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1. Introduction

Ulam [25] suggested a problem of stability on group homomorphisms in metric groups in 1940.
Hyers is the first mathematician who answered the question of Ulam in 1941. He demonstrated the
following theorem in [12].

Theorem 1.1. Let M and N be two Banach spaces and f : M — N be a mapping such that
lf(m +n)— fm) - f)l| <6
for some & > 0 and all m,n € M. Then there exists a unique additive mapping A : M — N such that
lf(m) —Am)l| <6

forallme M.
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The results of Hyers’ stability theorem were developed by other mathematicians. Recently,
numerous consequences concerning the stability of various functional equations in different normed
spaces and various control functions have been obtained.

The problem of stability of some functional equations have been widely explored by direct methods
and there are numerous exciting outcomes regarding this problem [1,2,9, 13-16, 19,21,23,26]. The
fixed point approach has been used to study the Hyers-Ulam stability investigations. The relationship
between Hyers-Ulam stability and fixed point theory has been defined in [3,4,20,22,24].

Definition 1.2. [22] A functiond : M X M — [0, o] is named a generalized metric on the set M if d
satisfies the following conditions

(a) foreach m,n € M, d(m,n) = 0 if and only if m = n;

(b) for all m,n € M, d(m, n) = d(n, m);

(c) forall m,n,l € M, dm,]) < d(m,n) +d(n,l) .

Notice that the just generalized metric significant difference from the metric is that the generalized
metric range contains the infinity.

Theorem 1.3. [22] Let (M, d) be a complete generalized metric space and J : M — M be a contractive
mapping with Lipschitz constant L < 1. Then for every m € M, either

d(J m, Jm) = oo

for all nonnegative integers s or there exists an integer sy > 0 so that
(a) Forall s > sy, d(J*m, J**'m) < oo;
(D) J*(m) — n*, where n* is a fixed point of J;
(c) n* is the unique fixed point of J in the set N = {n€ M : d(J*(m),n) < co};
(d) For eachn € N, d(n*,n) < ﬁd(]n, n).

Dales and Polyakov [8] introduced the concept of multi-normed spaces. We have collected some
properties of multi-normed spaces which will be used in this article. We refer readers to [8,17, 18] for
more details.

2. Multi-Banach algebras

Suppose that (A, ||.||) is a complex normed space and k € N. The linear space A @ - -- @ A consists
of k-tuples (xy,--- , x;) denote by A* where x;,--- ,x;, € A. The linear operations on AF are defined
coordinate-wise. The zero element of either A or A¥ is denoted by 0. The set {1,2,--- ,k} is indicated
by N; and we denote by X, the group of permutations on k symbols.

Definition 2.1. [8] A multi-norm on {A* : k € N} is a sequence

(- 1le) = (I - 1l = & € N),

such that || - || is a norm on A* for every k € N with || - ||, = || - |I:

(M) [|(Xo(1ys -+ s Xoglle = ICx1, - .., x|k for every o € Xy and xy, - -+, x; € A.

(M2) |[(a1x1, . . ., x|k < (MaXien, |aiDI(x1, -+, xo)lle forall @, -+ -, € Cand xq,- -+, x; € A.
(M3) ||(xyy -+ X1, Ok = [1(xrs o+ oy X—)llk—1 for all xq, - -+, x g € AL

(M) NICers -+ X1, Xa— DIl = ety ==+ Xe-)|le—r for all xy, ..., x5 € Al
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With these properties, we say that ((A, || - ||lx) : k € N) is a multi-normed space.

Lemma 2.2. [18] Assume that (A%, - |lx) : k € N) is a multi-normed space and let k € N. Then

@) I(x, ..., Ollx = ||x]| for all x € A.

(if) maxjay, llxll < lCep, -+, x0lle < Ty Ilxll < & maxiey, [1xl|
forall xy,---, x; € A.

By the second part of the above lemma, we conclude that, if (A, ||-||) is a Banach space, then (A%, ||-||;)
is a Banach space for every k € N. In this case, ((AX, ]| - |lx) : k € N) is a multi-Banach space.

Example 2.3. [8] We define the sequence ((A%, || - ||lx) : k € N) on A* as follows:

[x1. - x|, == max|lx]l forall (xi,...,x €A).
ieNg

This is a minimum multi-norm on A,

Definition 2.4. [8, 17] Suppose that (A, || - ||) is a normed algebra such that (A, || - |l) : kK € N)is a
multi-normed space. Then ((A%, || - ||o) : kK € N) is called a multi-normed algebra if

[(@ibr,....aby)|, < ||(@r ... a0, - |1, ... B0

forallk € Nanda,,--- ,ar by, -+ , by € A. Moreover, the multi-normed algebra ((A%, || - |l¢) : k € N) is
a multi-Banach algebra if ((A*, || - ||¢) : kK € N) is a multi-Banach space.

It is obvious that every Banach algebra is a multi-Banach algebra with minimum multi-norm.
A mapping * : A — A, denoted by
(x) = X7,
is an involution on A if
(1) x™ =x,
(2) (Ax + uy)* = Ax* +1y*, forall x,y € Aand A, u € C,
B)(xy)" = y*x*, for all x,y € A.

Definition 2.5. Assume that (A%, || - |l¢) : k¥ € N) is a multi-Banach algebra. A multi-C*-algebra is a
complex multi-Banach algebra ((AX, | - |l¢) : k € N) with an involution * satisfying

2
k°

||(a>i<a17 T, azak)”k = ||(a1’ Tt 7ak)|

forallk e Nand ay,...,a; € A.
3. Main results

In all sections of this article, wherever needed, we assume that

Sti={zeC: =1}, S| ={ 0<6<X)

1o
for ny € N. It is obvious that S' = Sll . Furthermore, suppose ((Ak, [Illx) - k € N) is a multi-Banach
1

algebra. Let [ := sz“ for real o greater than or equal to 2. When A is a Banach algebra, for a mapping
f:A— A, we define

B f 5,3, = 0if (2 4 2) = £a) = fG) - af 72,
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forall x,y,z€ Aand u,v,n € S, .

An algebra A is called C *—af?;ebra if it is a Banach algebra with an involution * such that ||xx*|| =
|| x||>. We suggest [6] as a reference for stability in Banach algebras and C*-algebras.

Lemma 3.1. Let I be a positive real number and ¢ : A>* — [0, 00) be a function such that there exists
L < 1 satisfying

I o(Ixy, Iy, 12y, -+ I, Iyg, Izi) < Lo(X1, V1,21 * > Xeo Vi k) 3.1
Sforall xi,x2,-+ , Xk, Y1,¥2, "+ Yk 21522, » % € A. Then

lim I7(I'xy, Py, Fzy, -+, Uxy, Py, P'zg) = 0.

joeo
Proof. Putting x; = Ix;, y; = Iy; and z; = Iz; for 1 <i < kin (3.1), we have
IloUxy, Iy, Izy, -+ Do Iy 1z) < Lo(x1, y1,20, -+ Xk Yoo 20)-

Replacing x;, y;, z; by Ix;, Iy;, Iz;, respectively, in the above inequality, we get

PPy, Py, Py Pxi Py Pa) < LPo(x1, 31,20+ 5 X Yo 2)-
By induction, we obtain

"o xy, Iy, 12y, - T X0, Iy, I 20) < L'(X1, Y1520, 5 Xk Vi 20)-
Since L < 1, we get

Hm I™"(I"x1, I"yy, "2y, -+ I X, Iy, ') = 0,

n—oo

as desired. m|

Theorem 3.2. Let (A", ||.]l,) : n € N) be a multi-Banach algebra and f : A — A be a mapping and
¢ : A — [0, 00) be a function satisfying (3.1) and

”(Em]vf(xhyla Zl)’ T Em]vf(xka Yies Zk))”k < So(xlayl’zl’ C s X Yies Zk)7 (32)
O Ceryr) = fODS ), -+ fay) = FOS Gl < @(x1,y1,0, -+, Xk, Y1, 0), (3.3)
lim 7" F(I" Tim I f(I"x)) = x (3.4)

for all x,x1,y1,21, " X, Y- 2 € A and p,m,v € S'| . Then there exists a unique involution mapping
F : A — A which satisfies '
1
ICFCxr) = fCxer), - Fx) = fi)lle < mSD(xl, X1y X150 5 Xky Xy Xg)- (3.5)

Furthermore, (a) if
NCFCen), f(x2)s ooy FODMk = 11CGer, X2, oy x| < @(xr, X1, X1, -0y Xiy Xy Xi) (3.6)
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forall xi,x,,...,x, €A, then the involution mapping F : A — A is continuous;

D) if
Gt £, - i f DM = 11, -« Xl | < @ty X1, X1, - o Xiey Xiey Xi0) 3.7)
forall xi,x,,...,x; €A, then A is a C*-algebra with involution x* = F(x) for all x € A.

Proof. Let (A, d) be a generalized metric space given by the following definition:

A = {g:A—A; g0)=0},
d(g,h) = inf{c €[0,00) : |[(g(x1) = h(x1),- -+, 80x) — h(x)llk (3.8)
< c@(Xi, X1, Xiy 0 5 Xiey Xgey Xp) )

for all xy, x,,...x; € A. We can show that the metric space (A, d) is complete (see [5, Theorem 2.5]).
Next, we define an operator

T @ A—>A
(Te)x) = I'g(lx), (3.9

for all x € A. We claim that the operator Y is strictly contractive on A. For this, assume that d(g, h) = «
for any g, h € A, for some x € R, we have

I(g(x1) — hA(x1), - -+, 8(xk) — h(x)llk < kp(X1, X1, X1, *++ 5 Xy Xies Xie)s

for all xy,x,,---,xx € A. Replacing xi, x5, -+ ,x; by Ixy,Ixy,- -+, [x;, respectively, in the above
inequality, we get

I(g(Ix1) — h(Ixy), ..., g(Ixi) — h(Lx)lle < kp(Ixy, Ixy, Ixy, . .o, Ixge, Ixg, Ixy)
and by (3.1), we obtain

I g (o) = I h(Ixy), -+ T g(Tg) = I h(Ix) Ik

IA

kI (I xy, Ixy, Ixy, -+, I, I, Ix)

KL(x1, X1, X1, Xy Xpe» Xi)-

So d(Yg,Th) < kL. Hence we get
d(Cg,Th) < Ld(g, h).

Then 7 is strictly contactive on A by Lipschitz constant L < 1.
Lettingu=n=v=1andy; =z := x;for 1 <i<kin (3.2), we obtain

||(E/U7Vf(xla X], xl)a cet E;U]Vf(xk, xk’ xk))”k S QD(X], .X], .X], T Xk, xka Xk), (310)

for all x1, xo,--- , x; € A. Note that

E,u,r],vf(xl» X1, xl)

of (T ) = fn) - fG) - af ()

2
f( ;“xl)—@m)f(xl).
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By (3.10), we have

| (af(2 ;“xl) —@+a)f)... .,af(2 ;“xk) @+ a)f(xk)) | < )
for all x, x5, ..., x; € A. Thus we get
|t s = s g - S )
for all xq, x5, ..., x; € A. It follows from (3.9) that
|ecren = s e - re S L ),
for all x, x5,...,x; € A, and by (3.8), we get
dCCF, f) < oz-1|-2 < co. 3.11)

The conditions of the fixed point theorem are estabilished, so there exists a mapping F : A — A such
that '(0) = 0 and the following conditions hold.
(i) F is a fixed point of Y. This means that

(TF)(Ix) = F(x) = I"'F(Ix) = F(x) = F(Ix) = IF(x)

and thus

2 2
F(01+ x):a+ Fo
@ @

for all x € A. Moreover, the mapping F' is a unique fixed point in the set

x=1g€A: dg,[f) < oo}

Note that ny = 0 in Theorem 1.3. From (3.8), there is ¢ € [0, o) satisfying

ICF(x1) = f(x0), ... FGx) = fallk < co(xr, Xp, X1, 00y Xi Xk Xg)-

(i1) The sequence {1 f} converges to F. This implies that

F(x) = lim I f(I"x) or F(x)= lim (2 f_‘a) f((2 ;“) x) . (3.12)
(ii1) We obtain .
d(F, f) < 7 _Ld(TF’f) < 0-DC+a

and so (3.5) holds. By Lemma 3.1, (3.1), (3.2) and (3.11), we have

Xk + Yk

H(QF(Xl + 1 +Z1) — F(x))— F(y)) — aF(z)), - ,aF(

" zk) — F(x) = F(y) — aF(z,a)
o

k
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+
= ‘ (alimI"f (I” (u + zl)) — lim I""f(I"x;) — lim I f(I"y;) — a lim 7" f(I"z)), - - - ,
a n—00 n—oo n—o0o0

n—oo

n—oo

o lim I f (1" (m ; zk)) — lim I f(I"xp) — lim I f(I"y;) — @ lim I f(I"zk))”
a n—oo n—oo n—o00 k

- 1im 1—"[ (@f (w + 1”Z1) — fI"x) - F(I')
I" I
—af(I"z).....af (% + I"Zk) — fUI"x) — FU") - af(I"2)) k]

< lim (" xy, I"yy, "2y, - -+ ' x, Iy, I'z;) = 0 (by Lemma 3.1).

n—oo

So we obtain

|@r (P22 2 20) - e - Fow - aF @ (B2 v a) - o - Foo - )| =0
Replacing x, x5, ..., x; and y;,y,,--- , v and 2, 22, - - -, 7 With x,y, z, respectively, we have
”aF (’%y ; z) _F(x)-F() —aF@| =0
and thus X+
oF (T N z) = F(x) + F(y) + aF(2)
and so F'is an additive mapping, that is,
F(x+y)=Fx)+ F(y) (3.13)

for all x,y € A (see [11]).
We will show that F(xy) = F(y)F(x) for all x,y € A. Substituting x;,x;,--- ., x; with
I"x;, I"x, ..., ["x; and yy, v, -+ -,y with I"y;, I"y,, - -+, I"y; in (3.3) and dividing on /2", we obtain

I 2n

PP xayn) = FAYDLUA 0 T390 = FAFA )]
< I2o(I"xy, I"yy, 0, - -, I"xp, 'y, 0).

Letting n — oo, we have

|FGeiy) = FODFG), - F(xive) = FOOF )
< lim I"*o(I"x, I"y1,0, - - - , I"x, "y, 0) = 0 (by Lemma 3.1).

Replacing xi, x,,- -+ , x; and yy, y,, - - - , yx With x, y, respectively in the above inequality, we get
IF(xy) = FO)F(0)ll = 0= F(xy) = F(y)F(x) (3.14)
for all x,y € A. We will show that F(ux) = gF(x) forall x € Aand all u € S, .

The method applied in [10] is used to continue the proof. Substituting x; = yi = z; := I"x; for every

1 <i<kandn=v:=u, weobtain

H(E,unvf(lnx] P I”)C] ) Inxl), R Eynvf(lnxka In-xk, Inxk))

k
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_ (" +1I"x Y Y i N
_ ”(cwf(; y xl) Cfulx) — fl'x) — af @), -
I'x;, + I'x;,

[0

‘k

aﬁf( + I"xk) = fud"x) = f(ul"x) — af (ul"xy))

‘k

- H(aﬁfa"“xo (@ D f ) I ) — (@ + 2l )

<oI"xy, "xy, " xy, -+, ' xp, I xp, T ).

In particular, if 4 = 1, then

< So(lnxl’lnxblnxl’ e ’Inxka In-xk’ Inxk)'

H(af(l"“xo L@+ D fI R, ST ) — (@ 2)f ()

k
We have

‘k

H((z F Ul = 2 + RT3 (2 + @) fl"x) — 2 + DFFU"x0)
- H((z F )l x) — i) + Qi f I ) — 2+ EFI ).

Q2+ o) f(ul"x) = af " x) + i f(I™ ) = 2 + ) f (" x,)

‘k

<[l + @ @) - e, @ + @) f i) - aﬁf(l"“xk»Hk
+H(aﬁf(l”“x1) S Q@+ @A) G ) — 2+ D)) L
< [+ st - amrr ...+ nftur - amp )|

+ul ‘(af(l””xl) QR+ a)f"x), - af(" ) ~ 2+ a) f(I"x)

S 2()0(Inxl’lnxl’lnxl’ Tt 9Inxk’ In-xk’ Inxk)

‘k

for all x, x5, ..., x; € A. This implies that

H(I‘”f(ul"xl) SRR T ) — B ()

k
ST(fd"x) —pf(xy), - f(ud"x) — pf () .
< o xy, I"xy, I'xy, oo T X, I, I )
2+ a
< I xy, I'xy, Iy - 1" g, 17 X, 17 Xy)
for all xi, x2,- -+, xx € A. Asn — oo, we have

o H(’ T = TR, L T ) = EFAx0)| =0,
n—o00 «

by Lemma 3.1. Therefore,
N(F(uxr) = uF(x1), -, FQux) = pF (x)lle = 0.
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Letting x; = x, = -+ = x; = x, we get
F(ux) = uF(x) (3.15)

forall x € A and u € S', . Now, we will show that the above equality holds for all u € C. To prove this,

oy
we can consider the following statements:

(1) If u € S! then there exists 6 € [0, 2xr] such that u = €. Putting u; = ¢ e S!, by (3.15), we get

llo
W = = Fux) = i F(x) = GF(x)

forall x € A.

(2) If u € nS' = {nz; z € S!'} for some n € N, then by additivity of F, we have
F(ux) = F(nzx) = ZF (nx) = nzF(x) = uF(x).

(3) Let ¢ € (0, 00). Then there exists a positive integer n such that the point (¢, 0) lies in the interior of
circle with center at origin and radius n. Putting ¢; := t+ i Vn?> —? and 1, := t — i Vn? — £, we have

t =12 and 1,1, € nS'. It follows that

F(tx) = F(t1 il tzx)

N B = rly ¢ R
F(§x+§x)—F(2x)+F(2x)
EF()+EF()
= —Fx)+<-F(x
2 2

- h ; 2 p(x) = tF(x)

for all x € A. On the other hand, for any A € C, there is 6 € [0, 27] such that A = |A]e. It follows that
F(x) = F(Ale™x) = |Ale”F(x) = [Ale”F(x) = AF(x)
for all x € A. Hence, for any case, we get
F(Ax) = AF(x) (3.16)
for all A € C. Using the assumption (3.4), we have

F(F(x)) = F(lim I""f(I"x)) = lim I"" f(I" lim I"" f(I"x)) = x

and thus
F(F(x)) = x. (3.17)
Hence F(x) is an involution for A, since
F(x+y) = Fx)+F(), ie, (x+y) =x"+y" by (3.13),
F(xy) = FO)F(x), ie., (xp)" =yx* by (3.14),
F(lx) = AF(x), ie., (1x)" = Ax* by (3.16),
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F(F(x)) = x, ie., (x°)" =x by (3.17).

Therefore A is a Banach algebra with an involution F(x). To prove (a) of Theorem 3.2, replacing
X1, X2, , X by I"x1, [" x5, - - -, I"x; in (3.6) and dividing both sides on I, we have

I—n

FA ), fT 3, fTx)]],

ST x1, Ixy, Ixyy - T X, I X, I ).

"Xy, I I"xk)“k

Letting n — oo, we have

(F(x1), F(x2), ..., FCa)lle = 11Cx1, x2, - -+ xo)lle| < r}l_{g I"o(I"xy, I"x1, I"xy, - -+ " xp, Iy, I xp) = 0.

Replacing xi, x;, - - -, x; by x, we get
WEI =Xl =0 = [I[FIl = [xI|.

This implies that the involution F(x) is isometric. Let {x,} be an arbitrary sequence in A such that

x, — x. Then
I, = Xl = |F (x, — 0l = [1F(x,) = F(Ol,

which indicates that the involution F(x) is continuous. To show that A is a C*-algebra, we must prove
that
IXF ol = [lxI.

For this purpose, we use the assumption (3.7) and the equality (3.12). If

GG, - f @), = e - x|,

< SD(X[,Xl,X], .. .,Xk,-Xk,Xk),

for all xi, x,,- -+, x; € A, then by replacing xi, xp, - -+ , x; by I"x1, I"xy, - - - , I"x; and dividing both sides
of the above inequality by /2", we obtain

I xi f("x), - o f x|, = | x0 s )|

< I2"o(I"xy, I"x1, "Xy, - -+, Iy, I, Ix).

I 2n

Thus

‘”(I_"xlf(l"xl), ce I_"xkf(I”xk))”k - ||(x1, X, 0, xk)”i < T2 %y, I'xy, Iy, - - I, T, 17 X).

Letting n — oo, we get

|e1 Fx), ... ,XkF(Xk))”k — ||Gers 2, - ,Xk)”i

< lim I"2"o(I"xy, I"x1, I"xy, . .., I"xg, I"xg, I"x) = 0.

Therefore, )

|1 F G, -+ aF )|, = [|Ger xa, -+ )

Replacing xi, x,, - - - , x; by x in last inequality, we have
IXFQoll = [lxI?

for all x € A. Then A is a C*-algebra with F(x) as an involution. O
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Corollary 3.3. Let f : A — A be a mapping such that

H(E,unvf(xlayh 215 s By f (ks Yis 21))

k
< e( Il + lyill? + ||z,-||"),
k

=1

1

I(f Ceryn) = FODS (), -5 fy) = FORf ()l < 6( llxill” + IIinI”),

k
i=1

lim I f(I" Gim I f(I"x)) = x

m-—o00

forallx’xl’XZ’ s Xk Y15 Y25ttt 5 Yk <1532 0 53k € A and,u,n,v € Si: )4 € [Oa 1) ande € [Oa OO) Then
there is a unique involution mapping F : A — A such that ’

3 k
N(F Q1) = f(xn), - s Fxa) = fa)lle < a(I——EIP) ; [lxill”.

Furthermore, (a) if

k
1P = 1, fO) = X0l < € ) Il (3.18)
i=1

forall xi, x5, ,x, €A, then A = A,,, which means that for every x € A, we have x = F(x); (b) if

k
<3e > Il
i=1

forall xi,x,,--- ,x; €A, then A is a C*-algebra with involution x* = F(x) for all x € A.

1o f e, ==+ xfalle = e, -+ xR

Proof. By taking
k
PO Y120 X Yo 20 = (P + il + llzP),
i=1

in Theorem 3.2, this corollary is proved. Note that

k
lim I_jSD(Ijxl,IijIjZl, ce ,Ijxk,lj)’k,IjZk) = lim I(p_l)jz (||xi||p + IIinI” + ”Zin) =0.
J—oo0

—00
J par)

Furthermore, putting I"x; by x; forall 1 <i < kin (3.18), we get

”(fu"xl) P f() — P () — ')

k
< EZ " x|P.
k i=1

Dividing both sides of the above inequality by /", we obtain

H(I‘”f(l"xl) —x, 17" f(I"x2) = xp, - , T f(I"x1) — Xi)

k
<" ) Il
k i=1
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Letting n — oo, we have
I(F(x1) = x1, F(x2) = X2, ..., () = xo)lle = 0.
Replacing xi, x,, - - - , x; by x in the above equality, we obtain
Fx)=x (.e., X' =Xx)
for all x € A. The rest of the proof is similar to the previous one. O

Theorem 3.4. Suppose that f : A — A is a mapping which satisfies (3.2), (3.3) and (3.4). Let
W+ A — [0, 00) be a function such that there is L < 1 satisfying

WXL, Y15 205 Xk Vo 2) < T 2L(Ixy, Iy, Izy, -+ I, Iy, 120),

for all x1,x5, Xk, Y1, V2, »Vir 21,22, » 2% € A and u,n,v € Si. Then there exists a unique

no
involution mapping F : A — A which satisfies

-2

LI
ICFCer) = f(xa), == F(xi) = fu)lle £ ————=(x1, X1, X1, - X, Xy Xg).-
a(l-L)

Furthermore, (a) if
NCFGer) = xi,- o, f(x) = xlle S Y, X0, X1, -+ 5 Xy X Xk)

forall xi, x5, ,x, €A, then A = Ay, that is, for every x € A, we have x = F(x), (b) if

e f (), -y X f el = (s - - - ,Xk)||i S WYXy, X1, X1, 000 Xiy Xiey Xk)

forall xy,x,,--- ,x, €A, then A is C*-algebra with x* = F(x) as an involution.

Proof. The proof of this theorem is the same as in the previous one. We prove some of the parts and
refer the rest on to the readers.

The linear mapping Y : A — A is defined by
Tg(x) := Ig(I ™" ),

for all x € A. It is easy to show that the operator T is strictly contractive. Putting u =n =v =1 and
replacing x;,v;,z; by I"'x;in (3.2) forall 1 <i < k, we get

H(waa‘lxl, I 50, s B i T T x0)

k

- H(af(xl) L@+ A ), af () — 2+ ) x))

k
< w(l_lxl, I, IMlxy, ... ,I_lxk,l_lxk,l_lxk).

Therefore,

H(f(xo CIFA ), ) — LT 50)

1
< =y x, lixg, iy, T g, Tl Tlxg),
k 07
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1
2
S al w(X1,x1,x1,...,.Xk,Xk,Xk)

for all x1, x,, ..., x; € A. Hence

NCF(x) = L), s fla) = ()l < élzlﬁ(xl» X1y X1y« ooy Xiey Xy Xi)
for all x1, xo, ..., x; € A. We obtain
d(f. T < 7
There exists a mapping F : A — A with F(0) = 0, which is a fixed point of T and (" f — F, that is,
F(x) = }1_{?0 I"f(I™"x).
The remainder is similar to the proof of Theorem 3.2. O
Theorem 3.5. Let A be a Banach algebra and ((Akll . IIk) tke N) be a multi-Banach algebra. Let

p € N with p > 2 and assume that there are 0 < L < 1 and functions T, ¢ : A* — [0, o) satisfying

L
@ (X1, )1, 5 Xy Vi) < ;sa(pxl,pyl,...,pxk,pyk),

1

lim — (4,2 2 M)
noeo p21 \pt” pt’ ptp

forall x\, -+, X, y1,--+ , Vi € A. Assume that f : A — A is a mapping satisfying f(0) = 0 and

NCf (uxy +vy) —af (xi) =vf (), f (ux +vye) — i1of Ga) = vf Gl

<S@(XLYL s X Vi) (3.19)
NCf Gaayn) = f OO f )y f Gaye) = F Qi) f (G)lle < T (s 15+ X Vi) (3.20)
2 pnf(pi s (Lx)) - (3.21)

forallu = 1,iandv = 1,i and for all x,x1,x2,-* , Xk, Y1,Y2,--.,Vx € A. Suppose that for any fixed
X € A the function t — f(tx) is continuous on R. Then there is a unique involution T : A — A such
that

N Ge) =T (1), f () = T ()l <

Xz,"',xk),

where 1
p- .

2: JX1 X1 JXk Xk

\P(Xl,)CZ,-.-,xk):: ‘p( S, —, —

j=1 p 14

forall xi,x,,- -+, x; € A.
Furthermore, if

e f G oo s 2 f Gl = 1Cers - Xl < T Ger,xr, -+ i )
forall xi,x,,...,x; €A, then A is a C*-algebra with involution x* = T (x) for all x € A. Also, if

NCF Gy s f oDl = e+ 30l < @ Cery X, e, x0)

forall xy,x,,--+ , x; € A, then the involution mapping T : A — A is continuous.
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Proof. Puttingu =v =1and y; = x1,y2 = X2, , yx = X in (3.19), we have

ICF 2x) =2f (x1), - f2xi) =2 Gl < @ (X1, X1, -+, X, Xi) s

for all x, x5, -+, x; € A. By using induction, we get

-1

N (px1) = pf (D) 5o f(px) = pf Gl < ) @ (xn, Xi, -+ 5 Jxi, Xi) -
J

<

Il
—_

Replacing x; by % in the above inequality for 1 < j < k, we get

H(f(xo —pf(ﬂ),--- () —pf(ﬂ)r)
P P

SetA:={g:A — A, g(0) =0} and define

S\P(Xl,"' ,Xk). (322)

k

d:AxXA— [0,0),
d(g,h) = inf {c >0, |I(gCx)) = h(x1),---,g(x) = h (X))l < ¥ (x1,---, x)}

for all xy, x,,--- ,x; € A. We can easily show that (A, d) is a complete metric space. We assert that
the mapping J : A — A defined by Jg(x) = pg(ﬁ) is a strictly contractive mapping. Let g,k € A with
d(g,h) < oo and d(g, h) < c. Thus we have

1(g(x1) = A(x1), ..., 8(xi) = h (X))l < ¥ (x5 ;)

for all x1, xo,--- , x; € A. Therefore,
o) (5 ) o))
p p p p

Thus d(Jg,Jh) < cL and so d(Jg,Jh) < Ld(g,h) for all g,h € A. Hence J is a strictly contractive
mapping with Lipschitz constant L. By (3.22), we have

IA

[Fe 5
pClP — X1, "Xk
4 4

< Ly (xq, -, xp0).

k

d(f,Jf) <1< oo. (3.23)

The conditions of the fixed point theorem are satisfied. There exists ny € N such that the sequence
{J" f} converges to a fixed point T of J and therefore T (ﬁ) = Il)T(x). Also T is a unique fixed point of
Jinthesety ={geA:d(J"f,g) < oo} and

d(g,Jf)
dg,T) < lg_[ (g €x).
Since lim, ., d (J"f,T) = 0, we have
. X
lim p”f(—) =T(x) (xe€A).
n—o0 p”
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From (3.23), we have d (f,T) < ;. Hence
NCF o) =T (x1) -+, f (x)
Replacing xy, x5, - -+, X by and y, y,, - -

)

Letting n — oo, we obtain

(T (ux; +vy)) = aT (x;) =T (y1), -~

Therefore,

(T (uxy +vyr) = @T (x1) =T (1), -

Replacing x1, x5, -+, x, by x and y1, y2, -+ , V&

T (ux +vy)

forall x,ye Aand u,v = 1,1.
Next, putting x; := 2L, -+, x; := % and y; :

Multiplying both sides in p**, we get

e

pl’l
)’1 Xk Yk

prpt "p"’p")'

Xk

P

Y1

Il G-3)-1(5

pn

(5

pl’l

S

X1)1

H (pznf( p

pZnI" ( X1

1
=T (x )l < T-7% (xp, xp, -+

© )k by

X1 Y1 n- X1 n=— y
_+v_n)_pﬂf(_n)_pvf(_
pP P p

)i

s Xk Xz -
and multiplying both sides by p", we get

2-rarz)-rnl2)

k

1 n X
n)’.“’p f(ﬂ_+
p

" k

T (uxy +vy) = 1T (x) = VT i)l
(x1 yi X Yk

< lim p'p| —, =, -, ,—):0.
DPn
T (uxi +vye) — T (x) = vT (i)l = 0

n—oo

D" Pn Pn

by y, we have

= iT(x) + vT(y) (3.24)

RTRE ;—f; in (3.20), we obtain

PN =G

)7

Yk

)

pl’l

X1 y1

P pr

Xk Yk

b

“ptpr

)

)

“G|‘<

X Xk

Jor (2

p

1 XiYk

n Yk
o2
p

pl’l

i k

Letting n — oo in the above inequality, we have

”T(xlyl) —T()T (),

Therefore, we get

T(xy) = T(X)T(y)

AIMS Mathematics

T (aeye) — T(xk)T(yk)

X1 y1
p" P

< hm pZ”F(

(3.25)
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for all x,y € A. We must show that T is linear. For this, we can use the method of [7]. Fix xy € A and
o € A’(dual space of A). We define the mapping ®; R — R as follows:

O(1) := p(T(tx0)) = lim p"p(f(p~"1x)).

So
(i) @ is an additive mapping, i.e., for any a, b € R, we have

®(a + b) = O(a) + O(b).

It is easy to show that @ is additive by (3.24).

(if) @ is a Borel function. Put ®©,(r) = p"o(f(p~"txy)). Then ®,(¢) are continuous, and ®(¢) is the
pointwise limit of @, (¢) and thus ®(¢) is a Borel function.

Also, we know that if ® : R" — R”" is a function such that ® is additive and measurable, then @
is continuous. Note that, if we replace R" by any separable, locally compact abelian group and this
statement is true. Therefore ®(r) is a continuous function. Let a € R. Then a = lim,_,., 7,, where {r,}
is a sequence of rational numbers. Hence

®(at) = O(t lim r,) = lim(D(tr,)) = lim r,d(F) = ad(f).

Thus @ is R-linear and therefore 7' (ax) = aT (x) for all a € R. For o = a,+ia, € C, where a;, a, € R,
we have

T(aix +iarx) = T(a1x) + T(iayx) = T(a1x) + fT(azx)
T(aix) —iT(ayx) = a;T(x) — ia, T(x) = oT (x).

T (ox)

Then T is a C-linear mapping. Using the assumption (3.21), we have

T(T(x) =T(lim p"f(p™x) = lim p"f(p™ lim p" f(p™x)) = x. (3.20)
Now, we can say that T'(x) is an involution for A (see (3.24), (3.25), (3.26) and (3.26)). O

4. Conclusion

In this research work, we demonstrated the stability for Cauchy-Jensen functional equation in multi-
Banach algebra by using the fixed point technique. In fact, we proved that for a function which is
approximately Cauchy-Jensen in multi-Banach algebra, there is a unique involution near it. Next, we
showed that under some conditions the involution is continuous, the multi-Banach algebra becomes
multi-C*-algebra and the Banach algebra is self-adjoint.
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