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ABSTRACT The fundamentals of neutrosophic statistics provide a new basis for working with indeterminate
data problems. In this study, the notion of the neutrosophic Rayleigh distribution (RDN ) has been introduced.
The neutrosphic extension of the classical Rayleigh model with several application areas is highlighted.
The major characteristics of the proposed distribution are described in a way that suggested model can
be utilized in different situations involving undetermined, vague and fuzzy data. The usage of proposed
distribution notably in the domain of statistical process control (SPC) is considered. The classical structure
of VSQR-chart is not capable of capturing uncertainty on studied variables. The mathematical structure of the
VNR-chart based on the proposed neutrosophic distribution has been developed. The neutrosphic parameters
of the proposed VNR-chart with other related performance metrics such as neutrosophy run length (ARLN )
and neutrosophy power curve (PCN ) are established. The proposed chart’s performance in a neutrosophic
environment is also evaluated to the existing model. Results from this comparative analysis reveal that the
suggested VNR-chart outperforms its current equivalent in terms of neutrosophic statistical power. Finally,
a charting structure of proposed design for service life of ball bearings data is considered with a view to
support implementation procedure of the proposed neutrosophic design in real-world scenarios.

INDEX TERMS Neutrosophic logic, Rayleigh model, control chart, neutrosophic parameters.

I. INTRODUCTION
Variability is an inevitable phenomenon of the production
industry. It is often due to normal causes and specific causes
of variation. Quality management utilizes different manage-
ment and engineering methods to manufacture quality goods
by eliminating abnormal rooted variations [1]. The process
operating only under irregular variations is considered out-
of-control (OC) and the process working underlying normal
causes of variation is called in-control (IC) in statistical terms.
The SPC is a common technique that involves statistical
tools to precisely measure variations in the parameters of the
production or manufacturing process [2]. A statistical quality
control chart, an effective technique in the SPC, is com-
monly practiced in service and manufacturing industries to
analyze the behavior of processes in addition to enhancing
their productivity [3]. The primary aim of the control chart
is to identify irregularity in manufactured items as soon as
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possible, so that the process could be terminated on time
before the manufacturing of faulty products [4]. The She-
whart chart, originally introduced by Walter A. Shewhart,
is a very trendy process predictive method that can be imple-
mented and interpreted easily. Due to its easy implementation
and broad usage, the Shewhart chart is not frequently used in
service industries and modern processes where minor process
changes can impose severe financial losses [5]. It is therefore
vital to use memory-type charts that are more responsive
to moderate-to-small changes in the target parameters [6].
On the contrary, SPC problems may involve uncertainty,
as are most of the true world systems. When there is uncer-
tainty in the system and even if the quality characteristics
are portrayed by human perception, the process cannot be
precisely described by control charts mentioned above [7].
In order to explain and model such problems, fuzzy set theory
is therefore used [8]. A brief application of fuzzy charts can be
originated in studies [9]–[11]. The fuzzification based control
charts are more sensitive in general than standard control
charts [8]. The idea of Neutrosophic Set (NS) is a broader
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platform that expands the notions of the fuzzy and classical
sets [12].

The occurrence of truth, false and indeterminate situations
are considered in the philosophy of the NS. The notion of
the NS is now extended to various fields of study [13].
There are several real-world circumstances where the col-
lected data might be indeterminate. For applications contain-
ing imprecise data are handled by different researchers using
the neutrosophic statistics (NST) [14]–[16]. The classical
approach of the conventional statistical techniques has been
generalized in the area of NST with the purpose to deal
with vagueness in processing data. It is not possible to use
a traditional control chart approach when underlying data
consists of Incomplete, vague, or uncertain data on quality
characteristics. Statistical methods integrated with the neu-
trosophic logic have been recently developed in the literature
of SPC by numerous researchers such as Aslam proposed the
neutrosphic version of the acceptance sampling plan in the
domain of SPC [17]. Aslam and Raza suggested a sampling
plan for several production lines employing the NST [18].
Whereas the more facts on the usage of NST in structur-
ing the Shewhart charts can be found in [18]–[22]. When
normality presumption is severely violated, the application
of widely used control charts is drastically less prudent.
The VSQR is one of such designs to accommodate this non-
normality situation for quality data that best described by the
classical Rayleigh model [23]. Rayleigh distribution (RD)
is one of the statistical distributions that attracted various
researchers due to its applications in vast engineering related
problems [24], [25].

In this work, we are intended to describe some charac-
teristics of the RDN and the neutrosophic extension of the
VSQR-chart that can deal the indeterminate observations in
Rayleigh distributed quality characteristics. The proposed
VNR design is rooted on the RDN and represents the general-
ization of the conventional VSQR-chart.

The remainder of the study is arranged as follows:
Section 2 provides the introduction of the RDN. The sug-
gested control chart based on the RDN is given in Section 3.
The performance measure of the proposed neutrosophic
design is described in Section 4. A comparison study of the
VNR design is given in Section 5. A real example of the
functional implementation of the proposed VNR-chart has
been explained in Section 6. The main results of the research
are outlined and concluded in Section 7.

II. NEUTROSOPHIC RAYLEIGH MODEL
Definition: The Neutrosophic model of the Rayleigh distri-
bution with imprecision in the scale parameter θN has the
following characteristics:

f (z, θN ) =
Z

θ2N
e
−

1
2

(
Z
θN

)2
, θN > 0,Z > 0. (1)

F (Z , θN ) = 1− e
−

1
2

(
Z
θN

)2
, θN > 0,Z > 0. (2)

where θN ∈ [θl, θu], f (z, θN ) and F (z, θN ) denote the neutro-
sophic density function (PDFN) and characteristic function
(CDFN ) respectively of the RDN . Based on the neutrosophic
version of the Rayleigh model primary characteristics of the
neutrosophic random Z are given by:

µN = θN

√
π

2
, σ 2

N = θ
2
N
(
2− π

/
2
)2 (3)

where µN and σ 2
N are mean and variance respectively of

the RDN .
The graphical expressions of the f (z, θN ) and F (z, θN ) for

the neutrosphic Rayleigh variable Z with imprecise parameter
θN = [0.5, 0.75] is shown in the Figure 1.
From the plot in Figure 1(a) the neutrosophic region can be

seen with shaded region between the dotted lines and curve
is asymmetric curve for the indeterminate value [0.5, 0.75]
of the scale parameter θN . An infinite number of structures is
possible for the PDFN , since the neutrosophic scale param-
eter affects the form of the curve. However the large value
of θN may result in the symmetric behavior of the PDFN.
Figure 1 (b) denotes the typical non-decreasing behavior of
the underlying CDFN curve for the same selected values of
the θN which is one of the most general descriptions of a
distribution function.

Rayleigh distribution is widely employed to describe the
wind speed data, signals data in communications, lifetimes
of different objects in reliability studies, modeling the noise
factor in magnetic imaging and in SPC for designing the
control chart structure that may employ for monitoring the
stability of the distribution parameter. Here are a few exam-
ples of neutrosophic version of the Rayleigh distribution for
the purpose to underline its significant in a variety of fields.
Example 1: Let the neutrosophic Rayleigh distribution as

defined in (1) is used to describe the repair time in hours
of a manufacturing machine with mean time [30, 45] hours.
Determine the probability that repair time does not exceed
35 hours.
Solution: Given that µN = [30, 45] so by using rela-

tion given in (3) we can get neutrosophic scale parameter
θN ∼= [24, 36] .

Now using (2), we have found the desired probability as:

P (Z ≤ 35) = 1− e
−

1
2

(
z
θN

)2
= 1− e

−
1
2

([
35
36 ,

35
24

])2
= 1− e−[0.472,1.063]

Example 2: Let the daily electricity consumption in dif-
ferent estates of KPK province in Pakistan is a neutrosphic
random variable Z which is best described by PDFn as given
in (1 ) with neutrosophic scale parameter θN = [1000, 1500].
The power plants of this province have a capacity

of 2762 Megawatt (MW). On any given day, what is the
probability that power supply would be inadequate?
Solution: Power supply will be inadequate if demand of

power is more than installed capacity
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FIGURE 1. PDF N and CDF N of the neutrosophic Rayleigh random variable.

It follows:

P (Z > 2762) = 1− P (Z ≤ 2762)

= 1− e
−

1
2

(
2762

[1000,1500]

)2
= [0.816, 0.978]

Hence the approximate probability of insufficient supply will
be within 0.82 to 0.98.

III. PROPOSED CONTROL CHART
In this section proposed chart based on the RDN has been
proposed. The value of the characterized neutrosophic scale
parameter θN is typically not determined in real-life scenar-
ios. Several estimation techniques may be used to find the
unknown quantity σ [26]. Based on the maximum likelihood
(ML) strategy, an estimate of θN is provided by [23]:

θ̂N =

√∑m̃
i=1 X

2
iN

2m̃
. (4)

where m̃ = [mL ,mU ] is the neutrosophic sample size which
turn to classical sample size when mL = mU = m.
We need to identify the distribution of the neutrosophic

θ̂N -statistic for structuring the parameters of the proposed
VN -chart. The statistic θ̂ is connected with the chi (χ) random
variable V as follows [23]:

θ̂N =
σ
√
2m

V (5)

where V follows χ -distribution with 2m degree of freedom
(df ). Now it has been assumed that imprecise values of σ
and m are given rather than crisp values.
Equation (5) can be rewritten under the neutrosophic con-

dition as:

θ̂N =
σN
√
2m̃

Ṽ (6)

where random variable Ṽ follows the neutrosophic
χ -distribution (χN ) with 2m̃df .

Utilizing (6) the neutrosophic characteristics of the estima-
tor θ̂N can be found as:

E
(
θ̂N

)
= σNA (m̃)

V
(
θ̂N

)
= σ 2

N

[
1− A (m̃)2

] (7)

where A (m̃) = 1√
(m̃)

0
(
(m̃)+ 1

2

)
0(m̃) is constant and based on the

neutrosophic sample size m̃.
Equation (7) indicates that statistic θ̂N is biased estimator

of σN . Suppose that k sample batches with imprecise values
are provided for analysis and θ̂Ni be theML statistic of the ith
sample batch then average defined on all k sample batches
would be:

θ̄N =

k∑
i=1
θ̂Ni

k
(8)

Following (7) and (8) the σN can be estimated by an unbiased
estimator as:

σ̂N =
θ̄N

A (m̃)
(9)

The distribution of θ̂N is asymmetric specifically for smaller
values of m̃, so 3-sigma limits are not generally applicable due
to unequal tail areas [27]. Probability limits (PL) are readily
used to deal with this issue as a standard practice in SPC.

As Ṽ follows the neutrosophic chi distribution with 2m̃df ,
αth percentage point of the distribution is defined as:

Fχ (ṽ) = α (10)

Consequently simplification of (10) and (5) follows

θ̂N =
σN
√
2m̃

F−1χ (α) (11)
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Thus the PL of the proposed VN -chart are then obtained by:

˜UPL =
σN
√
2m̃
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2 )√
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α
2 )√

2m̃
=

[Q2L ,Q2U ].
When the parameter of the distributed quality characteristic

of the RDN is not specified, it would be calculated using
an estimator given in (9). Thus PL based on the estimated
parameters can be modified as:
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where Q̃3 =
F−1χ (1−

α
2 )
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√
2m̃
= [Q3L ,Q3U ] and Q̃4 =

F−1χ (
α
2 )

A(m̃)
√
2m̃
=

[Q4L ,Q4U ]
The classical pair of crisp values (Q1,Q2) and (Q3,Q4)

for fixed risk factor α and at various values of m̃ are easily
calculated and available in [23]. The 3-sigma limits can be
developed in a similar fashion, however are not focused here
because of asymmetric behavior of the underlying statistic θ̂N
particular for a smaller indeterminate values of m̃.

IV. PERFORMANCE ANALYSIS
In this section, the performance metrics used in this study
have been described, followed by a comparative analysis,
and outlined their computational algorithm. To evaluate the
sensitivity of the proposed VNR-chart the notions of the neu-
trosophic operating characteristic curve (OCN ), ARLN and
PCN are described. There are widely used metrics to assess
the efficiency of proposed design in classical control charts
theory [28]. The OCN and PCN functions are customary
employed to characterize the control chart’s ability to detect a
difference in the observed quality phase. The ARLN statistic,
on the other hand, describes the average samples taken prior
to the identification of abrupt change in the target parameter
for a system operating under any special cause. The control
chart method is similar to the hypothesis evaluation strategy,
so, the VNR-chart’s ability to not detect change in target
parameter would be defined in accordance with neutrosophic
type II error as follows:

βN = P
[
˜LCL ≤ θ̂N ≤ ˜UCL |H1

]
(14)

Here H1:σN = σN1 stands for alternative hypothesis with
σN1= δσN0, δ is shift constant and σN0 = [σL0, σU0] is
neutrosophic IC target parameter of the RDN.
Equation (14) further can be written as:

β = Fχ
(
δQ̃1
√

2m̃
)
− Fχ

(
δQ̃2
√

2m̃
)

(15)

where Fχ is distribution function of the χN with 2m̃df.

FIGURE 2. Construction of the ARLN1 for VNR -chart.

Using (15) ARLN1 for OC process can be expressed as:

ARL1 =
1

1− Fχ
(
δQ̃1
√
2m̃
)
+ Fχ

(
δQ̃2
√
2m̃
) (16)

where 1 − Fχ
(
δQ̃1
√
2m̃
)
+ Fχ

(
δQ̃2
√
2m̃
)
= 1 − β

constitutes the power of the proposed VNR-chart.
Note that the shift constant values δ > 1 and δ < 1 in (16)

determine the downward and upward shifts respectively in the
monitoring parameter whereas the value δ = 1 stands for a
process working at the target value σN0. In order to determine
the use of (16), let’s assume δ > 1 and we are trying to work
out how many samples are expected on average to identify a
specific shift.

The ARLN curve is provided in Figure 2 for the proposed
chart for a neutrosophic sample size m̃ = [2, 3] at α = 0.025.
Figure 2 represents the geometric shape of the run length

distribution for a particular neutrosophic sample size m̃ and
variety of curves can be constructed in similar way for other
values of m̃. The curve in Figure 2 would be helpful to
determine the average number samples needed for a particular
shift in the target parameter. As an example, consider a shift
of quantity 2σN0 in the target parameter, on average [4, 6]
samples would be required to initiate this particular shift.
Besides that, if we increase the shift size, this ARLN1 tends
to constant value 1. For a better clarity, the proposed design’s
run length characteristic is also evaluated at different sample
sizes in Table 1 with fixed false alarm rate α = 0.025.
Results in Table 1 indicate that the measured ARLN1 value

is closer to the expected value of 40, particularly when the
sample size is greater and the process is IC i.e., δ = 1. The
VNR-chart is extremely effective for determining moderate to
large changes in the target parameter, as observed by these
ARLN1 values. Additionally, by changing the neutrosophic
target parameter to σN1, the performance of the VNR-chart in
terms of PCN function can be evaluated for different values
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TABLE 1. The ARLN profile of the proposed chart.

FIGURE 3. The neutrosophic power curve.

of m̃ and α. For example, the PCN computed for m̃ = [3, 5]
with false rate α = 0.025 is shown in Figure 3.
The neutrosophic power plot in Figure 3 also reveals that

the proposed VNR control chart essentially detects various
amounts of changes in the monitoring parameter. This curve,
provides the power platform of the proposed chart for detect-
ing a certain amount of shift in the monitoring parameter.
For instance, the VNR-chart provides neutrosophic power in
range of [0.799, 0.993], for detecting a shift of 3σN0 in scale
parameter of the RDN .

V. COMPARISON ANALYSIS
In this part, the proposed chart’s performance is compared to
other existing design used for monitoring the neutrosophic
parameter of the RDN . The performance of VNR-chart has
been compared with existing model of the VSQR-chart under
the indeterminate environment.

For this comparison, a number of available metrics can be
used; however, power curves are commonly used in several
studies [29], [30]. The proposed chart power in (16) is the
probability of accurately rejecting H0. In our case, the power
of the VNR-chart is characterized if the calculated statistics
(θ̂Ni) exceed the lower and upper calculated limits for a given
value of false alarm probability α and neutrosophic sample
size m̃. Any control chart that has a higher probability of

TABLE 2. Neutrosophic ball bearings failure life data.

appropriately rejecting H0 is deemed efficient. The power
of the suggested chart and its equivalent VSQR has been
estimated using this method for fixed values of α and m̃
in Figure 4.

Neutrosophic power curves in Figure 4 show that power
of both charts increase with increased in shift constant
i.e., δ > 1. When the process is under control with a shift
constant = 1, the power is even similar to the theoretical
false rate probability α = 0.025. For each shift in scale
parameter power is given in an imprecise range and repre-
sented by the shaded region. For instance, power of the VNR
control is about [0.4, 0.85] for detecting a shift of amount
3 at m̃ = [2, 4] whereas existing design has approximately
neutrosophic power in range [0.30, 0.65 ] for the same shift
in the target parameter. If the sample size becomes larger,
the disparity becomes larger. Thus, it is obvious from Figure 4
that the proposed VNR-chart is more capable than the neutro-
sophic V -chart for detecting shifts in the parameter σN0 for a
given value of m̃.

VI. REAL APPLICATION
In this part, a real data set has been utilized to demonstrate
the computational procedure of the suggested chart illustrated
in Section 3. Data used in analysis is originally analyzed by
Lieblein and Zelen [31] with a view to model the service life
of ball bearing data. Data is further analysis by many other
others in their respective studies [32], [33]. The observations
in this dataset represent the revolution (in million) of 23 ball
bearing balls before failure occurred. The ball bearing data
fits well with the Rayleigh distribution as discussed in [34].
Here this dataset collection is examined from the viewpoint
of a neutrosophic environment. The data from the original
source are exact numerical values, but neutrosophic data are
produced according to the method reported in [20] to aid in
understanding the preceding concept of the VN -chart. The
data produced in this way is now available in ranges rather
than crips values. The indeterminate data in ranges on ball
bearing failure times are divided into seven subgroups, each
with three observations listed in Table 2. The neutrosophic
statistic θ̂N is used in the proposed control chart tomonitor the
target parameter of the RDN . As a result, the statistic θ̂N for
each subgroup is calculated and recorded in the fourth column
of Table 2.
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FIGURE 4. Power comparisons at α = 0.025 and (a) neutrosophic sample size m̃ = [2,4] and (b) neutrosophic sample size m̃ = [6,8].

FIGURE 5. The construction of VNR control chart for ball bearings life
times data.

For the details in Table 3, the parameters of the VNR control
chart utilizing (13) are obtained as follows:

˜UPL = [0.95, 1.02] , CL = [0.55, 0.70]

and ˜LPL = [0.23, 0.29] .

Figure 5 shows a schematic representation of the proposed
VN control for the observed quality characteristic.
The plotted neutrosophic statistics in Figure 5 have a ran-

dom behavior and are within the control limits. Consequently,
observed process may be inferred as in a state of statistical
control.

VII. CONCLUSION
In this work, the classical Rayleigh model has been extended
in accordance with neutrosophic logic. Mathematical charac-
teristics of the proposed distribution under an indeterminacy
environment are described. Application areas of the RDN
have been provided for working data that contain vague,

indeterminate and imprecise observations on studied vari-
ables. A new control chart based on the proposed RDN is
developed due to its adequacy of dealing vague data in the
applications of SPC. The neutrosophic parameters, ARLN ,
PCN and OCN of the suggested chart have been derived.
To illustrate the theoretical results, a simulation study is
carried out and performance of the VN -chart is compared
with existing counterpart. Numerical results illustrate that
proposed design is more effective in terms of identifying
changes in the monitoring parameter of the RDN .
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