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Abstract 

Background:  Diverse microbiome communities drive biogeochemical processes 
and evolution of animals in their ecosystems. Many microbiome projects have dem‑
onstrated the power of using metagenomics to understand the structures and factors 
influencing the function of the microbiomes in their environments. In order to charac‑
terize the effects from microbiome composition for human health, diseases, and even 
ecosystems, one must first understand the relationship of microbes and their envi‑
ronment in different samples. Running machine learning model with metagenomic 
sequencing data is encouraged for this purpose, but it is not an easy task to make an 
appropriate machine learning model for all diverse metagenomic datasets.

Results:  We introduce MegaR, an R Shiny package and web application, to build 
an unbiased machine learning model effortlessly with interactive visual analysis. The 
MegaR employs taxonomic profiles from either whole metagenome sequencing or 16S 
rRNA sequencing data to develop machine learning models and classify the samples 
into two or more categories. It provides various options for model fine tuning through‑
out the analysis pipeline such as data processing, multiple machine learning tech‑
niques, model validation, and unknown sample prediction that can be used to achieve 
the highest prediction accuracy possible for any given dataset while still maintaining a 
user-friendly experience.

Conclusions:  Metagenomic sample classification and phenotype prediction is impor‑
tant particularly when it applies to a diagnostic method for identifying and predicting 
microbe-related human diseases. MegaR provides various interactive visualizations for 
user to build an accurate machine-learning model without difficulty. Unknown sample 
prediction with a properly trained model using MegaR will enhance researchers to 
identify the sample property in a fast turnaround time.
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Background
Metagenomics, studying microbial community and diversity from environmental sam-
ples directly without culture, is applied in many research projects for last two decades 
aiming to understand microbes’ impact on human, animal, plant, ocean, and environ-
mental niches [1].

The human microbiota is the aggregated clusters of microorganisms that colonize 
on exposed surfaces such as skin, respiratory tract, and gastrointestinal tract. Human-
microbes projects such as MetaHIT consortium and human microbiome project (HMP) 
sought to study microorganism diversity in and on healthy or sick cohorts via advanced 
metagenomic sequencing techniques [2, 3]. Not only human but also diverse ecosystems 
with microbes were studied using metagenomics including Tara Oceans project that is 
another big consortium to investigate the ocean microbiome to understanding its func-
tional role at a global scale [4]. These large-scale metagenomics projects provide huge 
publicly available datasets. Deep analysis of such metagenomic datasets can reveal the 
secret of interactions between microbes and hosts in nature.

Analyzing metagenomic data is challenging because a sample can contain thousands of 
species, each with differing abundances, and multiple copies of the genomic sequences 
are sheared and fragmented as reads. The most often used technique to analyze the 
composition and diversity of microbes is 16S rRNA gene amplicon analysis that ampli-
fies the 16S rRNA region to distinguish substantially identified gene regions [5]. Taxo-
nomic assignment relies on the association of a specific 16S rRNA gene with a taxon; 
these associations are defined as operational taxonomic units (OTUs). Since OTUs are 
most commonly analyzed at the phyla or genera resolution, 16S rRNA sequencing tech-
nologies have a limited scope in analyzing microbial communities at the species and 
strain level. More recently, whole genome shotgun sequencing (WGS) has been adopted 
to increase sequence read depth and extend the range of capture to species level resolu-
tion and other microbes including viruses [6]. With extensive coverage provided, WGS 
allows for a more diverse picture of the microbes at the species and even strain level. 
Both sequencing techniques are currently being used to study the microbial landscape 
and have been evaluated for their inherent strengths and weaknesses [7]. The choice of 
16S rRNA sequencing or WGS usually depends on the nature of the study: 16S is proper 
for large-scale analysis of a many samples such as longitudinal research and WGS pro-
vides a greater potential for higher resolution by identifying strains and even viruses 
that the 16S approach cannot. To address this technology gap, new advanced sequenc-
ing techniques are continuing to be developed and evaluated including shallow shotgun 
sequencing [8].

Taxonomy classification in metagenomics refers to identifying microbial genomes 
from closely related organisms in the metagenomic samples. QIIME (QIIME 2) is 
a widely used tools to analyze 16S rRNA gene sequences using OTU binning method 
from microbial communities [9]. In WGS, taxonomic profiles are examined by searching 
reads against reference genomes [10–12], analyzing k-mer frequency of reads [13, 14], or 
aligning reads with clade-specific marker genes including MetaPhlAn2 [15, 16]. A variety 
of tools including de novo assemblers, strain-level profilers, and functional analysis tools 
are also intensively used in metagenomics research [17–21]. Recently studied metagen-
omic research and related software tools are advanced compared to the standard 
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metagenomics protocol such as identifying and quantifying microbial community com-
position. For example, the DIABIUMME project was designed to study the interactions 
and development of microbes, immune system, and diseases [22–24]. Another interest-
ing metagenomic project is MetaSub designed for studying urban microbiomes their 
differences in the largest metro system in the world [25]. These types of research and 
challenges can be solved by investigating microbial patterns of the samples. Machine 
and deep learning techniques hold great promise in identifying such microbial patterns 
of the samples effectively and precisely [26, 27].

There were several machine-learning-based software tools to analyze the relation-
ship of microbial sequencing data and sample phenotype. MetAML utilizes microbiome 
features by means of different machine learning classifiers to study the association of 
the microbes and phenotypes [28]. MetaDprof fits smoothing spline regression model 
to identify differential abundances of samples [29]. MetaLonDa is an R package that is 
able to identify substantial time intervals of way different abundant microbial features in 
longitudinal studies [30]. MetaNN provides a neural network classifier to identify host 
phenotypes from metagenomic data [31].

Such proposed software tools provide some advantages for microbiome-phenotype 
association prediction, but there are some limits. MetAML only supports WGS data, not 
16S rRNA data set analysis. 16S rRNA sequencing is still mostly used, and is a powerful 
sequencing technique in metagenomics, it is important to provide a tool utilizing both 
16S and WGS data. MetaDprof and MetaLonDa can effectively perform for the data 
sets from longitudinal studies, but they were not designed for general classifications of 
samples for phenotype prediction. MetaNN only utilized only 16S rRNA sequences, not 
WGS sequences [31].

We therefore developed MegaR (https​://githu​b.com/BioHP​C/MegaR​) to study micro-
biome-phenotype associations effectively and precisely including disease prediction 
capability. Our proposed framework MegaR has the following three main contributions:

1.	 MegaR supports both 16S rRNA and shotgun metagenomic sequencing data and 
can generate a model using different taxon level and different machine learning tech-
niques.

2.	 MegaR provides user-friendly features for data preprocessing, model development, 
and model cross validation by power of interactive web-supporting library, R-Shiny,

3.	 MegaR classifies and predicts unknown samples based on the developed model pre-
cisely and speedily.

In this study, three different studies of DIABUMME project were used to assess the 
independent prediction accuracy of models for both 16S and WGS data and to com-
pare strategies for practical use of the microbiome as a prediction tool. We also provide 
benchmark results of MegaR against MetAML using the data sets provided by MetAML 
to show the model accuracy, effectiveness, and user-friendly fine-tuning options to gen-
erate an optimized model with just a few clicks.

https://github.com/BioHPC/MegaR
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Implementation
MegaR data input

We developed MegaR as an R package that uses 16S or whole genome taxonomic profile 
data sets to train a machine learning model for classification of unknown profiles. An 
overview of the MegaR pipeline can be seen in Fig. 1. For testing our package, we used 
two widely used taxonomy profiling tools QIIME (QIIME 2) [9] for 16S rRNA data and 
MetaPhlAn2 [15] for whole metagenome data. QIIME suite is one of the major software 
tools for 16S rRNA microbiome analysis. QIIME takes raw sequencing data from users, 
preprocesses the data, identify OTUs, and assigns taxons. MetaPhlAn2 takes meta-
genomic shotgun sequencing data to profile the composition of microbial communi-
ties by mapping the sequences to the built-in clade specific maker genes. Both QIIME 
and MetaPhlAn2 have been used in many microbiome research projects including well 
investigated HMP and DIABIUMME projects. Most metagenome taxonomic profilers 
including QIIME and MetaPhlAn2 generate taxonomy profile output as OTU table or 
BIOM (Biological Observation Matrix) format [32] by providing simple scripts to merge 
multiple taxonomy profiles together. MegaR takes a merged OTU table or BIOM format 
as input. The user will also need to provide a metadata file containing the class of each 
sample in the data set.

Machine learning methods

For the machine learning models in MegaR, we incorporated three machine learn-
ing classifiers: the first is generalized linear model (GLM), the second is support vector 
machine (SVM), and the third is random forest (RF). These approaches were imple-
mented into MegaR by integrating the caret [33] and randomForest [34] packages.

The general linear model (GLM) is a statistical linear model also called as multivari-
ate regression model [35]. GLM has several advantages over the other machine learning 

Fig. 1  Illustration of MegaR flowchart. MegaR takes any taxonomy profiles from 16S rRNA and shotgun 
metagenomic data. After selecting taxonomic features, machine learning method, and multiple options, the 
user can train a model. Cross validation is supported before predicting unknown samples
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models. One is that it is easier to interpret since the coefficients are used within the 
mode. Many other accurate prediction models could be used to reduce error rates, but 
the ability of GLM to provide clarity while maintaining efficacy is the reason that this 
model has been adopted into MegaR.

A support vector machine (SVM) is a widely used non-probabilistic supervised 
machine learning method that tries to find an optimal hyperplane with maximizing the 
margin around the separation by the hyperplane [36]. SVM supports both linear and 
non-linear classification based on labeled data. SVM structure shapes a hyperplane or 
hyperplanes in multi-dimensional space to separate the data points with maximum mar-
gin classifier.

Random forest (RF) is also a commonly used decision-tree based method for classifi-
cation and regression due to high-accuracy in prediction [34]. Random forest establishes 
numerous decision trees that are trained by the bagging method and select the features 
randomly. The primary benefit of using the RF method is providing pretty strong predic-
tion accuracy in general by not overfitting with many trees. Another important advan-
tage of using the RF model is that important features can be pulled and extracted easily. 
Those important features can be crucial role in many research studies such as identifying 
target associated features and biomarkers.

Data processing and model development

The quantitative microbiome profiles in genus, species, and all levels can be selected by 
the user as features in the machine learning model. Because metagenomic datasets usu-
ally have different sizes and depths of sequences, MegaR provides four normalization 
options including Cumulative Sum Scaling (CSS), Quantile, Trimmed Mean of M-values 
(TMM), and none (NO) to normalize the aggregated metagenomic counts among sam-
ples [37]. The package also allows the user to set a minimum abundance threshold to 
filter out low abundance microbes that may not provide useful information.

After selecting the appropriate machine learning method for classification and modi-
fying the parameters to best fit the data, the user can generate a model. MegaR provides 
an error rate for each prediction model generated that can be found under the Error 
Rate tab. The error rate of prediction on a test set is a better estimate of model accuracy, 
which can be estimated using a confusion matrix that is generated by the program under 
the Confusion Matrix tab. MegaR also provides an AUC graph of the model under the 
AUC​ tab. From a practical perspective, it is important to identify features that are use-
ful in identifying the class of metagenomic samples. MegaR provides this data as a list 
of the top ten most important species or genera that are crucial in identifying the class 
of sample along with their variable importance under the Important Feature tab (Fig. 2). 
An additional feature of MegaR is “Class to remove” option that can improve prediction 
accuracy. When more than two classes are present in a data set, it is possible for the user 
not consider a specific class of the data set. Disregarding a class can also increase the 
prediction accuracy by narrowing down of the features.

Cross validation

Cross-validation is a manner to access, judge, and review the performance of machine 
learning models. First and foremost, cross validation is essential to validate the model 
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accuracy and model bias. This implies that the developed model should not be overfitted 
and not having bias.

To make a better model, all data set is not usually used for the training purpose, but 
split into training and validating/testing sets. For example, in k-fold cross validation, the 
dataset is shuffled and divided into k sub samples. The k − 1 samples are used as a train-
ing dataset and the single partition is used for validation. This process is repeated k times 
to represent the model performance. MegaR provides cross validation options allowing 
for an accurate prediction measure. The variance in fitting the model tends to be higher 
if it is fitted to a small dataset, therefore k-fold cross validation can have a high variance. 
MegaR provides users to select N independent runs of the tenfold cross validation to 
minimize such a high variance.

Sample prediction

MegaR provides a Prediction tab for users to upload unknown samples and get a predic-
tion on which category the unknown samples fall into among classes. Once a satisfactory 
model is created for the data set, the user can load a set of unknown samples into MegaR. 
Then MegaR generates a classification prediction for each sample in the set of classes, 
categories, or states. This function is useful for identifying the disease states of in indi-
vidual which can provide a path towards precision medicine through the use of microbe 
composition as diagnostic biomarkers. MegaR also has a feature that allows the user to 
download the trained model for later use in Prediction. If a user clicks the Download 
Model button after training, the model (RDS type) file is generated and downloaded. The 

Fig. 2  MegaR tool snapshot. Model building snapshot with Important Feature tab
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user can then load this model for prediction of unknown samples without re-training 
the model.

Results
Dataset

In order to demonstrate the efficacy of MegaR as a disease sample prediction tool, DIA-
BIMMUNE (https​://pubs.broad​insti​tute.org/diabi​mmune​) microbiome project data sets 
were used to perform a sample pipeline execution in MegaR. The DIABIMMUNE pro-
ject aims to find if the limitation in early exposure to bacteria and infections in western 
and developing country is related to increasing incidence of both autoimmune and aller-
gic diseases. The DIABIMMUNE project provides three publicly available data sets.

The first dataset consists of 812 metagenomics samples and 1584 16S samples from 
three different countries: Estonia, Finland and Russia. Some samples that did not have 
labels were dropped. We also analyzed 16S rRNA datasets, with 448 from Finland and 
664 from Russia. The second cohort, named T1D cohort, consists of 126 metagenomic 
samples from 19 children in Estonia and Finland: 92 samples with T1D; 32 samples 
without T1D; 2 samples without T1D status were filtered out. This cohort consists of 
28 samples from birth to age one, 62 samples from age one to two and 38 samples from 
age two to three. In the T1D cohort there were 777 16S rRNA samples, out of which 
175 had T1D, and 85 samples did not have T1D. 314 samples were from children from 
birth to one age, 297 samples were from children from one to two, and 166 children were 
from two to three in terms of the age group. The third cohort is called antibiotic cohort 
and consists of 240 metagenomic samples, from 39 subjects. There were 139 samples 
from children who were treated antibiotics and 101 samples from children who were not 
treated with antibiotics. In the 16S rRNA data set, there are 528 samples from children 
who were not treated with antibiotics while 520 samples were from children who were 
treated with antibiotics.

In order to benchmark the performance of MegaR against other packages, we used 
the data set from the MetAML project [28]. From this dataset, we compared the per-
formance of MegaR against MetAML for the T2D [38, 39] and Cirrhosis [40] data sets. 
The T2D dataset used was an aggregated dataset from two separate studies, totaling 490 
participants, 345 being Chinese and 145 being European. Samples were obtained from 
fecal samples in these studies. The liver cirrhosis data set consists of 98 patients and 83 
control individuals.

Taxonomy profiling

Preprocessed shotgun metagenomic data sets were downloaded from the DIABIM-
MUNE project. Left and right paired-end reads were concatenated together. The result-
ing data was run through MetaPhlAn2 using the parameter -t rel_ab_w_read_stats to 
obtain relative abundance and the number of reads derived from each clade. This esti-
mate was extracted from each sample and merged into one file. The MetaPhlAn2 table 
that is available at the DIABIMMUNE project website had relative abundance as feature 
value. Our test shows that estimate of count as generated by MetaPhlAn2 option above 
is much better for classification. The associated metadata file was downloaded from the 

https://pubs.broadinstitute.org/diabimmune
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DIABIMMUNE website. All 16S rRNA taxonomy profiles were downloaded as an OTU 
table in BIOM format or tab separated format from the DIABIMMUNE project website.

Model and prediction accuracy

We used MegaR to analyze different datasets from the DIABIMMUNE research group. 
In the preliminary research, we tested each machine learning model available in MegaR; 
GLM, SVM and RF for each dataset (Table 1). Overall the model was tenfold more accu-
rate when species was selected for feature rather than genus. So, all our analysis thereof 
uses species for the analysis. In the case of RF, the model is more accurate for WGS data 
than 16S rRNA data in the three-country cohort and the T1D cohort. In the case of 
SVM and GLM, all models from 16S rRNA metagenomics had a higher accuracy than 
WGS. Among RF, SVM and GLM, RF performed the best followed by SVM and GLM, 
with the exception of the 16S rRNA T1D cohort where SVM performs the best followed 
by RF and GLM.

We used MegaR to check if optimizing the threshold and percentage of sample 
with threshold as well as data split for training and testing improves the model (Fig. 3, 
Table 2). Our result showed a slight increase in accuracy than obtained from preliminary 
analysis in all the cases. We validated the improved model using cross validation. The 
validation accuracy for all the models was within 80- 90% range except for the antibiotic 
cohort using WGS, for which the cross validation accuracy was 72%.

We also checked if there is any age wise difference between our tool to classify the 
model. Although the overall performance of the model was within the accuracy of 77% 
to 90%, the 95% interval was very large (66–95% for 3 years) showing unreliable nature 
of the model. This could be due to the low number of samples available for building the 
model.

Benchmarking

We benchmarked MegaR against MetAML using the T2D [38, 39] and Cirrhosis [40] 
data sets provided by the MetAML project [28]. Using MegaR, we were able to obtain 
a slightly higher prediction accuracy for both datasets compared to the results reported 
by the MetAML project (Table 3). The model parameters used to achieve these results 
with MegaR were as follows. A threshold of 0.003 was used with a 90% 5 T 5P split. We 

Table 1  Accuracy of RF, SVM and GLM across three datasets from DIABIMMUNE research 
group

Bold values represent the highest accuracy for each type of tested data in any given dataset

Dataset Data type Accuracy

RF SVM GLM

Three country cohort 16S 0.8832 0.8063 0.7844

WGS 0.8846 0.7014 0.5165

T1D cohort 16S 0.9017 0.9245 0.5897

WGS 0.9385 0.7719 0.6316

Antibiotic cohort 16S 0.8666 0.7544 0.7397

WGS 0.7149 0.6328 0.5362
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Fig. 3  MegaR model prediction results of T1D cohorts using RF. a Error rate, b confusion matrix, c important 
features, d AUC graph

Table 2  Accuracy of  optimized RF and  cross  validation results across  three datasets 
from DIABIMMUNE research group

Bold numbers represent highest values for the given data set. 16S RNA and WGS data was tested for each of the three data 
sets. Optimal model parameters are the values used to obtain the highest accuracy for the data set

Dataset Data type Optimal model 
parameter

Model accuracy 95% CI Cross 
validation 
accuracy

Three country cohort 16S 80%, 100T, 20P 0.9028 0.9382–0.8562 0.8685

WGS 70%, 100T, 10P 0.8864 0.8312–0.9285 0.8803
T1D cohort 16S 80%, 5T, 5P 0.9615 0.8686–0.9928 0.9069

WGS 90%, 100T, 10P 0.9481 0.6774–0.9987 0.9036

Antibiotics cohort 16S 70%, 0T, 0P 0.8772 0.8312–0.9285 0.8643
WGS 80%, 10T, 10P 0.7916 0.6502–0.8951 0.7205

Table 3  Highest observed cross  validation accuracies of  MegaR and  MetAML on  T2D 
and Cirrhosis data sets

Bold values represent the highest obtained accuracy for each dataset

Dataset Program Accuracy Percent difference

T2D MegaR 0.6683 0.6509

MetAML 0.6640

Cirrhosis MegaR 0.8846 0.8608

MetAML 0.8770
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believe that this slight increase is due to the ability of the MegaR package to fine tune the 
model parameters to easily optimize the model for each data set.

Conclusions
The MegaR package is an easy to use, versatile tool built with the intent of encouraging 
the use of machine learning analysis of metagenomic dataset for the purpose of pheno-
typic prediction and classification. The user-friendly interface allows users to fine tune 
the model for the specific data set in use in order to maximize the prediction accuracy, 
therefore increasing the potential functionality of machine learning for these tasks.

For each analysis, MegaR provides various useful metrics in the forms of tables and 
graphs that allow the user to determine if (1) there is enough available data to build a 
model, (2) the error rate of the model by more of error graph and confusion matrix, (3) a 
list of the top 10 most important features identified by the model, which allows research-
ers to focus on these features for further research or drug development, (4) download-
able figures to be used in further publications.

Our results indicate that the RF model provides the highest accuracy in most metagen-
omic classification scenarios compared to SVM and GLM. GLM is useful for the exami-
nation of 16S rRNA due to the large number of samples compared to WGS data sets, 
although GLM is less efficient on datasets with high dimensionality. While the standard 
split criteria in machine learning is 80:10:10 for train:validation:test, we tested various 
split criteria and, depending on the data, obtained various accuracies. Many machine 
learning models do not perform well if features are very sparse. As anticipated, removing 
sparse features expressed in low numbers increased the machine learning model accu-
racy. Our cross validation of the improved model shows that the models are robust and 
can be used for prediction with the obtained confidence. In the near future, we plan to 
test other machine learning classifiers and deep learning methods to increase the predic-
tion accuracy with fast turnaround time.
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