
Received November 22, 2020, accepted November 28, 2020, date of publication December 2, 2020,
date of current version December 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041872

Collaborative Task Scheduling for IoT-Assisted
Edge Computing
YOUNGJIN KIM1, CHIWON SONG1, HYUCK HAN2, HYUNGSOO JUNG1,
AND SOOYONG KANG 1, (Member, IEEE)
1Department of Computer Science, Hanyang University, Seoul 04763, South Korea
2Department of Computer Science, Dongduk Women’s University, Seoul 02748, South Korea

Corresponding author: Sooyong Kang (sykang@hanyang.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea Government
(MSIP) under Grant 2019R1A2C1011009.

ABSTRACT The Internet of Things (IoT) is evolving rapidly and requires IoT devices to havemore resources
to meet the growing needs in diverse application domains. Despite increasing demands, modern IoT devices
do not fully utilize somewhat over-provisioned computing resources. In this work, we introduce a new
concept of IoT-assisted Edge Computing which makes use of consolidated idle resources in IoT devices
for edge services through offloading edge tasks to nearby IoT devices. For the IoT-assisted edge computing
be beneficent, two important conditions should be satisfied: 1) offloaded edge tasks to IoT devices do not
hurt normal execution of local IoT tasks, and 2) computing resources in IoT devices should be effectively
exploited to increase the throughput of edge services. To that end, we propose a collaborative task scheduling
for IoT-assisted edge computing, in which an edge node determines where to offload edge tasks among
participating IoT devices based on the offloaded execution time and energy consumption, and each IoT
device determines when to execute the offloaded tasks considering local tasks execution. Experimental
results show that the proposed scheme not only achieves near-optimal task throughput but also outperforms
other scheduling algorithms in terms of deadline satisfaction ratio of time critical tasks, while guaranteeing
deadlines of local tasks in IoT devices.

INDEX TERMS Edge service, IoT-assisted edge computing, IoT service, task scheduling.

I. INTRODUCTION
Recently, a new computing paradigm of Edge Computing
has emerged to exploit the computing resources located at
the edge of the network, i.e., edge servers, for processing
all or part of user services. By using an edge server instead
of the central server located in the data center, it is possi-
ble to overcome the hurdles of the network latency and the
amount of traffic in the backbone network for time-critical
(or -sensitive) cloud/IoT services. Considering that more and
more end-user devices are being connected to the Internet via
mobile networks, the effect of the edge computing is expected
to become even stronger in the era of the 5G mobile network
that offers much shorter latency and higher bandwidth than
4G/LTE network.

However, if we look at network edges, the edge comput-
ing also has a centralized architecture in that every nearby
user’s service request is delivered to the ‘central’ edge

The associate editor coordinating the review of this manuscript and
approving it for publication was Ligang He.

server. And since the computing power of edge servers is
far weaker than that of cloud-based servers, edge servers
will have non-trivial resource contention on limited com-
puting resources between multiple competing tasks serving
user requests. The excessive resource contention in an edge
server undoubtedly increases the execution time of running
tasks. Hence, an efficient task scheduling algorithm must be
proposed to deal with highly over-loaded situations in an
edge server. For this purpose, researchers in our community
have made efforts to address this issue and developed novel
task scheduling algorithms that leverage resources in cloud
servers [1]–[4].

On the other hand, it is well recognized that IoT devices
introduced recently have more computing power, and they
become capable enough to collect and process data in the
device, without sending it to a server. For example, Qual-
comm announced their plan to supply high-end CPUs for IoT
devices that enables IoT devices to provide various real-time
AI services under the slogan ‘On-device AI Ubiquitous’ [5],
and NVIDIA is preparing for future IoT services including

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 216593

https://orcid.org/0000-0002-5332-7846

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

vulnerable road user discovery (VRU) service via supplying
their GPUs to smart cars [6]. These high-end IoT devices
are already equipped with multicore CPU, multi-gigabytes of
memory and 5G communication module to execute complex,
computation-intensive tasks. In this work, we aim to find a
way to utilize the unused or idle computing resources in IoT
devices, that are available when the devices are underutilized.
By collectively exploiting over-provisioned idle resources as
an extra resource pool for providing edge services, we can
substantially increase the effectiveness of the edge computing
by offloading some tasks in an edge server (i.e., edge tasks)
to nearby IoT devices. In this paper, we call this paradigm as
‘IoT-assisted Edge Computing’.

Similar concepts with our IoT-assisted edge computing
have been introduced recently, including ad-hoc cloud com-
puting and device-enhanced MEC. Ad-hoc cloud computing
is a generic concept of building a virtual cloud infrastruc-
ture exploiting resources from existing sporadically available,
non-exclusive, and unreliable infrastructures [7]. It harvests
resources from underutilized PCs or servers with enough
resources to execute tasks on the virtual machines, challeng-
ing to apply to relatively resource-poor IoT devices that need
fine-grained resource control. Device-enhanced MEC is a
concept of exploiting resources in both MEC servers and
end devices (e.g., mobile phones) to execute end devices’
tasks [8] collaboratively. While it uses D2D communications
to exploit resources in remote user devices, in IoT-assisted
edge computing, the edge server exploits resources in local
IoT devices under its governance without involving D2D
communications among end devices. More importantly, both
of the previous concepts aim to provide resources to end-
users; hence tasks are offloaded ‘from user devices to infras-
tructure’. On the other hand, IoT-assisted edge computing
aims to exploit resources in end devices (i.e., IoT) to execute
edge tasks, and therefore, tasks are offloaded ‘from the edge
server to end devices’.

Edge tasks are dynamically generated when a user calls for
a service that the edge server provides, and multiple tasks can
be generated for a single service request. By offloading a por-
tion of edge tasks to IoT devices, the resource contention in an
edge server can be reduced, and therefore IoT-assisted edge
computing can achieve better task throughput than ordinary
edge computing. To that end, an edge server needs to have a
task scheduler that determines which tasks will be offloaded
to which IoT device. One simple and efficient approach is
to assign a task based on data proximity. However, we claim
that there exist four important issues that must be considered
in designing a more efficient and general task scheduling
scheme.

First, the performance gap between IoT devices and an
edge server, or between different IoT devices, needs to be
considered in designing a new scheduling scheme. Otherwise,
the overall user service time can become unacceptable due to
a slow device that executes large tasks for the service. Hence,
both the resource requirement of each task and the real-time

resource availability in each IoT device should be taken into
consideration together in scheduling tasks.

Second, there can be time-critical services (e.g., VRU
service) whose tasks should be completed within specified
deadlines. Hence, when multiple users request time-critical
(or -sensitive) and best-effort services at the same time to the
edge server, we should not only give execution preference
to tasks of the time-critical services to meet their deadlines
but also minimize the entire execution time of all tasks to
maximize the throughput of the edge computing.

Third, execution of offloaded tasks inevitably consumes
extra energy in IoT devices. Excessive task offloading may
drain an IoT device of its energy and impede the execution of
IoT device’s own tasks (in this paper, we call it ‘local’ tasks)
due to the energy deficiency; but the execution of local tasks
is indeed the main role of IoT devices. Therefore, the task
scheduler in an edge server should be able to anticipate the
increased energy consumption due to forthcoming offloaded
tasks in each IoT device, and to proactively decide whether
or not to offload tasks for the proper execution of local tasks
in IoT devices.

Finally, task offloading should be non-invasive in that
offloaded tasks should not delay the execution of local tasks
in IoT devices. This constraint makes any realistic task
scheduling scheme for IoT-assisted edge computing cannot
be optimal, since local tasks can be spontaneously and inter-
mittently executed. For example, a face recognition task in a
smart door bell is executed only when an object (probably,
a visitor) is detected by its camera. Hence, an edge server
cannot generate the optimal task scheduling plan which pre-
sumably but accurately incorporates unpredictable local tasks
in IoT devices. This is why the task schedule (generated by
an edge server) to be updated by each IoT device who has the
entire control of its own tasks.

In this paper, we propose a collaborative task scheduling
between edge server and IoT devices that addresses the above
issues. In a nutshell, an edge server only determines tasks that
will be offloaded to each participating IoT device, and each
IoT device determines the execution schedule of the offloaded
tasks to itself incorporating its local tasks. When determin-
ing tasks that will be offloaded to each IoT node, the edge
server considers both the overall offloaded execution time
and energy consumption. Each IoT device, instead of gener-
ating a static and serial task schedule, uses a weight-based
resource allocation (like Linux’s cgroup [9]) to dynami-
cally determine the task execution schedule considering both
the deadline and execution time of each task. Experimental
results show that our collaborative task scheduling not only
achieves near-optimal task throughput but also outperforms
legacy scheduling schemes in terms of deadline satisfaction
ratio of time critical tasks, while guaranteeing deadlines of
local tasks in IoT devices.

The contribution of this paper is three fold.
1) We establish communication, computation and energy

consumptionmodels and define formal task assignment

216594 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

and scheduling problems in IoT-assisted edge
computing.

2) We propose a collaborative task scheduling scheme
that considers unique characteristics of the IoT-assisted
edge computing.

3) We propose two heuristic algorithms that realize our
collaborative task scheduling, a completion time-based
task assignment algorithm and a hierarchical weight
allocation algorithm, each of which solves task assign-
ment and scheduling problems, respectively.

The rest of this paper is organized as follows. Section II
presents the related work. In Section III, we establish models
for IoT-assisted edge computing, and we propose our collab-
orative task scheduling scheme in Section IV. In Section V,
we evaluate the performance of the proposed scheme and
finally, in Section VI, we conclude this paper.

II. RELATED WORK AND MOTIVATION
A. TASK OFFLOADING IN EDGE COMPUTING
There have been many studies that use cloud computing
to solve problems caused by low performance or lack of
resources of mobile devices [10], [27]–[31]. The basic idea
of these studies is to offload parts of computationally-heavy
tasks on mobile devices to the resource-rich cloud and to per-
form offloaded tasks within the cloud. A good example is the
work presented by Clark et al. [32], that proposed a concept
of a virtual machine (VM)-based remote execution scheme in
which the live migration of virtual machines enables an entire
OS including all running applications to be moved to other
virtual machine. Based on this technique, CloneCloud [27]
and Cloudlet [28] proposed methods to offload computation
to cloud by executing tasks of mobile devices on remote
VMs without programmers’ efforts. These studies focus on
cloud offloading to overcome the low performance rather
than to increase the energy-efficiency of mobile devices. For
the energy-efficiency of mobile devices, offloading methods
have been proposed in [29]–[31], [33], and a hybrid strategy
considering performance and energy consumption was also
proposed in [10]. However, the explosion of mobile and IoT
devices causesmassive data traffic in backbone networks, and
this incurs numerous performance problems due to the long
latency of cloud offloading [34].

To address the issues, a new concept of edge comput-
ing [35] has been proposed to offload tasks to edge servers
that can bypass the slow backbone networks. Many research
projects related to edge computing have focused on both
performance and energy consumption for energy-poor IoT
and mobile devices. TAPDEF [23] uses Unmanned Aerial
Vehicles (UAV) such as drones for IoT devices that do not
have direct access to cloud, and IoT devices can distribute
their tasks to cloud through UAV devices. For this purpose,
an optimized algorithm that minimizes energy consumption
and execution delay is also proposed. RT-EEM [13] proposes
a cooperative resource allocation framework to enhance over-
all energy efficiency by considering the distance between IoT
devices and the edge server. For this end, when an IoT device

is hard to access the edge server due to the long distance
between the two nodes, the IoT device offloads its tasks
to the edge server through other IoT devices near the edge
server. ACOA [12] establishes task route paths with minimal
energy consumptionwhen distributingwork from IoT devices
to edge servers on the 5G network. For this, the artificial
fish swarm algorithm (AFSA) is developed to decide which
femto relay base stations (FRSs) of 5G networks are passed
through for the task distribution. ISA-TOTPA [14] suggests
an algorithm in which an optimal CPU frequency that could
lead to minimal energy consumption is calculated and tasks
are offloaded to an appropriate edge server based on the cal-
culation. GMS [15] suggests the greedy-based algorithms for
distributing tasks from a mobile device (MD) to the mobile
edge cloud consisting of multiple energy harvesting wireless
access points (APs).

B. TASK SCHEDULING IN EDGE COMPUTING
As the use of IoT and mobile devices becomes prevalent in
the edge computing community, the importance of scheduling
techniques in edge servers has also increased, and various
methods have been proposed.

Some of studies aimed at optimizing energy consumption.
In RTA [36], energy allocation and task scheduling tech-
niques are proposed when energy is transferred from the edge
server or the access point to energy harvesting IoT devices.
For energy-efficiency, task scheduling and energy allocation
are performed on IoT devices and edge servers, respectively.
In [11], a joint allocation algorithm is proposed for task
scheduling among many available ones, with heterogeneous
latency requirements being imposed.

In addition to these studies, there have been several
research projects minimizing the execution delay. The
UL-DL scheduler [16]minimizes the execution time of bursty
tasks using the queuing theory. In LDP-JCTO [19], data parti-
tioning techniques are designed for efficient distributed data
processing with heterogeneous IoT devices, which reduces
the execution time for data processing. A study at IHRA [18]
proposed a task scheduling technique intended to minimize
the overall execution time by considering both cloud and edge
servers together when IoT devices are initialized and have
local tasks offloaded to the servers. In particular, it develops
feedback functions for detecting the status of edge servers
since the resource contention problem arises in hotspot edge
servers. In MSGA [17], the data location and the congestion
in networks are considered when transferring tasks from IoT
devices to edge servers. If networks are congested, searching
a detour mechanism is triggered based on the past history of
flow states.

Some of studies aimed at minimizing both execution
time and energy consumption by devising novel resource
allocation and scheduling techniques. In [21], they pro-
pose an optimal resource allocation scheme for mobile
edge computation offloading system based on time-division
multiple access (TDMA) and orthogonal frequency-division
multiple access (OFDMA). In [22] authors propose a resource

VOLUME 8, 2020 216595

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

TABLE 1. Related work to task offloading and scheduling in Edge computing. (D/L: Deadline).

allocation framework that optimizes both energy consump-
tion and execution time when assigning tasks to multiple
edge servers as well as a single edge server. In [24], they
choose an appropriate computation offloading mode with
social awareness-aided network resource assignment.

Other studies tried to achieve both the minimum execu-
tion time of applications and the maximum compensation
of devices or server providers when processing data using
IoT devices and edge servers. To that end, there have been
game-theoretic approaches [25], [26] since finding the opti-
mal result satisfying both objectives is an NP-hard problem.
In EWBS [20], an efficient wholesale and buyback algorithm
is designed to maximize the profit of edge sever providers.

C. MOTIVATION
Research communities have long studied task offloading and
scheduling problems in edge computing. However, we found
three crucial hurdles for using them in IoT-assisted edge com-
puting through an in-depth analysis of prior proposals. First,
most of the prior schemes assumed that tasks are offloaded
from end (IoT/mobile) devices to edge/cloud servers to
either save energy in end devices or enable resource-poor
end devices to execute heavy applications with the help of
resource-rich servers. Hence, it is hard to use such schemes
in IoT-assisted edge computing environments where tasks are
offloaded from edge servers to IoT devices (i.e., in the reverse
direction) to increase the service throughput in edge servers.

Second, even in prior studies that consider offloading
tasks to IoT devices [19], [24]–[26], they did not consider
offloading/executing multiple tasks simultaneously to/in end
devices. So a specific scheduling scheme for multiple tasks
in end devices was not necessary for those proposals.

Third, since local tasks’ safe execution is the leading role
of IoT devices, it is of utmost importance to protect local
tasks in the presence of offloaded external tasks. To exe-
cute offloaded tasks efficiently without delaying local tasks
in IoT devices, we require an IoT device to have its task
scheduling scheme since the IoT device itself is the only

entity with full control of the local tasks. However, to the
best of our knowledge, there is no prior work that provides
a scheduling scheme for IoT devices that schedules multiple
tasks, including offloaded and local tasks. We believe that
this is due to the assumption that prior researchers accepted;
considering IoT devices’ insufficient resource capacity, it is
natural to offload only one task to an IoT device when it
is idle. Under such an assumption, IoT devices do not need
to have a specific scheduling scheme for multiple tasks.
However, considering ever-increasing (and sometimes over-
provisioned) resource capacity in IoT devices, our com-
munity must consider offloading multiple tasks to an IoT
device. Moreover, since simultaneous execution of multiple
offloaded tasks in an IoT device undoubtedly affects the
safe execution of intermittently and unpredictably generated
local IoT tasks, we need a carefully designed task scheduling
scheme that prioritizes local tasks while maximizing the total
task throughput.

The above observations motivated this work. This paper’s
proposed scheme addresses such issues and considers the
growing demand for real-time edge services that generate
time-critical tasks with their execution deadlines.

FIGURE 1. System model of the IoT-assisted edge computing.

III. MODELS AND PROBLEMS
This section presents communication, computation and
energy consumption models in the IoT-assisted edge comput-
ing. We first illustrate the overall system model in Figure 1.

216596 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

Three kinds of devices (IoT devices, edge and cloud servers)
participate in the IoT-assisted edge computing. IoT devices
are usually resource-poor in that they have limited com-
putational power, and it is directly connected via wireless
networks to the Base Station (BS) where edge servers are
located. We assume that there is no way for IoT devices to
do direct communication between devices, since IoT devices
do not recognize each other [37]–[39].

A user request is sent to an edge server either directly or
indirectly via cloud servers. The edge server upon receiving
the request spawns tasks for handling each requested service
and dispatches the tasks to IoT devices, cloud servers or itself
for execution. The execution results are transferred to the
edge server who will send a response to the user.

TABLE 2. Notations.

Table 2 lists notations used in our models. A task ti
(∈ T) is independently executed in a single device (IoT,
edge server or cloud server) and represented as a quintuple,
ti =<Ci, Si, Ii,Oi,Di>, in which each element is determined
in advance via task profiling.Whenever a request for a service
arrives to the edge server, it generates tasks for the service and
determines which tasks will be offloaded to which device for
execution considering task and data transfer time, task exe-
cution time and the amount of energy consumption, each of

which is estimated based on the communication, computation
and energy consumption models, respectively.

A. COMMUNICATION TIME MODEL
Task offloading from the edge server to other devices requires
task and data transfer. The communication overhead between
edge and other device is one of key factors in determining
task assignment. Since IoT devices are directly connected
to the base station via wireless networks, we can model
their communication overhead using Shannon’s law [40]. The
wireless network throughput from the edge server to an IoT
device (rε,d) can be modeled as

rε,d = Bclog2(1+
gε,dptxε
σ

) (1)

where Bc, gε,d , ptxε and σ represent channel bandwidth,
channel gain, wireless transmit power in the edge server,
and power of the noise and interference, respectively. The
network throughput of the reverse direction (rd,ε) can be cal-
culated similarly. Using (1), we can get each communication
time for executable image, input data and output data of a
task ti between the edge server and an IoT device d as:

T i,exeε,d =
Si
rε,d

, T i,inε,d =
Ii
rε,d

, T i,ind,ε =
Ii
rd,ε

, T i,outd,ε =
Oi
rd,ε

A task can also be offloaded to the cloud server. Since
the edge and cloud servers are connected through a wired
network (i.e., the Internet), we cannot use (1). Besides the
data size and network bandwidth, the communication time
in this case depends also on the hop count between two
servers and the queuing delay in each intermediate router,
among others. For simplicity, we define a delay parameter,
δ, that represents aggregate communication delay induced by
such factors other than the amount of data and the network
bandwidth. Then, a communication time for an executable
image, input and output data between edge and cloud servers
can be expressed as:

T i,exeε,c =
Si
B
+ δ, T i,inε,c = T i,inc,ε =

Ii
B
+ δ, T i,outc,ε =

Oi
B
+ δ

where B denotes the network bandwidth between them.
The total communication time for task offloading from

an edge server to device A (6=ε) is affected by the current
location of input data. First, if input data is in A then we do
not need to transfer data. Second, if it is stored in the edge
server but not in A, then we should transfer data from the edge
server to A. Finally, if data is in other non-edge device, not A,
then input data should be transferred from the device to the
edge server first, and then from the edge server to A. To take
the location of input data into consideration in designing our
model, we define a binary variable λIi,A which is 1 when the
input data of ti is in device A (∈M), and is 0 otherwise. Then,
using λIi,A, we canmodel the total communication time for the
offloaded execution of ti from the edge server to a non-edge
device A as:

T iε,A = T i,exeε,A + (1− λIi,A)(T
i,in
Â,ε
+ T i,inε,A)+ T

i,out
A,ε , if A 6= ε

(2)

VOLUME 8, 2020 216597

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

where Â denotes a device that has the input data. It is notable
that if input data is in an edge server (i.e., Â = ε), the term
T i,in
Â,ε

becomes zero.
A task can be executed in the edge server itself without

being offloaded. In that case (A = ε), the communication
time includes only the time to transmit input data if it is not
in an edge server, i.e., T i,exeε,A = T i,inε,A = T i,outA,ε = 0 in (2)

B. COMPUTATION TIME MODEL
Task execution time is another important factor in task
scheduling. We assume that each task has already been pro-
filed and an edge server knows the CPU cycles required for
completing a given task. Then the execution time of ti in a
device A (A ∈M) can be modeled as

T i,cpuA =
Ci

fA − C
avg
A
, (3)

where Cavg
A is the average CPU cycles consumed in a sec-

ond by background tasks (i.e., ever-running tasks not for
user-requested services) in device A, including ever-running
local tasks in IoT devices, OS kernel and systemmanagement
tasks, among others.

We assume that input/output data is stored in memory (not
storage) so that task execution does not incur any storage I/O,
and this assumption is realized through the use of in-memory
file systems (e.g., tmpfs) for data storage. Hence, we can
safely disregard the necessity of considering I/O overhead in
our computation time model; because modeling I/O overhead
is generally complicated and hardly accurate.

C. ENERGY CONSUMPTION MODEL
Being different from edge and cloud servers, large types of
IoT devices either use their own batteries or harvest energy
for operations. Hence, their energy consumption due to the
offloaded tasks becomes matter in IoT-assisted edge comput-
ing. To control the ‘increased’ energy consumption due to the
offloaded tasks in IoT devices, we need to precisely estimate
and incorporate it to task assignment.

The CPU power consumption in a device d can be modeled
as Pd = kf 3d [31], where k and fd represent the coefficient
depending on the CPU architecture and the CPU frequency
of d , respectively. Ignoring the power consumption due to
the CPU scheduling itself, the CPU energy consumption to
execute ti in an IoT device d can be modeled as

E i,cpud = Pd ×
Ci
fd
= Cikf 2d . (4)

For each offloaded task to an IoT device, the executable image
of the task and its input data (if necessary) are transferred
from an edge server to an IoT device, and the output of
the task is also transferred in the opposite direction. Such
communications naturally consume energy in IoT devices,
and can be modeled as

E i,rxd = prxd ×
Si + (1− λIi,d)Ii

rε,d
, (5)

E i,txd = ptxd ×
Oi
rd,ε

, (6)

where ptxd and prxd denote wireless transmit and receive power,
respectively, in an IoT device d .

Putting all together, the total energy consumption in d (E id)
for the offloaded execution of ti to d becomes

E id = E i,rxd + E i,cpud + E i,txd . (7)

D. PROBLEM FORMULATION
In this section, we present formal definitions of task assign-
ment and scheduling problems in IoT-assisted edge com-
puting. Briefly, the task assignment problem is to find the
optimal task distribution across all devices that minimizes the
completion time of all tasks. And the task scheduling problem
is to find the optimal schedule of task execution in each device
that maximizes the number of tasks that meet their respective
deadlines.

There are a few constraints that must be satisfied while
finding the optimal task distribution. First, a task is assigned
to only one device/server. Formally,

∀ti ∈ T ,
∑
A∈M

λi,A = 1 (8)

where λi,A is a binary variable that indicates whether or not a
task ti is assigned to device A, specifically, it is 1 when ti is
assigned to A and 0 otherwise.

Second, input data for each task may exist in one or more
devices. If a task does not need any input data (for example,
a mathematical function that use only its parameters) then we
can regard it as a task having its input data in every device.
Hence, we have the following constraint:

∀ti ∈ T ,
∑
A∈M

λIi,A ≥ 1 (9)

Third, every IoT device may have its ownminimum energy
level requirement (Eθd) determined by the energy consump-
tion required for executing its local tasks. Hence, the energy
level of an IoT device, after completing all the offloaded
tasks, should never drop below the minimum energy level
threshold of the device:

∀d, Ed −
∑
ti∈T

λi,dE id ≥ E
θ
d (10)

Now, we define the task assignment problem.
Definition 1 (Task Assignment Problem): For all tasks,

find devices in which every task will be executed such that

minimize : max
A∈M

∑
ti∈T

λi,A(T
i,cpu
A + T iε,A)

subject to (8), (9) and (10).

Given the constraint (8), the number of ways to assign all
the tasks across all devices is |M||T |, which is the size of
search space to solve the task assignment problem. Consider-
ing that a large number of IoT devices and end-user devices
(including mobile phones and vehicles) are expected to be

216598 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

connected to an edge server for upcoming edge computing
services, we need a heuristic solution to the problem.

For task scheduling in each device, we first define a
notation, TA, which denotes a set of all tasks assigned to
a device A. Assuming that |TA| = n (≤ |T |), let SA =
(t0, t1, · · · , tn−1) be a sequence of task executions in A, and
T FiniA be the very time when ti finished its execution in A.
At the time device A generates SA, it is safe to assume
that all executable images for n tasks have already arrived
to A. But since their input data can still be missing in A,
the communication time for input and output data should be
reflected in estimating the finish time of a task. Hence, we can
define the finish time of a task ti in A as

T FiniA =

{
T Fini−1A + T i,cpuA + (T iε,A − T

i,exe
ε,A) if i ≥ 1

Tcur + T
i,cpu
A + (T iε,A − T

i,exe
ε,A) if i = 0,

where Tcur is the current time.
A task ti is said to satisfy its deadline (Di) if its finish time

is not later than its deadline. Formally, letting Hi,A indicate
whether or not ti meets its deadline in its assigned device A,

Hi,A =

{
1 if T FiniA ≤ Di
0 otherwise.

Now, we formally define the task scheduling problem.
Definition 2 (Task scheduling Problem): Given a set of

assigned tasks to each device, find a sequence of task exe-
cutions in each device such that

maximize :
∑
A∈M

∑
ti∈TA

Hi,A

The large search space,
∏

A∈M(|TA|!), of the task schedul-
ing problem also necessitates a heuristic algorithm.

Before giving heuristic solutions for task assignment and
scheduling problems, it is worth investigating to see the
orthogonality of the two problems. In other words, given
a set of tasks, is it always possible to find a task distri-
bution that not only minimizes the overall task execution
time but also guarantees that a larger number of tasks can
meet their deadlines than other task distributions? A simple
count-example answers the question: Assume that there are
two tasks (t1 and t2) whose deadlines are 5 and 10 seconds
after the current time, respectively, and two devices A and B.
The execution times of t1 including communication overhead,
T 1,cpu
A + T 1

ε,A, in devices A and B are 5 and 6 seconds,
respectively, and t2 takes 6 and 9 seconds, respectively. The
optimal task distribution is to assign t1 and t2 to devices B
and A, respectively, in which case the overall execution time
is minimized (6 seconds). In that case, t1 cannot meet its
deadline. However, if we assign t1 and t2 to devices A and B,
respectively, both tasks meet their deadlines although the
overall execution time (9 seconds) is not minimal. Hence,
there is no solution that optimizes both the overall execution
time and the number of deadline-met tasks, which guides us to
develop a heuristic task assignment and scheduling solution
that achieves both goals to a reasonable level.

IV. COLLABORATIVE TASK SCHEDULING
The impossibility in finding a solution that can optimize both
the overall execution time and the number of deadline-met
tasks is due also to the unpredictability of local task execu-
tions in IoT devices. Apart from their complexity, the prob-
lems in Definitions 1 and 2 need to be solved at the same time
with the same given information. However, there is noway for
an edge server to exactly consider the spontaneous execution
of local tasks in IoT devices to resolve task assignment and
scheduling problems. Hence, in this work, we propose a col-
laborative task scheduling scheme in which the edge server
only addresses the task assignment problem considering task
completion time, and each IoT device takes the responsibility
of finding the execution schedule of assigned tasks with its
local tasks being considered.

FIGURE 2. Software architecture for the collaborative task scheduling.

Figure 2 shows the software architecture for our collabora-
tive task scheduling. It consists of a communication module
and a task executor in each device and a task distributor in
the edge server. The communication module takes the role
of sending/receiving tasks and data among devices, and the
task executor runs tasks. The task distributor chooses a device
in which each task will be executed. Upon receiving a new
service request from a user, an edge server sends tasks for
the service to devices determined by the task distributor. Each
device then executes received tasks and send their output back
to the edge server. The edge server aggregates the outputs to
respond to the service request. The core of the collaborative
task scheduling scheme is two heuristic algorithms, Com-
pletion time-based Task Assignment (CTA) and Hierarchical
Weight Allocation (HWA), used in the task distributor and the
task executor, respectively. The CTA algorithm, whenever a
new task is generated, selects the target device (i.e., a device
in which the task will be executed) and sends it to the device
as soon as possible, unlike prior studies ([17], [18], [20],
[24], [41]) in which tasks are aggregated during an epoch
and distributed to devices simultaneously at the end of the
epoch. This real time task distribution is particularly effective
to time-critical tasks. The HWA algorithm indirectly obtains
the execution schedule of tasks by exploiting weight-based
resource sharing mechanism in modern operating systems
(for example, cgroup in Linux). Upon receiving a new task
or whenever a local task needs to be executed, the HWA
algorithm reassigns the weight of each task (either existing

VOLUME 8, 2020 216599

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

or new) not only to maximize the deadline-met tasks but also
to guarantee the timely execution of the local tasks.

A. COMPLETION TIME-BASED TASK ASSIGNMENT
The objective of the CTA algorithm is to make the completion
time of each task as early as possible in order to increase the
probability that each task meets its deadline. As a heuristic
approach to this objective, CTA assigns a task to a device
where the task is expected to finish earliest. To this end,
we estimate the expected finish time of a task in each device
by summing the estimated execution time of the task and the
time for completing all remaining tasks in a device.

FIGURE 3. Completion time-based Task assignment: T i
A in each rectangle

represents the estimated execution time of ti in device A. The check mark
indicates the determined target device by CTA algorithm. And black
rectangles represent assigned tasks to their target devices.

Let T iA be the total execution time (including communica-
tion delay) for a task ti in a device A (i.e., T iA = T i,cpuA +T iε,A).
And let T RA be the remaining time to complete all previously
assigned but unfinished tasks in A. Then we can estimate the
expected finish time of a new task ti when it is executed in
device A as T FiniA = T RA + T iA. The CTA algorithm selects
the target device such that the expected finish time can be
minimized. Figure 3 shows an example of the completion
time-based task assignment, assuming three devices (Edge
server: E, IoT device: I and Cloud server: C) and four tasks,
t1, t2, t3 and t4, generated at times 0, 1, 3 and 5, respectively.
Based on the estimated finish time of each task, the CTA
algorithm finds destination devices—E, E, I and C— for the
four tasks. Although not represented in this example, the CTA
algorithm also considers the remaining energy of each IoT
device when finding a target device. If the energy level of
an IoT device d after executing ti is estimated to be less
than the predefined minimum energy level threshold of d ,
i.e., Ed − E id < Eθd , then the device is excluded from the

candidate target devices to protect its local tasks from energy
deficiency. To that end, each IoT device periodically reports
its current energy level to the edge server which maintains
energy information (Ed ,Eθd) of each IoT device.

FIGURE 4. Remaining time estimation in CTA algorithm: T Loc
A denotes the

execution time of the intermittently executed local task in A, which is
unpredictable in the edge server.

The noticeable challenge in implementing CTA algorithm
is to estimate the remaining time (T RA) in each device, since
edge servers have no prior knowledge on the current state
of a device. To address this, the CTA algorithm exploits
the most recent output creation time. When a task finishes
its execution, it produces the final output. Then the com-
munication module sends the output with its creation time
to the edge server. On receiving the output, an edge server
acknowledges the completion of the task. The creation time of
the latest output arrived from a device provides us meaningful
information to estimate the remaining time in the device.
Figure 4 shows how to estimate the remaining time in device
A (T RA) and the expected finish time of a new task (t4) in A
(T Fin4A), assuming that four tasks (t0, · · · , t3) have already
been assigned to A. In this device, t0 and t1 have finished
executions and their final output has been generated at time
T 0
out and T

1
out , respectively, and has arrived to the edge server.

Since the output of t2 and t3 has not arrived yet, we assume
that they are unfinished and one of them has started execution
right after finishing the previous task (i.e., at time T 1

out).
Then, the remaining time to finish both of them becomes
T 2
A + T 3

A − (Tcur − T 1
out), and the estimated finish time of

t4 in A becomes T Fin4A = T 2
A + T 3

A + T 4
A − (Tcur − T 1

out).
Equation (11) formalizes the remaining time estimation.

T RA = max{0,
∑

ti∈T act
A

T iA − (Tcur − T lastout)} (11)

In this formula, T act
A denotes the set of active tasks inAwhose

outputs have not arrived yet and T lastout denotes the creation
time of the most recent output from A.

This way of estimating the remaining time is likely to
be inaccurate if intermittent local tasks in IoT devices are
executed after the estimation. However, the errors due to such
tasks are not accumulated over time since the most recent
output creation time accurately reflects the execution time of
the preceding local tasks, as shown in Figure 4.

The CTA algorithm chooses a target device for a single task
when the task is created with O(|M|) time complexity.

216600 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

B. HIERARCHICAL WEIGHT ALLOCATION
Whenever a new task is generated, the CTA algorithm
selects a target device and assigns the task to the device.
The execution of the newly assigned task may interfere
with existing tasks in the device. Hence, when a new task
arrives, a device/server needs to reschedule all the tasks
including the new one, in order to maximize the number
of deadline-met tasks. Rescheduling is initiated after all the
input data required for a new task has been received from the
communicationmodule and, therefore, we do not need to con-
sider the input data communication time while scheduling.
Also, the communication time for output data can be regarded
as a constant value since its size is known in advance via
task profiling. Hence, for each task we can just subtract the
communication time for output data from its deadline tomake
a refined deadline (D′i) for scheduling (i.e.,D

′
i = Di−T

i,out
A,ε).

Then it is enough to consider only the required CPU cycle
(Ci) of each task to calculate a task schedule that maximizes
the number of deadline-met tasks.

Our collaborative task scheduling assumes that, for gener-
ality, IoT devices run general-purpose operating systems that
execute multiple tasks using time sharing-based scheduling
algorithms. Then, rather than executing tasks one by one,
it is more natural to make them run concurrently sharing
computational resources. Task scheduling, in this case, can be
enforced by differentiating CPU time allocated to each task,
i.e., assigning different weights of CPU share to each task.
Ignoring the CPU scheduling overhead, serial and concurrent
task executions have the same total task execution time,
and so the concurrent executions do not noticeably hurt the
accuracy of remaining time estimation in the CTA algorithm
that assumes the serial task execution.

The Hierarchical Weight Allocation (HWA) algorithm
dynamically and hierarchically assigns weights to tasks con-
sidering their respective refined deadlines.

1) TASK CLASSIFICATION
Whenever a new task is assigned for execution, the Task
Executor classifies the task into one of three task groups:
local task group (LTG), time critical task group (TCG) and
best effort task group (BEG). To guarantee the safe execu-
tion of local tasks in each IoT device, they are classified
into LTG with the highest priority being assigned. Time
critical tasks that have their own deadlines are classified
into TCG, and other tasks are classified into BEG with the
lowest priority assigned. Tasks in higher priority groups are
guaranteed to use as much available CPU cycles as they
need, and the remaining cycles are inherited to lower priority
groups, hence forming a hierarchy among three task groups:
LTG→TCG→BEG. It is noteworthy that a device certainly
has enough CPU power to execute its local tasks that have the
highest priority and, in our HWA algorithm, other tasks share
only the remaining CPU power for their execution. Hence,
the fair share of CPU cycles is enough among local tasks
for their safe executions. Tasks in BEG are also enough to

fairly share the inherited CPU cycles, if remain, from the
TCG. Therefore, we only need to concentrate on how to
share inherited CPU cycles from LTG among tasks in TCG
to maximize the number of deadline-met tasks.

2) DYNAMIC WEIGHT ALLOCATION
The HWA algorithmmaintains two logical task queues—run
queue and wait queue—and all tasks in a device share the
CPU cycles according to their respective share weight.When-
ever task scheduling occurs, share weights are calculated and
assigned to all the tasks such that tasks in the run queue have
positive values whose sum is 1 and those in wait queue have
zero. Let TS be the system-defined time slice (in seconds) in
which all tasks in the run queue are executed once, andWi be
the share weight of task ti. Then, ti runs on CPU forWi × TS
of time during a single time slice.

The HWA algorithm pursues three design objectives;
1) guaranteeing the safe execution of intermittent local tasks,1

2) maximizing the number of deadline-met time critical tasks,
and 3) exploiting as much CPU cycles as possible to max-
imize the overall task throughput. To achieve the first one,
when there is any intermittent local task being executed, the
HWA algorithm does not execute any offloaded tasks by
moving them to the wait queue. Since tasks in the wait queue
have zero weight, they are not executed until they move to the
run queue through task scheduling in the future that occurs as
soon as all local tasks finish. If there are multiple local tasks,
the HWA algorithm assigns the same share weight to them so
that they fairly share the CPU cycles.

When there is no intermittent local task, the HWA algo-
rithm calculates the share weight of each task in TCG. For
a task ti in TCG, the HWA algorithm first calculates its
minimum amount of CPU cycles required in each time slice,
denoted by Cmin

i , for a task to meet its refined deadline (D′i).
Since the remaining time until the refined deadline of ti
can be represented in terms of the number of time slices as
(D′i − Tcur)/TS , C

min
i becomes

Cmin
i =

CR
i

(D′i − Tcur)/TS
=

TS · CR
i

D′i − Tcur
,

where CR
i denotes the remaining required CPU cycles of ti

until it finishes, which we can get by subtracting the total
amount of CPU cycles spent by ti from Ci. If we cannot
allocateCmin

i CPU cycles to task ti in every time slice, the task
cannot avoid missing its deadline. Hence to make all tasks in
TCG meet their deadlines, the sum of their minimum CPU
cycle requirements must not exceed the amount of available
CPU cycles in a time slice:∑

ti∈T TCG
A

Cmin
i ≤ (fA − C

avg
A) · TS , (12)

where T TCG
A denotes the set of all tasks in TCG and fA−C

avg
A

is the available CPU cycles in a second. If the constraint (12)

1The protection of ever-running local tasks is done by steadily reserving
CavgA of CPU cycles in every time slice. See equation (12).

VOLUME 8, 2020 216601

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

is not satisfied due to an excessive number of time critical
tasks, the HWA algorithm selects one or more tasks and
enqueues them to the wait queue. They can move to the run
queue again, after a task finishes its execution leaving the
CPU cycles occupied by the task available. For that reason,
rescheduling tasks needs to occur also whenever an existing
task finishes. To minimize the number of tasks that need to
be enqueued to the wait queue, the HWA algorithm selects
them one by one in their Cmin

i order, until the constraint (12)
is satisfied, and the remaining tasks are enqueued to the run
queue.

When the constraint (12) is satisfied, the HWA algorithm
adjusts the share weights of tasks in the run queue by normal-
izing their minimum CPU cycle requirements as:

Wi =
Cmin
i∑

ti∈T RQ
A

Cmin
i

·
fA − C

avg
A

fA

where T RQ
A is the set of tasks in the run queue. Through the

normalization process, a task ti in the run queue is assigned
WiTS time in each time slice and can use up toWiTS fA cycles
in a given time slice. Since

∑
ti∈T RQ

A
Cmin
i ≤ (fA − Cavg

A)TS
by the constraint (12), WiTS fA ≥ Cmin

i , which enables ti to
meet its refined deadline. And since the above normalization
enables running tasks to exploit the entire available CPU
cycles in each time slice (i.e., (fA−C

avg
A)TS), the overall task

execution time in the run queue is minimized.
The best-effort tasks in BEG are executed only when there

is no tasks in both LTG and TCG. To this end, if there is any
task in either LTG or TCG, best-effort tasks are enqueued to
the wait queue. When the two task groups become empty,
the HWA algorithm moves all tasks in BEG to the run queue
assigning the same share weight to them.

V. PERFORMANCE EVALUATION
In this section, we present the performance of the collabora-
tive task scheduling scheme through extensive experiments.
Since, to the best of our knowledge, there is no prior work
that assumes multiple tasks being executed concurrently in an
IoT device, we compare our scheduling scheme (HWA) with
three traditional scheduling policies, EDF (Earliest Deadline
First), SJF (Shortest Job First) and FIFO. For task assignment,
we either use our CTA algorithm or the weighted round-robin
(WRR) algorithm which assigns tasks in proportion to the
CPU power in a round-robin manner.

A. EXPERIMENTAL ENVIRONMENT
We implemented each component of the software architecture
in Figure 2 on a single 32-core (2.1 GHz) Linux (Ubuntu
20.04.1 LTS) machine. The experimental testbed consists of
four cloud servers, one edge server, and eight IoT devices, all
of which run on 14 Linux Docker containers in the multicore
server machine. Specifically, we create one container for each
task executor in cloud servers and IoT devices. We also create
two containers for an edge server, one for task manager and
another for task executor. We assign two CPU cores to each

container.When generating containers for IoT devices, we set
their cfs-quota_us to one-third of the cloud/edge con-
tainers to represent their weak CPU power. Hence, the CPU
frequencies of cloud server (fc), edge server (fε) and IoT
devices (fd) are 2.1 GHz, 2.1 GHz and 0.7 GHz, respectively.

The edge server’s task manager has three processes: task
generator, task distributor, and communication module. The
task generator generates edge tasks, each repeatedly calcu-
lating the greatest common divisor of two large numbers.
We used the number of such repetitions to determine each task
size. Specifically, we set the number of repetitions such that
the required CPU cycles of offloaded tasks (Ci) follow Gaus-
sian distributionwithµ= 350Mcycles and σ = 210Mcycles.
And their deadlines are set to Ci/fd + (0.1 ∼ 0.5) seconds,
which are their execution times in an IoT device with random
margin (0.1∼0.5 sec.) added. For local tasks in the IoT device,
we set their CPU cycle and the deadline to 500 Mcycles
and 1 second, respectively. The task distributor determines
where to assign each task among cloud, edge, and IoT devices
based on either WRR or our CTA algorithm. A container for
task executor also has a process for communication module
and the task executor process. The communication module
transfers tasks and outputs between the edge and cloud or
IoT containers through Redis queues. The network latency
between cloud and edge containers and between the edge and
IoT containers is set to 128 ms and 3 ms, respectively, using
Linux tc command.

Total 7,000 edge tasks are independently generated accord-
ing to the poisson process with varying arrival rate from
1,000 to 4,000 tasks/min, and additional local tasks are ran-
domly generated in each IoT device with 6 tasks/min arrival
rate during the simulation. Among 7,000 edge tasks, 90% of
tasks are time critical tasks and remaining 10% of tasks are
best effort tasks. We repeated all experiments ten times and
averaged their results.

B. PERFORMANCE COMPARISON
We evaluate the performance of our scheme in terms of both
task throughput and deadline satisfaction ratio, by compar-
ing eight cases of algorithm combination between four task
scheduling and two task assignment algorithms.

1) THROUGHPUT
Wefirst examine the throughput of the IoT-assisted edge com-
puting. In this experiment, wemeasured the total time to com-
plete all edge tasks (during which independently generated
local tasks are also executed) and divided the number of all
tasks by the measured time to get task throughput per second.
Figure 5a shows the throughput of each case as task arrival
rate (i.e., overall system load) increases. Aggregating the
CPU frequencies of all nodes, we can estimate the theoretical
maximum computation capacity of our experimental system,
which is 2.1 Gcycles (edge) + 4 × 2.1 Gcycles(cloud) +
8× 0.7 Gcycles (IoT) = 16.1 Gcycles in a second. Since the
average required CPU cycles of offloaded tasks are 350Mcy-
cles, the hypothetical system’s theoretical throughput bound

216602 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

FIGURE 5. Comparison of the throughput and deadline satisfaction ratio with varying task arrival rates.

becomes about 46 tasks/sec, as plotted with ‘IDEAL’ title in
Figure 5a.

Since every task scheduling algorithm always fully exploits
the CPU power as long as there exist tasks to be executed,
scheduling algorithm itself does not affect the task through-
put. Meanwhile, the task assignment algorithm may affect
the task throughput since skewed task distribution can make
lightly loaded devices idle and therefore increasing the total
execution time. The WRR algorithm, which uniformly dis-
tributes tasks across nodes in proportion to their CPU power,
naturally shows near-optimal throughput. Of importance is
the fact that our CTA algorithm, which is designed to max-
imize the probability of each time critical task to meet its
deadline, also shows near-optimal throughput. It means that
the CTA algorithm does not sacrifice task throughput to
achieve its design goal.

2) DEADLINE SATISFACTION RATIO (DSR)
Noticeable difference among scheduling algorithms is in their
deadline satisfaction ratio, as shown in Figures 5b and 5c,
which shows DSRs of local and time critical tasks, respec-
tively. First of all, meeting deadlines of local tasks is of utmost
importance so that IoT-assisted edge computing be feasible.
As shown in Figure 5b, our HWA algorithm, either with CTA
or with WRR, always meets their deadlines regardless of the
system load, owing to its prioritization on the local tasks.
However, other algorithms show rapid decrease in DSR as
task arrival rate increases mainly due to their serial execu-
tions of tasks. Specifically, when an IoT device is executing
an offloaded task a newly generated local task cannot be
executed immediately but delayed until the offloaded task
finishes, which can make the local task miss its deadline even
under the lightly loaded situation. Since SJF does not consider
deadlines, short running edge tasks, even arrived later than
local tasks, may further delay executions of local tasks in SJF.
Such delay of local task execution becomesmore problematic
as the sizes of local tasks get larger. Since EDF schedules
tasks based on their deadlines, local tasks can be delayed and
miss their deadlines by time critical tasks that have earlier
deadlines than them. As system load increases the number of
such time critical tasks also increases and accordingly, DSR

of EDF algorithm rapidly decreases. Although SJF seems to
outperform EDF in this experiment, the result totally changes
when local tasks have larger sizes and shorter deadlines.
Of importance here is the fact that HWA algorithm always
guarantees deadlines of local tasks independent of such task
characteristics.

Figure 5c shows the DSR of time critical tasks. The com-
bination of CTA and HWA algorithms outperforms all other
combinations. Interesting here is the change of the dominant
factor in determining DSR between task assignment and
scheduling algorithms as system load increases. When the
system is lightly loaded task assignment algorithms largely
determine the DSR, whereas task scheduling algorithms dif-
ferentiate DSR in heavily loaded situation. Specifically, all
scheduling algorithms combined with our CTA algorithm
show clearly better DSR than those with WRR algorithm
until task arrival rate reaches 2000. In contrast, the HWA
algorithm outperforms other scheduling algorithms, regard-
less of the task assignment algorithm, when the task arrival
rate is higher than 2500. When the system is lightly loaded
and therefore a small number of tasks are offloaded to each
device, the deadline miss occurs mostly when multiple tasks
with large execution time are offloaded to the same device.
Since CTA algorithm assigns tasks based on their expected
finish time in each device, tasks with large execution time
tend to be distributed over all devices. However, using WRR
algorithm that does not consider any task characteristics, such
undesirable task assignment can occur and therefore show
lower DSR than CTA algorithm regardless of the scheduling
algorithm. Meanwhile, when the system is overloaded and
so each device has a large number of tasks exceeding its
capacity, their execution order (i.e., scheduling algorithm)
mostly determines DSR.

The experimental result in Figure 5c delivers an impor-
tant insight in designing IoT-assisted edge computing:
To maximize the deadline satisfaction ratio, not only task
scheduling but also task assignment algorithms should be
carefully designed incorporating characteristics of tasks to
be offloaded. CTA and HWA algorithms can be good can-
didates for such task assignment and scheduling algorithms,
respectively.

VOLUME 8, 2020 216603

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

FIGURE 6. Number and sizes of tasks assigned to each device by CTA: Total 7,000 tasks.

C. BEHAVIOR OF CTSF
In this section, we present the detailed behavior of task allo-
cation (CTA) and scheduling (HWA) algorithms.

1) TASK DISTRIBUTION BY CTA
The CTA algorithm assigns a new task to the device where the
task can be finished earliest. Figure 6 shows the total number
of tasks assigned to each device and their distribution of sizes
in each device. The CTA algorithm prefers the edge server
because the communication overhead for task offloading and
output data transfer does not exist when a task is executed
in the edge server. However, when the task load in the edge
server is large, the CTA algorithm assigns tasks to other
devices considering their completion times. Hence, as the task
arrival rate increases, more and more tasks are assigned to
either cloud servers or IoT devices.

Interesting is the size distribution of tasks in each device.
Note that cloud servers have stronger CPU power but larger
communication latency than IoT devices. A small-sized task
has larger finish time when it is assigned to a cloud server
due to its large communication latency. However, a large
task can benefit from strong CPU power of the cloud server
compensating communication latency. Therefore, small tasks
are likely to be assigned to IoT devices whereas large tasks
are assigned to cloud servers, which cannot be observed
when using WRR algorithm for task assignment. Such task
assignment behavior of CTA algorithm increases the DSR of
time critical tasks as shown in Figure 5c.

2) TASK SCHEDULING BY HWA
Figure 7 shows dynamically changing share weights of
8 tasks (five time critical, one best effort and two local tasks),
arrived in their number order, by HWA algorithm. Whenever
a new task arrives or existing task finishes, the HWA algo-
rithm calculates and assigns new weights to tasks. It behaves
as follows: 1) local tasks (L1 and L2), as soon as arrived,
monopolize the entire CPU cycles with fair share until they
finish, pausing (T2 and T3) or delaying (T5) all other tasks by
assigning zero weights to them, 2) time critical tasks share
CPU cycles based on their respective required CPU cycles

FIGURE 7. Dynamic weights assignment by HWA algorithm: T, B and L
represent time critical, best effort and local tasks, respectively. x-axis
represents times when events (task arrival or finish) occurred.

and deadline and 3) executions of best effort tasks are paused
(B1) or postponed (i.e., assigned zero weights) until there
remains no time critical or local task.

Noticeable here is the out of order executions of T4 and T5.
At the time when T4 arrived (t3), the sum of minimum CPU
cycle requirements (Cmin

i) of all time critical tasks (T2,T3
and T4) exceeds the amount of CPU cycles in a time slice
(i.e., (12) is not satisfied), and HWA algorithm moves T4,
which has the largest Cmin

i value, to the wait queue and only
T2 and T3 are executed. After that whenN2 finishes (t7), there
are four time critical tasks (T2,T3,T4 and T5). The HWA
algorithm finds that, while it cannot meet deadlines of all
of them, T2,T3 and T5 can meet their deadlines. Therefore
it leaves T4, which has the largest Cmin

i value, in the wait
queue. When T3 finishes at time t9, since we cannot meet
the deadlines of all remaining time critical tasks, T2 and T4,
the HWA algorithm still leaves T4 in the wait queue until T2
finishes, and then moves T4 to the run queue and executes
it at t10. The paused best effort task B1 is resumed when T4
finishes at t11.
The HWA algorithm not only guarantees deadline-met exe-

cutions of local tasks as shown in Figure 5b but also achieves
better deadline satisfaction ratio for time critical tasks than

216604 VOLUME 8, 2020

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

other scheduling policies (Figure 5c) owing to its dynamic
weight allocation.

D. EFFECT TO THE EDGE COMPUTING PERFORMANCE
For IoT-assisted edge computing be feasible, two conditions
should be satisfied: 1) offloaded tasks to IoT devices do
not hurt normal execution of local tasks in each IoT device,
i.e., local tasks in an IoT device should be able to meet
their respective deadlines despite executions of offloaded
tasks, and 2) computing resources in IoT devices should be
effectively exploited for executing offloaded tasks for edge
services, and therefore increase the throughput of edge com-
puting services. Figure 5 confirms that the first condition
is satisfied when using our HWA algorithm. To examine
the second condition, we measured the task throughput vary-
ing the number of participating IoT devices from zero to
eight. When there is no IoT device all tasks are executed in
either edge server or cloud servers. Figure 8 shows the results.
As more IoT devices are used, the task throughput mono-
tonically increases, satisfying the second condition. Results
in Figures 5 and 8 confirm that IoT-assisted edge computing
with our collaborative task scheduling scheme being used is
feasible.

FIGURE 8. Throughput of IoT-assisted edge computing: Task arrival
rate = 4,000 tasks per minute.

VI. CONCLUSION
As more and more IoT devices with abundant computa-
tional resources are emerged, the effective exploitation of
unused resources in IoT devices for other meaningful work
than the local IoT job is of increasing importance. In this
work, we propose to use those unused resources for empow-
ering edge computing, i.e., IoT-assisted edge computing,
by offloading a portion of edge tasks to IoT devices. To that
end, we propose a collaborative task scheduling scheme in
which edge server assigns tasks using completion time-based
task assignment algorithm and IoT devices take the role of
task scheduling using hierarchical weight allocation algo-
rithm. Experimental results show that the proposed scheme
achieves increased edge service throughput by exploiting
unused resources in IoT devices while guaranteeing deadlines
of local IoT tasks.

REFERENCES
[1] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for

the Internet of Things with edge computing,’’ IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan. 2018.

[2] T. X. Tran and D. Pompili, ‘‘Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[3] X. Lyu, H. Tian, C. Sengul, and P. Zhang, ‘‘Multiuser joint task offloading
and resource optimization in proximate clouds,’’ IEEE Trans. Veh. Tech-
nol., vol. 66, no. 4, pp. 3435–3447, Apr. 2017.

[4] N. Auluck, A. Azim, and K. Fizza, ‘‘Improving the schedulability of real-
time tasks using fog computing,’’ IEEE Trans. Services Comput., early
access, Sep. 27, 2019, doi: 10.1109/TSC.2019.2944360.

[5] M. Grob. (2017). We Are Making on-Device Ai Ubiquitous.
Accessed: Jul. 23, 2019. [Online]. Available: https://www.qualcomm.
com/news/onq/2017/08/16/we-are-making-device-ai-ubiquitous

[6] A. Kendall and Y. Gal, ‘‘What uncertainties do we need in Bayesian deep
learning for computer vision?’’ in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 5574–5584.

[7] G. A. McGilvary, A. Barker, andM. Atkinson, ‘‘Ad hoc cloud computing,’’
in Proc. IEEE 8th Int. Conf. Cloud Comput., Jun. 2015, pp. 1063–1068.

[8] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, and F. H. P. Fitzek,
‘‘Device-enhanced MEC: Multi-access edge computing (MEC) aided by
end device computation and caching: A survey,’’ IEEE Access, vol. 7,
pp. 166079–166108, 2019.

[9] P. Menage, P. Jackson, and C. Lameter. (2008). Cgroups. [Online]. Avail-
able: http://www.mjmwired.net/kernel/Documentation/cgroups.txt

[10] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ‘‘Energy-efficient dynamic offload-
ing and resource scheduling in mobile cloud computing,’’ in Proc. IEEE
INFOCOM, Apr. 2016, pp. 1–9.

[11] Y. Yu, J. Zhang, and K. B. Letaief, ‘‘Joint subcarrier and CPU time
allocation for mobile edge computing,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[12] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, ‘‘Mobile edge computing
empowered energy efficient task offloading in 5G,’’ IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6398–6409, Jul. 2018.

[13] L. Ji and S. Guo, ‘‘Energy-efficient cooperative resource allocation in
wireless poweredmobile edge computing,’’ IEEE Internet Things J., vol. 6,
no. 3, pp. 4744–4754, Jun. 2019.

[14] H. Guo, J. Zhang, J. Liu, and H. Zhang, ‘‘Energy-aware computation
offloading and transmit power allocation in ultradense IoT networks,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4317–4329, Jun. 2019.

[15] W. Chen, D.Wang, and K. Li, ‘‘Multi-user multi-task computation offload-
ing in green mobile edge cloud computing,’’ IEEE Trans. Services Com-
put., vol. 12, no. 5, pp. 726–738, Sep. 2019.

[16] M. Molina, O. Munoz, A. Pascual-Iserte, and J. Vidal, ‘‘Joint scheduling
of communication and computation resources in multiuser wireless appli-
cation offloading,’’ in Proc. IEEE PIMRC, Sep. 2014, pp. 1093–1098.

[17] Y. Sahni, J. Cao, and L. Yang, ‘‘Data-aware task allocation for achieving
low latency in collaborative edge computing,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 3512–3524, Apr. 2019.

[18] Z. Ning, P. Dong, X. Kong, and F. Xia, ‘‘A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet of Things,’’
IEEE Internet Things J., vol. 6, no. 3, pp. 4804–4814, Jun. 2019.

[19] Q. Ju, G. Sun, H. Li, and Y. Zhang, ‘‘Collaborative in-network processing
for Internet of battery-less things,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 5184–5195, Jun. 2019.

[20] Y. Zhang, X. Lan, Y. Li, L. Cai, and J. Pan, ‘‘Efficient computation resource
management in mobile edge-cloud computing,’’ IEEE Internet Things J.,
vol. 6, no. 2, pp. 3455–3466, Apr. 2019.

[21] C. You, K. Huang, H. Chae, and B.-H. Kim, ‘‘Energy-efficient resource
allocation for mobile-edge computation offloading,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[22] T. Quang Dinh, J. Tang, Q. Duy La, and T. Q. S. Quek, ‘‘Offloading
in mobile edge computing: Task allocation and computational frequency
scaling,’’ IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[23] X. Wei, C. Tang, J. Fan, and S. Subramaniam, ‘‘Joint optimization of
energy consumption and delay in cloud-to-thing continuum,’’ IEEE Inter-
net Things J., vol. 6, no. 2, pp. 2325–2337, Apr. 2019.

[24] Y. Gao, W. Tang, M. Wu, P. Yang, and L. Dan, ‘‘Dynamic social-aware
computation offloading for low-latency communications in IoT,’’ IEEE
Internet Things J., vol. 6, no. 5, pp. 7864–7877, Oct. 2019.

[25] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,
‘‘Cooperative-competitive task allocation in edge computing for delay-
sensitive social sensing,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2018, pp. 243–259.

VOLUME 8, 2020 216605

http://dx.doi.org/10.1109/TSC.2019.2944360

Y. Kim et al.: Collaborative Task Scheduling for IoT-Assisted Edge Computing

[26] D. Zhang, Y.Ma, Y. Zhang, S. Lin, X. S. Hu, andD.Wang, ‘‘A real-time and
non-cooperative task allocation framework for social sensing applications
in edge computing systems,’’ inProc. IEEE RTAS, Apr. 2018, pp. 316–326.

[27] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, ‘‘Clonecloud: Elas-
tic execution between mobile device and cloud,’’ in Proc. ACM Eurosys,
2011, pp. 301–314.

[28] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEEPervas. Comput., vol. 8, no. 4,
pp. 14–23, Oct. 2009.

[29] D. Huang, P. Wang, and D. Niyato, ‘‘A dynamic offloading algorithm
for mobile computing,’’ IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[30] W. Zhang, Y. Wen, and D. O. Wu, ‘‘Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,’’ IEEE Trans.
Wireless Commun., vol. 14, no. 1, pp. 81–93, Jan. 2015.

[31] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, ‘‘Energy-
optimal mobile cloud computing under stochastic wireless channel,’’ IEEE
Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

[32] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, ‘‘Live migration of virtual machines,’’ in Proc. USENIX
NSDI, 2005, pp. 273–286.

[33] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, ‘‘MAUI: Making smartphones last longer with
code offload,’’ in Proc. 8th Int. Conf. Mobile Syst., Appl., Services, 2010,
pp. 49–62.

[34] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, ‘‘ENORM:
A framework for edge node resource management,’’ IEEE Trans. Services
Comput., early access, Sep. 18, 2017, doi: 10.1109/TSC.2017.2753775.

[35] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A. Neal,
‘‘Mobile-edge computing introductory technical white paper,’’ Mobile-
Edge Comput. Ind. Initiative, ETSI, Sophia Antipolis, France, White Paper
1089–7801, 2014.

[36] H.-S. Lee and J.-W. Lee, ‘‘Resource and task scheduling for SWIPT IoT
systems with renewable energy sources,’’ IEEE Internet Things J., vol. 6,
no. 2, pp. 2729–2748, Apr. 2019.

[37] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha,
M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop, ‘‘Towards multi-
layer interoperability of heterogeneous IoT platforms: The inter-IoT
approach,’’ in Integration, Interconnection, and Interoperability of IoT
Systems. Berlin, Germany: Springer, 2018, pp. 199–232.

[38] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, ‘‘Toward semantic
interoperability in onem2m architecture,’’ IEEE Commun. Mag., vol. 53,
no. 12, pp. 35–41, Dec. 2015.

[39] S. Pallewatta, V. Kostakos, and R. Buyya, ‘‘Microservices-based iot appli-
cation placement within heterogeneous and resource constrained fog com-
puting environments,’’ in Proc. IEEE/ACM UCC, Dec. 2019, pp. 71–81.

[40] M. Xiao, N. B. Shroff, and E. K. P. Chong, ‘‘A utility-based power-control
scheme in wireless cellular systems,’’ IEEE/ACM Trans. Netw., vol. 11,
no. 2, pp. 210–221, Apr. 2003.

[41] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,’’ IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

YOUNGJIN KIM received the B.S. and M.S.
degrees in computer science from Hanyang Uni-
versity, Seoul, South Korea, in 2013 and 2015,
respectively, where he is currently pursuing the
Ph.D. degree in computer science. His research
interests include distributed computing systems,
storage systems for cloud computing, big data pro-
cessing, edge computing, and cloud computing.

CHIWON SONG received the B.S. degree in
industrial engineering and theM.S. degree in com-
puter science from Hanyang University, Seoul,
South Korea, in 2010 and 2012, respectively,
where he is currently pursuing the Ph.D. degree.
He is currently working for LG Electronics, South
Korea. His research interests include cloud com-
puting, security and privacy for cloud services, and
distributed computing systems.

HYUCK HAN received the B.S., M.S., and Ph.D.
degrees in computer science and engineering from
Seoul National University, Seoul, South Korea,
in 2003, 2006, and 2011, respectively. From
2011 to 2013, he worked for Samsung as a
Senior Researcher. Since March 2014, he joined
the Department of Computer Science, Dong-
duk Women’s University, Seoul, South Korea,
as an Assistant Professor. His research inter-
ests are operating systems, database systems, and
distributed systems.

HYUNGSOO JUNG received the B.S. degree in
mechanical engineering from Korea University,
Seoul, in 2002, and the M.S. and Ph.D. degrees
in computer science from Seoul National Uni-
versity, South Korea, in 2004 and 2009, respec-
tively. From 2010 to 2012, he was with The
University of Sydney, Sydney, Australia, as a Post-
doctoral Research Associate. From April 2012 to
September 2012, he was a Researcher at NICTA.
FromOctober 2012 to August 2015, he worked for

Amazon Web Services as a (Senior) Software Development Engineer. Since
September 2015, he joinedHanyangUniversity as anAssistant Professor. His
research interests are in the areas of distributed systems, database systems,
and transaction processing.

SOOYONG KANG (Member, IEEE) received the
B.S. degree in mathematics and the M.S. and
Ph.D. degrees in computer science from Seoul
National University (SNU), Seoul, South Korea,
in 1996, 1998, and 2002, respectively. He was
then a Postdoctoral Researcher with the School of
Computer Science and Engineering, SNU. Since
March 2003, he joined the Department of Com-
puter Science, Hanyang University, Seoul, as a
Professor. From January 2017 to February 2018,

he was a Visiting Professor with the Department of Computing, Macquarie
University, Sydney, Australia. His research interests include storage systems,
distributed computing systems, mobile cloud computing, edge computing,
and the Internet of Things.

216606 VOLUME 8, 2020

http://dx.doi.org/10.1109/TSC.2017.2753775

