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A B S T R A C T   

In this work, N-soliton waves, fusion solutions, mutiple M-lump solutions and the collision phenomena between 
one-M-lump and one-, two-soliton solutions to the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation 
are successfully revealed. A class of one-, two-, three-soliton, one-, two-fusion solutions are derived via the 
Hirota bilinear method and 1-M-lump, 2-M-lump solutions are constructed via the long-wave method. Moreover, 
physical collision phenomenon of 1-M-lump with one-, two-soliton solutions and also, with fusion solutions are 
successfully presented. The velocity of the 1-M-lump wave in x- and y-direction are also studied.   

Introduction 

Nonlinear partial differential equations (NPDEs) have been seen as 
templates for explaining nonlinear physical phenomena resulting 
through computational chemistry, plasma physics, particle physics, and 
so on. Much attention has been paid to the study of exact or analytical 
solutions due to its essential role in the analysis of the physical aspects 
of the models. Via the analytical methods distinct types of the waves 
can be constructed, like solitary waves, optical solutions, singular so
lutions, periodic waves, breather waves, rogue waves, and rational 
wave solutions. To date, several systematic approaches have been de
rived to construct the exact solutions of NPDEs, like the Riemann- 
Hilbert method [1], Wronskian determinant [2], inverse scattering 
method  [3], the Bernoulli sub-equation method [4,5], the modified 
auxiliary expansion method [6], a +m G G( / )-expansion method [7,8], 
the Lie symmetry analysis [9], the Darboux transformation method   
[10], Hirota bilinear method [11], the unified method and its gen
eralized approach [12–15], and many other approaches [16–28]. 

The KP equation is a NPDEs to describe nonlinear wave motion 
introduced by Kadomtsev and Petviashvili [29] for the first time. The 
KP equation is written as: 

+ + + =
x

u uu u u( ) 3 0.t x xxx yy (1)  

Basic soliton equations, for example, the Kadomtsev-Petviashvili 
(KP) equation and its Bäcklund transformation formula may well be 
considered as “atoms” for the construction of different types of soliton 
equations. Both the unknown equations KP and modified KP hierarchy 
are fundamental significance not just in the theory of integrable sys
tems, but also play a key role in mathematical physics, too. To in
vestigate that all the KP hierarchy equation are integrable, Dorizzi et al.  
[30] have shown that the higher equation in the KP hierarch, i.e. 
(3 + 1)-dimensional Jimbo-Miwa equation, cannot be integrate 
without conditional sense. The Date-Jimbo-Kashiwara-Miwa (DJKM) 
equation is one of the KP hierarch equations that pass integrability. The 
(2 + 1) dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) equation  
[31] has been written as an integral extension of the KP hierarchy and 
reads 

+ + + =u u u u u u u u u4 2 6 2 0.xxxxy xxy x xxx y xy xx yyy xxt (2)  

A lot of studies have been presented to seek the solutions of Eq. (2). 
Wang and Hu [32] have derived the Grammian solutions of Eq. (2). Guo 
and Lin [33] have studied interaction solutions between lump and 
stripe soliton solutions via a quadratic function. Adem et al. [34] have 
used the extended transformed rational function that depends on the 
Hirota bilinear form to constructed Complexiton solutions of the DJKM 
equation. Yuan et al. [35] have studied Wronskian and Grammian so
lutions to the DJKM equation. Singh and Gupta [36] have investigated 
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the Painlevé property of the suggested equation and have revealed 
some exact solutions to the studied equation by using the Pickering’s 
algorithm. Sajid and Akram [37] have utilized exp( ( ))-expansion 
method to seek some exact solutions to Eq. (2). 

In order to study the multiple soliton solutions to the DJKM equa
tion, from the relationship of dispersion to the nonlinearity, one can 
define a logarithmic variable transformation for the suggested equation 
as 

=u
x

ln f x y t2 ( ( ( , , ))). (3)  

Plugging Eq. (3) to Eq. (2) the result is 
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and can be rewritten as a Hirota bilinear form 

+ =D D D D D f f f D D D f f f(( 3 ) . ). 1
2

(( 3 ) . ). 0.x x y x t y x y
3 2 4 2 2

(5) 

where D D D, ,x y t are the Hirota’s bilinear operators and defined in Ref.  
[38–40]. When f is going to solve Eq. (4) or (5), then =u u x y t( , , ) in 
Eq. (3) describe the solution of Eq. (2). In this research paper, we study 
Eq. (2) to reveal N-soliton waves, fusion solutions, M-lump solutions, 
and the interactions phenomena that appear between M-lump and N- 
soliton solutions as well as with fusion solution. 

N-soliton solutions 

In this section, to ascertain the N-soliton solutions to the DJKM 
equation in (2 + 1)-dimensions, we use the logarithmic function de
fined in Eq. (3). First, we use a function =f f x y t( , , ) that reads as 
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where 
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and the dispersion relation is given by 
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(9)  

The notation =µ 0,1 States summation over all possible combina
tions. Let =N 1 in Eq. (6) and substituting a result with Eqs. (7)–(9) 
into Eq. (3), a 1-soliton wave solution can be derived as below 
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Fig. 1. 3D surface solutions of Eqs. (11)–(13) plotted when (a) 
= = = = = =t k l4, 2, 2, 0, 1, 11 1 1 , (b) = = = =t k k l4, 0.5, 1, 2,1 2 1
= = = = =l 4, 1, 1, 1, 12 1 2 , (c) = = = =t k k k4, 0.4, 0.2, 0.1,1 2 3
= = = = = = = =l l l1, 0.3, 3, 1, 1, 1, 1, 11 2 3 1 2 3 . 
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When =N 2, 3, in the same way, we can construct 2- and 3-soliton 
solutions of (2 + 1)-dimensional DJKM equation as follows 
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where = < <M M M M m n k N( 1 )ijk ij ik jk . Eqs. (10)–(12) are 
drawn to more understand its physical phenomena as shown in Fig. 1. 
To study and finding the fusion solutions, we have to choose =M 0ij in 
Eq. (11) and Eq. (12). To construct 1-fusion solution, we choose 

= = = = =k k l l3, 2, 1, 2, 11 2 1 2 , and for 2-fusion solution, we 
let = = = = = = =k k k l l l3, 2, 2, 1, 2, 2, 11 2 3 1 2 3 . 

From N-soliton solutions to rational solutions 

Lump solutions are a specific type of rational function solutions, 
observed in all aspects of natural processes, contrary to soliton solu
tions. In this portion of work, we seek M-lumps solutions by using a 
long-wave method. When and taking the limit =k O0, (1)m

k
k

1
2

and 
= =m1 ( 1, 2)m in Eq. (6), we have 

= +f V ,2 1 2 12 (13) 

where 
= + + = + + = =x l y w t x l y w t w l V, , ,

l l1 1 1 2 2 2 1 2 1
3

12
4

( )1 2 2 and 
=l l2 1 . Putting Eq. (13) into Eq. (3), we obtain a 1-M-lump solution as 

shown in Fig. 2 and read as follows 
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The rational solution (14) is a permanent lump solution that decays 
as ( )O ,

x y
1 1
2 2 for x y| |, | | and to move with the velocity 
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From 2-soliton solutions, we can derive a 2-M-lump solution by 
taking a limit k 0m and = =m1 ( 1, 2, 3, 4)m , then f4 is equivalent 
to 

= + + + +
+ + + + +

f V V V V
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Eq. (17) gives us a singular solution at some position, to find a 2-M- 
lump solution we choose = =+ ( )l l i, 1, 2, ..,i i

N
2

N
2

. Substituting Eq.  
(17) with Eqs. (18)–(20), lead a two-M-lump solution to the studied 
equation as shown in Fig. 3. 

Interactions phenomena between 1-M-lump and soliton solutions 

The interaction physical phenomena between M-lump wave and 1-, 
2-soliton solutions as well as with fusion solution will construct in this 
section of the work. To study the interaction between M-lump and 1- 
soliton solution, we let =N 3 in Eq. (6), taking the limit 

=k m0, ( 1, 2)m and = O (1)k
k

1
2

, then f3 can set up as 

= + +f V e ,3 1 2 12 1 3 (21) 

where 

= + + + +V C C C C .1 1 2 12 23 1 13 2 13 23 (22) 

where 3 is stated in Eq. (7), =i( 1, 2)i are stated in Eq. (18), V12 is 
given in Eq. (20). The constants =C r( 1, 2)m3 are defined as below 
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As a result of substituting Eq. (21) together with Eq. 22,23 into Eq.  
(3), we obtain an equation that presents a collision between a 1-M-lump 
solution and a 1-soliton solution (see Fig. 4). The collision physical 
phenomena between single-M-lump and 2-soliton solution can be 

Fig. 2. 3D surface solution of Eq. (15) plotted when 
= = = = =t a b4, 1/2, 2, 1, 1. 

Fig. 3. 3D surface solution of Eq. (18) plotted when 
= = = = = = =t a b d c4, 2, 1, 1, 1/4, 1, 1. 
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Fig. 4. 3D surface solution of Eq. (22) plotted for different value of time (t) 
when = = = = = =a b k l1, 1, 2, 1, 1, 13 3 . 

Fig. 5. 3D surface solution of Eq. (25) plotted for different value of time (t) 
when = = = = = = = =a b k k l l1/2, 2, 1, 2, 1, 2, 1, 13 4 3 4 . 
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derived by choosing =N 4 in Eq. (6), and taking the limit 
= =k m0, 1 ( 1, 2)m m and letting = O (1)k

k
1
2

, f4 will be equivalent 
to 

= + + + + + + ++f V e e M e V C C C C( ),4 1 2 12 1 3 2 4 34 3 4 1 2 1 2 12 13 24 14 23

(24)  

= + + + +V C C C C .2 1 2 12 24 1 14 2 14 24 (25) 

Here ,3 4 are stated in Eq. (7), ,1 2 are stated in Eq. (18), V12 is given 
from Eq. (20). The =C r( 1, 2)r4 are constants and defined as 

=
+ +
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4

4
2 2
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2 (26)  

As a result of replacing Eq. (25) with Eq. 26,27 into Eq. (3), an 
equation that describes a collision phenomenon between single-M-lump 
and a two-soliton solution is revealed (see Fig. 5). 

In the case, the value of =M 034 in Eq. (24), f4 will be rewritten as 

= + + +f V e e .4 1 2 12 1 23 4 (27)  

This equation describes interaction phenomena that appear between 
1-M-lump solution and 1-fusion solution as shown in Fig. 6. 

Conclusions 

In this study, the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa 
equation is investigated by using a Hirota method. First, the studied 
equation is formulated in the form of Hirota bilinear form by using the 
logarithmic variable transformation, then the N-soliton solutions, ra
tional solutions, and the interaction phenomena between 1-m-lump 
with 1-soliton and 2-soliton solutions are presented. the velocity in x- 
and y-direction for a single-M-lump solution is also studied. The 3-di
mensional figures with corresponding z-axis surfaces are drawn to more 
understand the physical phenomena for the gained solutions. 
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