP ′
D(V) be the first barycentric subdivision of SPD(V).

By Lemma 5.6, the quotient of SP ′
D(V) by the action of G consists of an edge. By the

Bass–Serre theory and Lemmas 5.5 and 5.7, we have

G{D} = G{D,E1} ∗G{D,E1 ,E2} G{D,E1∪E2}

= (〈α | α2〉 ⊕ 〈β, γ | γ 2〉 ⊕ 〈τ 〉) ∗〈α|α2〉⊕〈τ 〉 (〈α | α2〉 ⊕ 〈σ | σ 2〉 ⊕ 〈τ 〉)

= 〈α | α2〉 ⊕ 〈β, γ, σ | γ 2, σ 2〉 ⊕ 〈τ 〉.

This completes the proof. �
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Scientifiques de École Normale Superieure (4) 16 (1983): 451–66.

[4] Cho, S. “Homeomorphisms of the 3-sphere that preserve a Heegaard splitting of genus two.”

Proceedings of the American Mathematical Society 136, no. 3 (2008): 1113–23.

[5] Cho, S. “Genus two Goeritz groups of lens spaces.” Pacific Journal of Mathematics 265, no.

1 (2013): 1–16.

[6] Cho, S. and Y. Koda. “Primitive disk complexes for lens spaces.” (2012): preprint,

arXiv:1206.6243.

[7] Cho, S. and Y. Koda. “The genus two Goeritz group of S2 × S1.” Mathematical Research Let-

ters (2013): preprint, arXiv:1303.7145.

[8] Cho, S. and Y. Koda. “Primitive disk complexes and Goeritz groups of lens spaces.” (in prepa-

ration).

[9] Cho, S., D. McCullough, and A. Seo. “Arc distance equals level number.” Proceedings of the

American Mathematical Society 137, no. 8 (2009): 2801–7.
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