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1. Introduction and preliminaries

Fixed point theory is the most dynamic area of research, with numerous applications both in pure
and applied mathematics. The formal theoretic approach of fixed point was originated from the work
of Picard. However, it was the polish mathematician Banach [5] who underlined the idea into the
abstract framework and provided a constructive tool called Banach construction principle to establish
the fixed point of a mapping in complete metric space. Later, many authors attempted to generalize
the notion of metric space such as quasimetric space, semimetric spaces etc. In this paper, we consider
another generalization of a metric space, so called partial metric space which is a generalization of
normal metric space portrayed in 1906 by Fréchet. This notion was introduced by Matthews [26]. The
failure of a metric functions in computer science inspired him to introduced the concept of partial
metrics. After introducing partial metric functions, Matthews [27] established the partial metric
contraction theorem, this makes the partial metric function relevant in fixed point theory. In fact,
partial metrics are more adaptable having broader topological properties than that of metrics and
create partial orders. Heckmann [16] introduced the concept of weak partial metric function and
established some fixed point results. Oltra and Valero [28] generalized the Matthews results in the
sense of O’Neil in complete partial metric space. Abdeljawad et al. [1] considered a general form of
the weak φ-contraction and established some common fixed point results. Karapinar [17] introduced
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generalized Seghal contraction and obtained a unique common fixed point for a pair of self mappings
in complete partial metric space. Karapinar [18] generalized Cristi-Kirk’s fixed point theorems using
the concept of lower semi-continuous maps. Also, he proved some fixed point theorems in compact
partial metric spaces. Karapinar and Erhan [24] established orbitally continuous operator and gave
fixed point theorems. Chandok et al. [12] established some results for the existence and uniqueness of
fixed point for a certain rational type contraction in partial metric space. Pant et al. [29] presented
certain fixed point results for single and multivalued mappings in partial metric spaces. The results
presented by Pant et al. [29] cannot be obtained from the corresponding results in metric space.
Karapinar et al. [25] introduced rational type contraction and presented new results in partial metric
space. To illustrate the usability of the results they provided the supportive example. Aydi et al. [2]
established results on fixed point via a control function. Batsari and Kumam [6] established the
existence, and uniqueness of globally stable fixed point of terminating mappings in partial metric
space with some application in the space of probability density function. Later, many important
results in partial metric space were established as an improvement and generalization of the existing
results in the literature (see [7–11, 13, 15, 22, 27, 30, 31] and the references cited therein).

Furthermore, another significant area of fixed point theory was brought in light by Karapinar [20],
who revisited the well-known fixed point theorem of Kannan under the aspect of interpolation and
proposed a new Kannan type contraction to maximize the rate of convergence. Gaba and Karapinar [14]
proposed a refinement in the interpolative approach in fixed point theory and gave fixed points and
common fixed points for Kannan type contractions. One may have more results in partial metric spaces
by using the interpolative theory (see [1, 3, 4, 14, 19, 21, 23] and the references cited therein).

In this manuscript, we establish some theorems for the existence and uniqueness of a fixed point in
the framework of partial metric spaces using auxiliary functions. Our results generalize some existing
results in the literature. To illustrate our results some examples are provided.

In the sequel we recall the notion of a partial metric space and some of its properties which will be
useful in the main section to establish few results.

Definition 1.1. [26] Let X be a nonempty set. A function p : X × X → [0,+∞) is called a partial
metric space on X if the following hold:

(i) p(ρ, σ) ≥ 0 for all ρ, σ ∈ X and p(ρ, ρ) = p(σ,σ) = p(ρ, σ) if and only if ρ = σ;
(ii) p(ρ, ρ) ≤ p(ρ, σ) for all ρ, σ ∈ X;

(iii) p(ρ, σ) = p(σ, ρ) for all ρ, σ ∈ X;
(iv) p(ρ, σ) ≤ p(ρ, ξ) + p(ξ, σ) − p(ξ, ξ) for all ρ, σ, ξ ∈ X.

Then the pair (X, p) is called a partial metric space.

It is clear that, if p(ρ, σ) = 0, then ρ = σ. But if ρ = σ, p(ρ, σ) may not be 0.
Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open

p-balls {Bp(ρ, ε) : ρ ∈ X, ε > 0}, where Bp(ρ, ε) = {σ ∈ X : p(ρ, σ) < p(ρ, ρ) + ε} for all ρ ∈ X and
ε > 0.

Similarly, closed p-ball is defined as Bp[ρ, ε] = {σ ∈ X : p(ρ, σ) ≤ p(ρ, ρ) + ε}.
Remark 1.2. [12] If p is a partial metric on X, then dp : X × X → [0,+∞) defined by

dp(ρ, σ) = 2p(ρ, σ) − p(ρ, ρ) − p(σ,σ)

is a usual metric on X.
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Example 1.3. [12] Let I denote the set of all intervals [a, b] for any real numbers a ≤ b. Let p :
I × I → [0,∞) be a function such that p([a, b], [c, d]) = max{b, d} − min{a, c}. Then (I, p) is a partial
metric space.

Example 1.4. [12] Let X = R and p(ρ, σ) = emax{ρ,σ} for all ρ, σ ∈ X. Then (X, p) is a partial metric
space.

Definition 1.5. [12]

(i) A sequence {ρn} in a partial metric space (X,p) converges to ρ ∈ X if and only if

lim
n→∞

p(ρn, ρ) = p(ρ, ρ).

(ii) A sequence {ρn} in a partial metric space (X,p) is called a Cauchy sequence if and only if

lim
m,n→∞

p(ρn, ρm)

exists and is finite.
(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence {ρn} ∈ X converges

to a point ρ ∈ X such that
lim
n→∞

p(ρn, ρm) = p(ρ, ρ).

The following lemmas in the literature will be useful in the proofs of the main results.

Lemma 1.6. [12]

(i) A sequence {ρn} is Cauchy in a partial metric space (X, p) if and only if {ρn} is Cauchy in a metric
space (X, dp) where

dp(ρ, σ) = 2p(ρ, σ) − p(ρ, ρ) − p(σ,σ).

(ii) A partial metric space (X, p) is complete if a metric space (X, dp) is complete, i.e.,

lim
n→∞

dp(ρ, ρn) = 0⇔ lim
n→∞

p(ρn, ρ) = p(ρ, ρ) = lim
n,m→∞

p(ρn, ρm).

Lemma 1.7. [12] Let (X, p) be a partial metric space.

(i) If p(ρ, σ) = 0, then ρ = σ.
(ii) If ρ , σ, then p(ρ, σ) > 0.

Lemma 1.8. (see [12]). Let ρn → ξ as n→ ∞ in a partial metric space (X, p) where p(ξ, ξ) = 0. Then
limn→∞ p(ρn, σ) = p(ρ, σ) for all σ ∈ X.

2. Main results

The following classes of the auxiliary functions will be used later.

1). Let Ψ be the family of continuous and monotone non-decreasing functions ψ : [0,∞) → [0,∞)
such that ψ(t) = 0 if and only if t = 0.

2). Let Φ be the family of lower semi-continuous functions φ : [0,∞) → [0,∞) such that φ(t) = 0 if
and only if t = 0.
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Theorem 2.1. Let (X, p) be a complete partial metric space and T : X → X be a self mapping
satisfying

ψ(p(Tρ,Tσ)) ≤ ψ(M(ρ, σ)) − φ(N(ρ, σ)) for all ρ, σ ∈ X, (2.1)

where

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(ρ,Tσ) + p(σ,Tρ)
2

,
p(σ,Tσ) (1 + p(ρ,Tρ))

1 + p(ρ, σ)
,

p(ρ,Tρ) (1 + p(ρ,Tρ))
1 + p(ρ, σ)

}
,

N(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
for all ψ ∈ Ψ and φ ∈ Φ. Then T has a unique fixed point.

Proof. Let ρ0 ∈ X be an arbitrary point. Then we construct a sequence {ρn} ∈ X as follows:

ρn+1 = Tρn for n ≥ 0.

If there exists n such that ρn+1 = ρn then ρn is a fixed point of T and the result is proved. Suppose that
ρn+1 , ρn for all n ≥ 0. Letting ρ = ρn−1, σ = ρn, we have

ψ(p(Tρn−1,Tρn)) ≤ ψ(M(ρn−1, ρn)) − ϕ(N(ρn−1, ρn)), (2.2)

where

M(ρn−1, ρn) = max
{

p(ρn−1, ρn), p(ρn−1,Tρn−1), p(ρn,Tρn),
p(ρn−1,Tρn) + p(ρn,Tρn−1)

2
,

p(ρn,Tρn)(1 + p(ρn−1,Tρn−1))
(1 + p(ρn−1, ρn))

,
p(ρn−1,Tρn−1)(1 + p(ρn−1,Tρn−1))

(1 + p(ρn−1, ρn))

}
(2.3)

= max
{

p(ρn−1, ρn), p(ρn−1, ρn), p(ρn, ρn+1),
p(ρn−1, ρn+1) + p(ρn, ρn)

2
,

p(ρn, ρn+1)(1 + p(ρn−1, ρn))
(1 + p(ρn−1, ρn))

,
p(ρn−1, ρn)(1 + p(ρn−1, ρn))

(1 + p(ρn−1, ρn))

}
= max

{
p(ρn−1, ρn), p(ρn, ρn+1),

p(ρn−1, ρn+1) + p(ρn, ρn)
2

}
.

From the triangular inequality, we have

p(ρn−1, ρn+1) ≤ p(ρn−1, ρn) + p(ρn, ρn+1) − p(ρn, ρn),

or

p(ρn−1, ρn+1) + p(ρn, ρn)
2

≤
p(ρn−1, ρn) + p(ρn, ρn+1)

2
≤ max

{
p(ρn−1, ρn), p(ρn, ρn+1)

}
.
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By (2.3), we get

M(ρn−1, ρn) = max
{

p(ρn−1, ρn), p(ρn, ρn+1)
}
, (2.4)

N(ρn−1, ρn) = max
{

p(ρn−1, ρn), p(ρn−1,Tρn−1), p(ρn,Tρn),

p(ρn,Tρn)(1 + p(ρn−1,Tρn−1))
(1 + p(ρn−1, ρn))

,
p(ρn−1,Tρn−1)(1 + p(ρn−1,Tρn−1))

(1 + p(ρn−1, ρn))

}
= max

{
p(ρn−1, ρn), p(ρn−1, ρn), p(ρn, ρn+1),

p(ρn, ρn+1)(1 + p(ρn−1, ρn))
(1 + p(ρn−1, ρn))

,
p(ρn−1, ρn)(1 + p(ρn−1, ρn))

(1 + p(ρn−1, ρn))

}
= max

{
p(ρn−1, ρn), p(ρn, ρn+1)

}
.

By (2.2), we get

ψ(p(ρn, ρn+1) ≤ ψ
(
max(p

(
ρn, ρn+1

)
, p(ρn−1, ρn))

)
− ϕ

(
max

(
p(ρn, ρn+1), p(ρn−1, ρn)

))
. (2.5)

If p(ρn, ρn+1) > p(ρn−1, ρn), then from (2.5), we have

ψ(p(ρn, ρn+1) ≤ ψ(p(ρn, ρn+1)) − ϕ(p(ρn, ρn+1)) < ψ(p(ρn, ρn+1))

which is a contradiction since p(ρn, ρn+1) > 0 by Lemma 1.7. So we have p(ρn, ρn+1) ≤ p(ρn−1, ρn), that
is, p(ρn, ρn+1) is a non increasing sequence of positive real numbers. Thus there exists L ≥ 0 such that

lim
n→∞

p(ρn, ρn+1) = L. (2.6)

Suppose that L > 0. Taking the lower limit in (2.5) as n→ ∞ and using (6) and the properties of ψ, ϕ,
we have

ψ(L) ≤ ψ(L) − lim inf
n→∞

ϕ(p(ρn−1, ρn)) ≤ ψ(L) − ϕ(L) < ψ(L),

which is a contradiction. Therefore

lim
n→∞

p(ρn, ρn+1) = 0. (2.7)

Using
dp(ρn, ρn+1) = 2p(ρ, σ) − p(ρ, ρ) − p(σ,σ),

we have
dp(ρn, ρn+1) ≤ 2p(ρn, ρn+1).

This implies

dp(ρn, ρn+1) = 0. (2.8)
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Now, we shall show that limn,m→∞ p(ρn, ρm) = 0. On the contrary, assume that limn,m→∞ p(ρn, ρm) ,
0. Then there exists ε > 0 for which there exist two subsequences {ρm(k)} and {ρn(k)} of {ρn} such that
n(k) is the smallest index for which

n(k) > m(k) > k, p(ρn(k), ρm(k)) > ε. (2.9)

This implies
p(ρn(k)−1, ρm(k)) < ε. (2.10)

From (2.9) and (2.10), we have

ε ≤ p(ρn(k), ρm(k)) ≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k)) − p(ρn(k)−1, ρn(k)−1)
≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k)) < ε + p(ρn(k), ρn(k)−1).

Taking the limit k → ∞ and using (2.10), we get

lim
k→∞

p(ρn(k), ρm(k)) = ε. (2.11)

By the triangle inequality, we have

p(ρn(k), ρm(k)) ≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k)) − p(ρn(k)−1, ρn(k)−1)
≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k))
≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k)−1)

+p(ρm(k)−1, ρm(k)) − p(ρm(k)−1, ρm(k)−1)
≤ p(ρn(k), ρn(k)−1) + p(ρn(k)−1, ρm(k)−1) + p(ρm(k)−1, ρm(k)),

p(ρn(k)−1, ρm(k)−1) ≤ p(ρn(k)−1, ρn(k)) + p(ρn(k), ρm(k)−1) − p(ρn(k), ρn(k))
≤ p(ρn(k)−1, ρn(k)) + p(ρn(k), ρm(k)−1)
≤ p(ρn(k)−1, ρn(k)) + p(ρn(k), ρm(k))

+p(ρm(k), ρm(k)−1) − p(ρm(k), ρm(k))
≤ p(ρn(k)−1, ρn(k)) + p(ρn(k), ρm(k)) + p(ρm(k), ρm(k)−1).

Taking the limit k → ∞ in the above two inequalities and using (2.7) and (2.11), we get

lim
k→∞

p(ρn(k)−1, ρm(k)−1) = ε. (2.12)

Now from (2.1), we have

ψ(p(ρm(k), ρn(k))) = ψ(p(Tρm(k)−1,Tρn(k)−1)) (2.13)
≤ ψ(M(ρm(k)−1, ρn(k)−1)) − ϕ(N(ρm(k)−1, ρn(k)−1)),

where

M(ρm(k)−1, ρn(k)−1) = max
{

p(ρm(k)−1, ρn(k)−1), p(ρm(k)−1,Tρm(k)−1), p(ρn(k)−1,Tρn(k)−1),
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p(ρm(k)−1,Tρn(k)−1) + p(ρn(k)−1,Tρm(k)−1)
2

,

p(ρm(k)−1,Tρm(k)−1)(1 + p(ρm(k)−1,Tρm(k)−1))
1 + p(ρm(k)−1, ρn(k)−1)

,

p(ρn(k)−1,Tρn(k)−1)(1 + p(ρm(k)−1,Tρm(k)−1))
1 + p(ρm(k)−1, ρn(k)−1)

}
(2.14)

= max
{

p(ρm(k)−1, ρn(k)−1), p(ρm(k)−1, ρm(k)), p(ρn(k)−1, ρn(k)),

p(ρm(k)−1, ρn(k)) + p(ρn(k)−1, ρm(k))
2

,
p(ρm(k)−1, ρm(k))(1 + p(ρm(k)−1, ρm(k)))

1 + p(ρm(k)−1, ρn(k)−1)
,

p(ρn(k)−1, ρn(k))(1 + p(ρm(k)−1, ρm(k)))
1 + p(ρm(k)−1, ρn(k)−1)

}
.

By the triangular inequality, we have

p(ρm(k)−1, ρn(k)) ≤ p(ρm(k)−1, ρm(k)) + p(ρm(k), ρn(k)) − p(ρm(k), ρm(k)), (2.15)

p(ρn(k)−1, ρm(k)) ≤ p(ρn(k)−1, ρn(k)) + p(ρn(k), ρm(k)) − p(ρn(k), ρn(k)). (2.16)

From (2.15) and (2.16), we have

p(ρn(k)−1, ρm(k)) + p(ρm(k)−1, ρn(k)) ≤ p(ρm(k)−1, ρm(k)) + p(ρn(k)−1, ρn(k))
+2p(ρn(k), ρm(k)) − p(ρm(k), ρm(k)) − p(ρn(k), ρn(k)). (2.17)

Using (2.17) and (2.14), we get

M(ρm(k)−1, ρn(k)−1) = max
{

p(ρm(k)−1, ρn(k)−1), p(ρm(k)−1, ρm(k)), p(ρn(k)−1, ρn(k)), (2.18)

p(ρm(k)−1, ρm(k)) + p(ρn(k−1), ρn(k)) + 2p(ρn(k), ρm(k)) − p(ρm(k), ρm(k)) − p(ρn(k), ρn(k))
2

,

p(ρm(k)−1, ρm(k))(1 + p(ρm(k)−1, ρm(k)))
1 + p(ρm(k)−1, ρn(k)−1)

,
p(ρn(k)−1, ρn(k))(1 + p(ρm(k)−1, ρm(k)))

1 + p(ρm(k)−1, ρn(k)−1)

}
.

Taking the limit as k → ∞ and using (2.6), (2.10) and (2.11), we have

lim
k→∞

M(ρm(k)−1, ρn(k)−1) = max
{
0, ε

}
= ε, (2.19)

N(ρm(k)−1, ρn(k)−1) = max
{

p(ρm(k)−1, ρn(k)−1), p(ρm(k)−1, ρm(k)), p(ρn(k)−1, ρn(k)),

p(ρn(k)−1, ρn(k))(1 + p(ρm(k)−1, ρm(k)))
1 + p(ρm(k)−1, ρn(k)−1)

,
p(ρm(k)−1, ρm(k))(1 + p(ρm(k)−1, ρm(k)))

1 + p(ρm(k)−1, ρn(k)−1)

}
.

Taking the limit as k → ∞ and using (2.6), (2.10) and (2.11), we have

lim
k→∞

N(ρm(k)−1, ρn(k)−1) = ε. (2.20)
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Now taking the lower limit when k → ∞ in (2.13) and using (2.10) and (2.12), we have

ψ(ε) ≤ ψ(ε) − lim inf
k→∞

ϕ(N(ρm(k)−1, ρn(k)−1))

≤ ψ(ε) − ϕ(ε) < ψ(ε),

which is a contradiction. So we have

lim
n,m→∞

p(ρn, ρm) = 0.

Since limn,m→∞ p(ρn, ρm) exists and is finite, we conclude that ρn is a Cauchy sequence in (X, p). Using
Remark 1.2, we have

dp(ρn, ρm) ≤ 2p(ρn, ρm).

Therefore,

lim
n,m→∞

dp(ρn, ρm) = 0. (2.21)

Thus by Lemma 1.6, {ρn} is a Cauchy sequence in both (X, dp) and (X, p). Since (X, p) is a complete
partial metric space, there exists ρ ∈ X such that

lim
n→∞

p(ρn, ρ) = p(ρ, ρ).

Since limn,m→∞ p(ρn, ρm) = 0, by Lemma 1.6, we have p(ρ, ρ) = 0. Now, we shall prove that ρ is a
fixed point of T . Suppose that Tρ , ρ. From (2.1) and using Lemma 1.8, we have

ψ(p(ρn,Tρ)) = ψ(p(Tρn−1,Tρ)

≤ ψ
(
max

{
p(ρn−1, ρ), p(ρn−1,Tρn−1), p(ρ,Tρ),

p(ρn−1,Tρn−1)(1 + p(ρn−1,Tρn−1))
1 + p(ρn−1, ρ)

,

p(ρ,Tρ)(1 + p(ρn−1,Tρn−1)))
1 + p(ρn−1, ρ)

,
p(ρn−1,Tρ) + p(ρ,Tρn−1)

2

})
−ϕ(max

{
p(ρn−1, ρ), p(ρn−1,Tρn−1), p(ρ,Tρ), (2.22)

p(ρ,Tρ)(1 + p(ρn−1,Tρn−1))
1 + p(ρn−1, ρ)

,
p(ρn−1,Tρn−1)(1 + p(ρn−1,Tρn−1))

1 + p(ρn−1, ρ)

})
.

Letting the limit n→ ∞ in the above inequality and using the property of ϕ, ψ, we have

ψ(p(ρ,Tρ)) ≤ ψ
(
max

{
p(ρ, ρ), p(ρ,Tρ),

p(ρ,Tρ)(1 + p(ρ, ρ))
1 + p(ρ, ρ)

,
p(ρ,Tρ) + p(ρ, ρ)

2

})
− ϕ(max

{
p(ρ, ρ), p(ρ,Tρ)

})
≤ ψ(p(ρ,Tρ)) − ϕ(p(ρ,Tρ)) < ψ(p(ρ,Tρ)),

which is a contradiction. Thus Tρ = ρ, i.e., ρ is a fixed point of T . Finally to prove uniqueness,
suppose that σ is another fixed point of T such that ρ , σ. From (2.1), we have

ψ(p(ρ, σ)) = ψ(p(Tρ,Tσ)) ≤ ψ(M(ρ, σ)) − ϕ(N(ρ, σ)), (2.23)
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where

M(ρ, σ) = max
{

p(ρ, ρ), p(ρ, σ), p(σ,σ),
p(ρ, ρ)(1 + p(ρ, σ))

1 + p(ρ, σ)
,

p(ρ, σ) + p(σ, ρ)
2

}
= p(ρ, σ). (2.24)

Similarly

N(ρ, σ) = p(ρ, σ). (2.25)

Using (2.24), (2.25) and (2.23), we have

ψ(p(ρ, σ)) ≤ ψ(p(ρ, σ)) − ϕ(p(ρ, σ)) < ψ(p(ρ, σ)),

which is a contradiction since p(ρ, σ) > 0. Hence ρ = σ. �

Corollary 2.2. Let (X, p) be a complete partial metric space and T : X → X be a self mapping
satisfying

ψ(p(Tρ,Tσ)) ≤ ψ(M(ρ, σ)) − φ(M(ρ, σ)) for all ρ, σ ∈ X,

where

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(ρ,Tσ) + p(σ,Tρ)
2

,
p(σ,Tσ) (1 + p(ρ,Tρ))

1 + p(ρ, σ)
,

p(ρ,Tρ) (1 + p(ρ,Tρ))
1 + p(ρ, σ)

}
for all ψ ∈ Ψ and φ ∈ Φ. Then T has a unique fixed point.

Corollary 2.3. Let (X, p) be a complete partial metric space and T : X → X be a self mapping
satisfying

ψ(p(Tρ,Tσ)) ≤ ψ(N(ρ, σ)) − φ(N(ρ, σ)) for all ρ, σ ∈ X,

where

N(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),
p(σ,Tσ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)
,

p(ρ,Tρ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

}
for all ψ ∈ Ψ and φ ∈ Φ. Then T has a unique fixed point.

Taking ψ to an identity mapping and φ(s) = (1 − k)s for all s ≥ 0, where k ∈ (0, 1), we obtain the
following results.

Corollary 2.4. Let (X, p) be a complete partial metric space and T : X → X be a self mapping
satisfying

p(Tρ,Tσ) ≤ k max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(ρ,Tσ) + p(σ,Tρ)
2

,
p(σ,Tσ) (1 + p(ρ,Tρ))

1 + p(ρ, σ)
,

p(ρ,Tρ) (1 + p(ρ,Tρ))
1 + p(ρ, σ)

}
for all ρ, σ ∈ X and k ∈ (0, 1). Then T has a unique fixed point.
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Corollary 2.5. Let (X, p) be a complete partial metric space and T : X → X be a self mapping
satisfying

p(Tρ,Tσ) ≤ k max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
for all ρ, σ ∈ X and k ∈ (0, 1). Then T has a unique fixed point.

Example 2.6. Let X = [0, 1]. Define T : X → X by Tρ =
ρ

3 and p : X × X → [0,∞) by p(ρ, σ) =

max{ρ, σ}, then (X, p) is a complete partial metric space and

p(Tρ,Tσ) ≤
1
3

max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(ρ,Tσ) + p(σ,Tρ)
2

,
p(σ,Tσ) (1 + p(ρ,Tρ))

1 + p(ρ, σ)
,

p(ρ,Tρ) (1 + p(ρ,Tρ))
1 + p(ρ, σ)

}
Thus by Corollary 2.4, T has a unique fixed point. Here 0 is the unique fixed point of T .

Example 2.7. Let X = [0, 1]. Define T : X → X by Tρ =
ρ

2 and p : X × X → [0,∞) by p(ρ, σ) =

max{ρ, σ}, then (X, p) is a complete partial metric space and

p(Tρ,Tσ) ≤
1
2

max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
Thus by Corollary 2.5, T has a unique fixed point. Here 0 is the unique fixed point of T .

Example 2.8. Let X = [0,∞) and p(ρ, σ) = max{ρ, σ}. Then (X, p) is a complete partial metric space.
Consider the mapping T : X → X defined by

T (ρ) =


0 if 0 ≤ ρ < 1;
ρ2

ρ + 1
if ρ ≥ 1.

(2.26)

and ϕ(t), ψ(t) : [0,∞)→ [0,∞), ϕ(t) =
t

1 + t
and ψ(t) = t.

We have the following cases.
Case (i) If ρ, σ ∈ [0, 1) and assume that ρ ≥ σ, we have

p(Tρ,Tσ) = 0,

and

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),
p(ρ,Tσ) + p(σ,Tρ)

2
,

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
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= max
{
ρ, ρ, σ,

ρ + σ

2
,
ρ(1 + σ)

1 + ρ
,
σ(1 + σ)

1 + ρ

}
= max{σ, ρ, ρ} = ρ.

On the same lines
N(ρ, σ) = ρ.

Therefore
ψ(p(Tρ,Tσ)) = 0, (2.27)

and

ψ(M(ρ, σ)) − ϕ(N(ρ, σ)) = ρ −
ρ

1 + ρ
=

ρ2

1 + ρ
. (2.28)

From (2.27) and (2.28), we have ψ(p(Tρ,Tσ)) ≤ ψ(M(ρ, σ)) − ϕ(N(ρ, σ)).
Case (ii) If σ ∈ [0, 1) and ρ ≥ 1, we have

p(Tρ,Tσ) = max
{

ρ2

1 + ρ
, 0

}
=

ρ2

1 + ρ
,

and

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),
p(ρ,Tσ) + p(σ,Tρ)

2
,

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
= max

{
ρ, ρ, σ,

2ρ2 + σ

2(ρ + 1)
,
ρ(1 + σ)

1 + ρ
,
σ(1 + σ)

1 + ρ

}
= ρ.

On the same lines
N(ρ, σ) = ρ.

Therefore

ψ(p(Tρ,Tσ) =
ρ2

1 + ρ
, (2.29)

and

ψ(M(ρ, σ)) − ϕ(N(ρ, σ)) =
ρ2

1 + ρ
. (2.30)

From (2.29) and (2.30), we have ψ(p(Tρ,Tσ)) = ψ(M(ρ, σ)) − ϕ(N(ρ, σ)).
Case (iii) If ρ ≥ σ ≥ 1, we have

p(Tρ,Tσ) = max
{

ρ2

1 + ρ
,
σ2

1 + σ

}
=

ρ2

1 + ρ
,

and

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),
p(ρ,Tσ) + p(σ,Tρ)

2
,
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p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
= max

{
ρ, ρ, σ,

2ρ2 + σ

2(ρ + 1)
,
ρ(1 + σ)

1 + ρ
,
σ(1 + σ)

1 + ρ

}
= ρ.

On the same lines
N(ρ, σ) = ρ.

Therefore

ψ(p(Tρ,Tσ) =
ρ2

1 + ρ
, (2.31)

and

ψ(M(ρ, σ)) − ϕ(N(ρ, σ)) =
ρ2

1 + ρ
. (2.32)

From (2.31) and (2.32), we have ψ(p(Tρ,Tσ)) = ψ(M(ρ, σ)) − ϕ(N(ρ, σ)).
Thus it satisfies all the conditions of Theorem 2.1. Hence T has a unique fixed point, indeed, ρ = 0

is the required point. However, the inequality 2.1 is not satisfied when the partial p is replaced by the
usual metric. Indeed, Take ρ = 2 and σ = 2.5, then

ψ(d(Tρ,Tσ)) = 19/42 & ψ(M(ρ, σ)) − φ(N(ρ, σ)) = 1/6.

Hence, inequality 2.1 is not satisfied.

Example 2.9. Let X = [0, 1/2] and p(ρ, σ) = max{ρ, σ}. Then (X, p) is a complete partial metric
space. Consider the mapping T : X → X defined by Tρ = ρ3 − 3

2ρ
2 + 31

36ρ + 23
72 for all ρ ∈ X and

ϕ(t), ψ(t) : [0,∞)→ [0,∞), ϕ(t) =
t

100000 + t
and ψ(t) = t.

Without loss of generality, assume that ρ ≥ σ, we have

p(Tρ,Tσ) = max
{
ρ3 −

3
2
ρ2 +

31
36
ρ +

23
72
, σ3 −

3
2
σ2 +

31
36
σ +

23
72

}
= ρ3 −

3
2
ρ2 +

31
36
ρ +

23
72
,

and

M(ρ, σ) = max
{

p(ρ, σ), p(ρ,Tρ), p(σ,Tσ),
p(ρ,Tσ) + p(σ,Tρ)

2
,

p(σ,Tσ)(1 + p(ρ,Tρ))
1 + p(ρ, σ)

,
p(ρ,Tρ)(1 + p(ρ,Tρ))

1 + p(ρ, σ)

}
=

(
ρ3 − 3

2ρ
2 + 31

36ρ + 23
72

) (
ρ3 − 3

2ρ
2 + 31

36ρ + 95
72

)
1 + ρ

.

On the same lines

N(ρ, σ) =

(
ρ3 − 3

2ρ
2 + 31

36ρ + 23
72

) (
ρ3 − 3

2ρ
2 + 31

36ρ + 95
72

)
1 + ρ

.

One can easily verify, that ψ(p(Tρ,Tσ)) ≤ ψ(M(ρ, σ)) − ϕ(N(ρ, σ)).
Thus it satisfies all the conditions of Theorem 2.1. Hence T has a unique fixed point in X, indeed,

ρ = 1/2 is the required point in X = [0, 1/2].
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3. Conclusions

Chandok et al. [8] established some results on fixed point for rational type of contraction in the
framework of metric space endowed with a partial order. In this paper, we have extended the results of
Chandok et al. [8] in a space having non-zero self distance, that is, partial metric space and established
some theorems for the existence and uniqueness of a fixed point using auxiliary functions. Our results
generalize some existing results in the literature. To illustrate our results some examples have been
provided.
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