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ABSTRACT An adaptive nonlinear output tracking control method is proposed to reject unmatched biased
sinusoidal disturbances for nonlinear systems that are in the strict feedback form. The proposed method
consists of a disturbance observer (DOB) and an adaptive nonlinear controller. The DOB is in the form of a
high-pass filter, and it estimates biased sinusoidal disturbances with unknown frequencies. The performance
of the DOB is investigated in the time and frequency domains. As the DOB cannot accurately estimate
biased sinusoidal disturbances with unknown frequencies, an adaptive nonlinear controller is designed
to compensate for the disturbance estimation errors and ensure output tracking. The adaptive nonlinear
controller is developed via the backstepping procedure. Thus, matching conditions are not significant in
this design. The discontinuous ‘‘sgn’’ function is applied to the controller to compensate for the disturbance
estimation errors. An update law of the control gain of the discontinuous ‘‘sgn’’ function is proposed to
suppress the disturbance estimation errors without the knowledge of their upper bounds. Low-pass filters
are embedded in the controller to smooth the derivative of the discontinuous ‘‘sgn’’ function. Consequently,
multiple unmatched biased sinusoidal disturbances are compensated by the proposed method without any
knowledge of the disturbances. The proposed method can reject multiple biased sinusoidal disturbances
while it guarantees the constraint of the tracking error in steady-state response. Furthermore, the proposed
method can reject multiple biased sinusoidal disturbances.

INDEX TERMS Nonlinear system, disturbance observer, disturbance rejection, output tracking.

I. INTRODUCTION
The rejection of sinusoidal disturbances is of particular inter-
est in control systems because these disturbances commonly
occur in practice [1]. Sinusoidal disturbances occur in a
large number of applications, such as rotating magnetic bear-
ings [2], precise piezoactuated nanopositioning [3], hard disk
drives [4], optical disk drives [5], rotating pumps in cry-
ocooler expanders [6], helicopter rotor blades [7], and aircraft
landing on oscillating carriers [8].

The associate editor coordinating the review of this manuscript and
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To address this problem, the internal model principle (IMP)
approach was developed to cancel sinusoidal disturbances
using disturbance dynamics [9]–[12]. In this approach, a pair
of poles that matches the frequency of a sinusoidal dis-
turbance is requiblack to perfectly cancel the disturbance
because the sensitivity function from the disturbance to an
output is in the form of a notch filter. However, it is difficult to
exactly determine the disturbance frequency because it may
vary or may be unknown during system operation. Therefore,
various adaptive algorithms have been proposed to estimate
the disturbance frequency [5], [13], [14]. Even though these
algorithms solve general problems, control laws are difficult
to implement in practice and may easily destabilize a system
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owing to the presence of unmodeled dynamics [15]. Other
approaches for canceling sinusoidal disturbances in nonlinear
systems are global stabilization and disturbance suppression
using output feedback [16]. In addition, a global output feed-
back compensator was designed to reject unknown sinusoidal
disturbances for a class of nonlinear minimum phase sys-
tems [17]. These methods effectively cancel sinusoidal dis-
turbances with unknown frequencies when systems are in the
normal form or output feedback form and satisfy matching
conditions. In practice, a disturbance is not a pure sinusoidal
signal but a biased sinusoidal signal owing to the asymme-
try of systems. Furthermore, in IMP-based methods, n peri-
odic generators are requiblack to reject n biased sinusoidal
disturbances.

Observer based control methods were used to estimate
biased sinusoidal disturbances [24]–[29]. A disturbance
observers (DOBs)-based controller was designed to cancel
disturbances in the frequency domain [24]. A DOB designed
in the time domain was generalized to estimate higher-order
disturbances in a time-series expansion [25]. DOB-based
tracking control algorithms were presented in [26], [27].
The disturbance estimation error cannot converge to zero
because a biased sinusoidal disturbance varies with time.
Variable structure control methods were applied to tracking
controllers to suppress the disturbance estimation error [28],
[29]. However, these methods require the upper bound of the
disturbance estimation error, which is difficult to determine.
Furthermore, the use of the discontinuous function ‘‘sgn’’
may result in the chattering in the control input. Extended
observer based control methods were proposed [18], [19]. In
[18], only matched disturbance was consideblack and in [19],
it may be difficult to satisfy the constraint of the tracking error
in steady-state response.

Recently, fuzzy and neural network based on control meth-
ods were proposed to compensate for disturbances [20], [21].
Thesemethod can effectively compensate for the disturbance,
but, they require the upper bounds of the absolute values
of the disturbances. An adaptive asymptotic tracking con-
trol was developed for uncertain nonlinear time-delay sys-
tems depended on delay estimation information [22]. In this
paper, external disturbances were not consideblack. In [23],
an adaptive exact sliding tracking control was proposed for
high-order strict-feedback systems with mismatched nonlin-
earities and external disturbances, but, its control input had
ripples.

In this paper, we propose adaptive nonlinear output track-
ing control to reject unmatched biased sinusoidal distur-
bances for the nonlinear systems that are in the strict feed-
back form. The proposed method consists of a DOB and
an adaptive nonlinear controller. The DOB is designed to
estimate the biased sinusoidal disturbances using the full
state feedback and system information. The DOB is in the
form of a high-pass filter, and it estimates biased sinusoidal
disturbances with unknown frequencies. The performance
of the DOB is studied in the time and frequency domains.
As the DOB cannot accurately estimate biased sinusoidal

disturbances with unknown frequencies, an adaptive nonlin-
ear controller is designed to compensate for the disturbance
estimation error and ensure global output tracking. The adap-
tive nonlinear controller is developed via the backstepping
procedure. Thus, matching conditions are not significant in
this design. The discontinuous ‘‘sgn’’ function is applied to
the controller to compensate for the disturbance estimation
error. An update law of the control gain of the discontinu-
ous ‘‘sgn’’ function is proposed to suppress the disturbance
estimation error without the knowledge of its upper bound.
Low-pass filters are embedded in the controller to smooth the
derivative of the discontinuous ‘‘sgn’’ function. The combi-
nation of the backstepping, the adaptive gain, and the discon-
tinuous ‘‘sgn’’ function can blackuce the ripple in the control
input while it can suppress the disturbance estimation error.
Consequently, unmatched biased sinusoidal disturbances are
compensated by the proposed method without any knowl-
edge of the disturbances. The proposed method can reject
multiple biased sinusoidal disturbances while it guarantees
the constraint of the tracking error in steady-state response.
Closed-loop stability is mathematically proven. The perfor-
mance of the proposed method is validated via simulations.

II. PROBLEM FORMULATION
We consider the class of the systems that are is in the strict
feedback form [30] as follows:

ẋ1 = f1(x1)+ g1(x1)x2 + d1
...

ẋn−1 = fn−1(x1, . . . , xn−1)+ gn−1(x1, . . . , xn−1)xn + dn−1
ẋn = fn(x1, . . . , xn)+ gn(x1, . . . , xn)u+ dn
y = x1 (1)

where x ∈ Rn, y ∈ R, and u ∈ R are the state, output and the
input of systems, respectively. di for i ∈ [1, n] denotes biased
sinusoidal disturbances with unknown frequencies. fi and gi
for i ∈ [1, n] are smooth and always positive and bounded for
all x. fi is zero at the origin for all i and x, and gi is always
positive for all i and x. The disturbance di is biased sinusoidal
signal given by di = M0i + Mi sin(ωit + φi), where M0i ,
Mi > 0, ωi > 0, and φi are unknown. The main goal of the
controller design is to make the system output, y = x1, track
the desiblack output, yd = x1d , under the disturbances.

III. DISTURBANCE OBSERVER DESIGN
To estimate multiple biased sinusoidal disturbances,
the dynamics of x̂ are defined as as

˙̂xi = fi(x1, . . . , xi)+ gi(x1, . . . , xi)xi+1 + d̂i, i ∈ [1, n− 1]
˙̂xn = fn(x1, . . . , xn)+ gn(x1, . . . , xn)u+ d̂n (2)

where x̂i and d̂i are the estimations of xi and di, respectively.
x̂(0) = x(0) and d̂i(0) = 0. d̂i for i ∈ [1, n] is defined as

d̂i = kPi (xi − x̂i)+ kIi

∫ t

0
(xi − x̂i)ds, i ∈ [1, n] (3)
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where kPi and kIi for i ∈ [1, n] are positive constants to make
the polynomial s2 + kPis + kIi a Hurwitz polynomial, and
d̂i(0) = 0 for all i. The disturbance estimation error is defined
as

d̃i = di − d̂i, i ∈ [1, n]. (4)

Theorem 1: Suppose that the DOBs (2) and (3) are
applied to the nonlinear system (1). The high pass-filter Hi(s)
is

Hi(s) =
s2

s2 + kPis+ kIi
, i ∈ [1, n]. (5)

If the cutoff frequency ωci of Hi(s) is above the maximum
frequency ωimax of the disturbance, then the disturbance esti-
mation error d̃i, ∀i = [1, n] is bounded and Ti exists such
that

|d̃i| ≤ 0imax = |H (s)i|s=jωci ×Mimax (6)

for t > Ti. ♦
Proof: The boundedness of the estimation error is

proven in both transient and steady-state responses. First,
the boundedness of the estimation error is proven in the
transient response. Because ˙̂di = ḋ − ˙̃di, from (1), (2), and
(4), the derivative of (3) provides

ḋi =
˙̃di + kPi d̃i + kIi

∫ t

0
d̃ids, i ∈ [1, n]. (7)

d̃Ii is defined as
∫ t
0 d̃ids. Then we obtain[

˙̃dIi
˙̃di

]
︸ ︷︷ ︸
ėdi

=

[
0 1
−kIi −kPi

]
︸ ︷︷ ︸

Adi

[
d̃Ii
d̃i

]
︸ ︷︷ ︸
edi

+

[
0
1

]
︸︷︷︸
Bdi

ḋi. (8)

As kPi and kIi are positive constants to make the polynomial
s2 + kPis + kIi a Hurwitz polynomial, Adi is Hurwitz. As
d̂i(0) = 0 and d̂Ii (0) = 0, edi (0) = 0. In (8), edi can be
obtained [31] as

edi (t) =
∫ t

0
(eAdi (t−τ )Bdi ḋi(τ ))dτ

= eAdi (t−τ )Bdidi(τ )
∣∣∣t
0
−

∫ t

0
(Adie

Adi (t−τ )Bdidi(τ ))dτ

= Bdidi(t)−
∫ t

0
(Adie

Adi (t−τ )Bdidi(τ ))dτ. (9)

As Adi is Hurwitz, ki exists such that ‖eAdi (t−τ )‖2 ≤

kie−λi(t−τ ) where λi is the minimum singular value of Adi .
Notes that supt |di(t)| = |M0i | + |Mimax |. Thus,

‖edi‖2≤‖Bdi‖2|di(t)| +
∫ t

0
(‖Adi‖2e

λi(t−τ )‖Bdi‖|di(τ )|)dτ

≤ sup
t
|di(t)| +

‖Adi‖2ki
λi

sup
t
|di(t)|

≤ |M0i | + |Mimax | +
‖Adi‖2ki(|M0i | + |Mimax |)

λi
. (10)

As d̃i ≤ |d̃i| ≤ ‖edi‖2,

d̃i ≤ |M0i | + |Mimax | +
‖Adi‖2ki(|M0i |+|Mimax |)

λi
. (11)

Thus, d̃i is bounded in the transient response. The bound-
edness depends on kIi and kPi . d̃i is studied in the fre-
quency domain to analyze its upper bound in the steady-state
response. Differentiating both sides of (3) twice provides

¨̂di = kPi (ẍi − ¨̂xi)+ kIi (ẋi − ˙̂xi). (12)

With (1) and (2), (12) becomes

d̈i =
¨̃di + kPi

˙̃di + kIi d̃i. (13)

From (13), we obtain the error transfer functions H (s) as

d̃i =
s2

s2 + kPis+ kIi︸ ︷︷ ︸
Hi(s)

di (14)

where s is the Laplace operator. In (14), Hi(s) is a typical 2nd

order high pass-filter. The disturbances are biased sinusoidal
signals, thus they are bounded. In (18), the transfers function
from the disturbances to the disturbance estimation errors are
in the form of the high pass filter. Consequently, the distur-
bance estimation errors are also bounded with the bounded
disturbances. In Hi(s), the cutoff frequency ωci depends on
observer parameters kPi and kIi . If ωci is higher than the max-
imum frequency ωimax of a disturbance, then the estimation
error d̃i is suppressed by the high pass filter (14). Thus there
exists T1i such that

|d̃i(t)| ≤ 0imax = |Hi(s)|s=jωci ×Mimax (15)

for t > T1i . �
In the observer gain tuning, it is recommended that the

observer gains are chosen such that ωci is higher than the
expected frequency of a main component of a disturbance.
Even though DOBs can accurately estimate biased sinusoidal
disturbances, the disturbance estimation errors cannot con-
verge to zero because the derivatives of biased sinusoidal
disturbances are not zero. The next section describes the
design of the adaptive nonlinear controller to compensate for
the disturbance estimation errors in tracking.

IV. ADAPTIVE NONLINEAR CONTROLLER DESIGN
The output tracking error is defined as e1 = x1 − x1d . Then
tracking errors e =

[
e1 e2 . . . en

]T can be written as

ei = xi − xid , i ∈ [1, n]. (16)

The tracking error dynamics are

ėi = ẋi − ẋid = fi + gixi+1 + di − ẋid , i ∈ [1, n− 1]

ėn = ẋn − ẋnd = fn + gnu+ dn − ẋnd . (17)

As ei = xi − xid , (17) may be written as

ėi = fi + giei+1 + gixi+1d + di − ẋid , ∀i ∈ [1, n− 1]

ėn = fn + gnu+ dn − ẋnd . (18)
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The adaptive nonlinear controller is designed via the back-
stepping procedure as

x2d =
1
g1

(−f1 + ẋ1d − k1 e1 − d̂1 − 0̂1sgn(e1))

xi+1d =
1
gi
(−fi + ẋid − gi−1ei−1 − kiei − d̂i − 0̂isgn(ei)),

i ∈ [2, n− 1]

u=
1
gn

(−fn+ẋnd−gn−1en−1−knen−d̂n−0̂nsgn(en))

(19)

where control gains ki > 0, ∀i ∈ [1, n]. 0̂i ∀i ∈ [1, n]
is the adaptive gain to suppress the disturbance estimation
error in the steady-state response. 0imax should be known
to sufficiently suppress the disturbance estimation error in
the steady-state response. However, it is difficult to deter-
mine 0imax even though the disturbance estimation errors are
bounded. We define the desiblack adaptive gain as 0id >

0imax . Note that 0id is also unknown. To make 0̂i converge
to 0id , the update law for 0̂i ∀i ∈ [1, n] is designed as

˙̂
0i = ci|ei| (20)

where 0̂i(0) > 0 and ci > 1. 0̂i increases with nonzero ei.
Then, 0̂i ≥ 0imax in finite time T2i where T2i is yet to be
defined. ei becomes zero after t ≥ T2i . This yields that 0̂i
admits a bounded value, which yields that there always exists
a positive constant 0id > 0imax for ∀t and 0id > 0imax . The
convergence of ei to zero is proven later.

Theorem 2: Suppose that the DOBs (2) (3), nonlinear
controller (19), and adaptive gain update law (20) are
applied to the tracking error dynamics (18). Then, the origin
of the tracking error dynamics (18) is globally exponentially
stable for t > Tmaxi where Tmaxi = maxi T2i and 0̂i ∀i ∈
[1, n] converges to 0id . ♦

Proof: In Theorem 1, it was proven that the distur-
bance estimation errors are bounded. With the DOBs (2) (3),
backstepping controller (19), and the adaptive gain update
law (20), the tracking error dynamics can be derived by

ė1 = −k1 e1 + g1 e2 + (d̃1 − 0̂1sgn(e1))

ėi = −kiei − gi−1ei−1 + giei+1 + (d̃i − 0̂isgn(ei),

∀i ∈ [2, n− 1]

ėn = −knen − gn−1en−1 + (d̃n − 0̂nsgn(en)). (21)

The tracking error dynamics (21) arw input-to-state stable
(ISS). In the adaptive gain update law (20), the derivative
of 0̂i ∀i ∈ [1, n] is always positive and nonzero. Thus, 0̂i
increases with nonzero ei. Then 0̂i = 0imax in finite time T2i .
After t > T2i , 0̂i > 0imax . Hence, the term −0̂isgn(e1) can
sufficiently suppress the disturbance estimation error d̃i. A
Lyapunov candidate function Ve is defined as

Ve =
1
2
e2. (22)

Then we obtain

V̇e = −KeT e−1T e (23)

where K = diag(k1, . . . , kn), 1 = [0̂1sgn(e1) −
d̃1, . . . , 0̂nsgn(en)−d̃n]T , and 0̂isgn(ei)−d̃i ≥ 0, ∀i ∈ [1, n].
Thus, after t > T2max where T2max = maxi T2i , e converges to
zero in finite time T3. After t > T3, 0̂i admits a bounded
value 0id . A Lyapunov candidate function, V , is defined for
the stability analysis of the controller (19) and adaptive gain
update law (20) as follows:

V =
n∑
i=1

e2i +
(
0̂i − 0id

)2
. (24)

Then we obtain

V̇ =
n∑
i=1

−kie2i +ei
(
d̃i−0̂isgn(ei)

)
+

(
0̂i−0id

)
˙̂
0i. (25)

With the adaptive gain update law (20), (25) becomes

V̇ ≤
n∑
i=1

−kie2i + 0id |ei| − 0̂i|ei| +
(
0̂i − 0id

)
ci|ei|

≤

n∑
i=1

−kie2i + 0id |ei| − 0̂i|ei| +
(
0̂i − 0id

)
ci|ei|

+0id |ei| − 0id |ei|

≤

n∑
i=1

−kie2i − (ci − 1) |ei|
(
0̂i − 0id

)
. (26)

As (ci − 1) > 0, the origin of the tracking error dynam-
ics (18) is globally exponentially stable for t > Tmaxi where
Tmaxi = maxi T2i and 0̂i ∀i ∈ [1, n] converges to 0id . �
The backstepping controller (19) can ensure exponential

stability. However, 0̂i continuously increases with nonzero
errors; thus, adaptive gain may become extremely large in a
few cases. To prevent this problem, the update law of 0̂i (20)
is modified as

˙̂
0i =

{
ci|ei|, |e| > εi

0, |e| ≤ εi
(27)

where εi is the constraint for ei. With the modified update law
(27), the backstepping controller (19) ensures the bounded-
ness of the tracking errors because the tracking error dynam-
ics (21) are ISS.

The backstepping controller (19) involves the derivatives
of the discontinuous ‘‘sgn’’ function, which is bounded in the
digital implementation. This problem has been resolved in
an ad hoc manner via numerical differentiation, i.e., in other
words,

ẋi+1d (n) ≈
xi+1d (n)− xi+1d (n− 1)

1T
, i ∈ [2, n] (28)

where 1T is the sampling time. This ad hoc approach has
worked well in numerous experimental applications [34],
[35]. However, even though ẋi+1d becomes bounded using of
the ad hoc approach, this approach may face the problem of
the explosion of terms. To overcome this problem, low pass
filters are designed to smooth the signal ẋi+1 as follows:

τi ˙̄xid + x̄id = xid , i ∈ [2, n] (29)
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With the use of x̄id instead of xid , the nonlinear controller (19)
becomes

x2d =
1
g1

(−f1 + ẋ1d − k1 e1 − d̂1 − 0̂1sgn(e1))

xi+1d =
1
gi
(−fi + ẋid − gi−1ei−1 − kiei − d̂i

− 0̂isgn(ei)) i ∈ [2, n− 1]

τi ˙̄xid + x̄id = xid , i ∈ [2, n]

u =
1
gn

(−fn + ẋnd − gn−1en−1 − knen − d̂n

− 0̂nsgn(en)) (30)

where e1 = x1 − x1d and ei = xi − x̄id , i ∈ [2, n] are
the tracking errors. With the DOBs (2) (3), the backstep-
ping controller (30), and the adaptive gain update law (20),
the tracking error dynamics can be derived as

ė1 = −k1 e1 + g1 e2 + (d̃1 − 0̂1sgn(e1))

+ g1(x̄2d − x2d )

ėi = −kiei − gi−1ei−1 + giei+1 + (d̃i − 0̂isgn(ei)

+ g2(x̄3d − x3d ) ∀i ∈ [2, n− 1]

ėn = −knen − gn−1en−1 + (d̃n − 0̂nsgn(en)). (31)

Theorem 3: Suppose that the DOBs (2) (3), the nonlinear
controller (30), and the adaptive gain update law (20) are
applied to the tracking error dynamics (18). Then, e1 is
ultimately uniformly bounded. ♦

Proof: The tracking error dynamics (31) can be rewrit-
ten by

ė = A(e)e+ B(e)x̃d (32)

where x̃d = x̄d − xd , x̄d =
[
x1d x̄2d . . . x̄2n

]T , xd =[
x1d x2d . . . x2n

]T ,

A(e)=



−k1 g1 0 . . . 0 0
−g1 − k2 g2 . . . 0 0
0 − g2 − k3 . . . 0 0
...

...
...

. . .
. . .

. . .

0 0 0 . . . − kn−1 gn−1
0 0 0 . . . − gn−1 − kn


∈ Rn×n,

B(e)=



0 g1 0 . . . 0 0
0 0 g2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
. . .

. . .

0 0 0 . . . 0 gn−1
0 0 0 . . . 0 0


∈ Rn×n.

In Theorem 1, it was proven that the tracking error dynam-
ics (21) are exponentially stable. Thus, the tracking error
dynamics (32) are finite-gain Lp stable for each p ∈

[1,∞] [30]. From (29), x̃d exponentially enters the bounded
ball, thus the dynamics of x̃d are finite-gain Lp stable for each
p ∈ [1,∞] [30]. Therefore, there exists τi that satisfies the

FIGURE 1. Block diagram of the proposed control method.

small-gain theorem [30] for the closed-loop system. Conse-
quently, e1 is ultimately uniformly bounded. �

Remark 1: The proposed method can be easily extended
to the case of multiple biased sinusoidal disturbances. Dis-
turbances can be expressed as the sums of biased sinusoidal
signals as follows:

di=
m∑
k=1

dik =
m∑
k=1

(M0ik
+Mik sin(ωik t+φik )) for i ∈ [1, n].

(33)

These multiple biased sinusoidal disturbances (33) can be
regarded as one biased sinusoidal disturbance. Consequently,
as the proposedmethod does not require the frequencies of the
disturbances, it can compensate multiple biased sinusoidal
disturbances. In contrast, n periodic generators, such as the
IMP and compensators, are requiblack to reject n biased
sinusoidal disturbances. This is the main advantage of the
proposed method. ♦

The block diagram of the control method is shown in Fig. 1.
The DOBs (2) and (3) estimate the disturbances using the
state x. Then, adaptive gains are updated using the tracking
error e by (31). Based on the updated adaptive gains, the con-
trol input is generated using the state x, the tracking error e,
and the estimated disturbances d̂i by (34).

V. NUMERICAL EXAMPLE
The performance of the proposed method was evaluated by
conducting simulations using MATLAB/Simulink. We used
the following nonlinear system:

ẋ1 = x1 + (2+ sin(x1))x2 + d1
ẋ2 = x1x2 + u+ d2. (34)

The desiblack output was x1d = (−e−10t + 1) sin(2π t). To
estimate d1 and d2, the DOBs were designed such that

˙̂x1 = x1 + (2+ sin(x1))x2 + d̂1
˙̂x2 = x1x2 + u+ d̂2

d̂1 = kP1 (x1 − x̂1)+ kI1

∫ t

0
(x1 − x̂1)dτ

d̂2 = kP2 (x2 − x̂2)+ kI2

∫ t

0
(x2 − x̂2)dτ. (35)
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FIGURE 2. Tracking performance of the proposed method for Case 1.

where kP1 = 20, kI1 = (10 × 2π )2, kP2 = 20 × 2π and
kI2 = (10×2π )2. The nonlinear controller was designed such
that

x1d = sin(2π t)

x2d =
1

2+ sin(x1)
(−x1 + ẋ1d − k1 e1 − d̂1 − 0̂1sgn(e1))

τ2 ˙̄x2d+x̄2d
= x2d

u = −x1 x2+ẋ2d−(2+sin(x1))e1−k2 e2−d̂2
− 0̂2sgn(e2)

FIGURE 3. Estimation performance of the proposed method for Case 1.

˙̂
01=

{
ci|ei|, |e1| > ε1

0, |e1| ≤ ε1

˙̂
02 =

{
ci|ei|, |e2| > ε2

0, |e2| ≤ ε2
(36)

where e1 = x1 − x1d and e2 = x2 − x̄2d , k1 = 1, k2 = 1,
c1 = 100, c2 = 100, 0̂1(0) = 0.1, 0̂2(0) = 0.1, ε1 = 0.005,
and ε2 = 0.003.

A. CASE 1
In Case 1, d1 = 10 sin(5 × 2π t) + 2 and d2 = 5 sin(2 ×
2π t) + 2 sin(3 × 2π t) were used as the disturbances.
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FIGURE 4. Adaptive gains and control input for Case 1.

The simulation results of the proposed method are shown
in Figs. 2, 3 and 4. The adaptive nonlinear controller accu-
rately tracked the desiblack states. The proposed DOB accu-
rately estimated the disturbances. However, as the bandwidth
of the DOB was not sufficiently larger than the disturbance
frequencies, the estimation errors of d1 and d2 were 5% and
2%, respectively. The disturbance estimation errors caused
the tracking errors, as shown in Figs. 2 and 3. To suppress
these tracking errors, adaptive gains 0̂1 and 0̂2 increased until
|e1| = 0.005 and |e1| = 0.003, as shown in Fig. 4. After
|e1| and |e2| settled below 0.005 and 0.003, respectively, 0̂1
and 0̂2 did not increase. As shown in Fig. 4(c), the control
input was smooth because the low-pass filter was embedded
in the adaptive nonlinear controller. In the control (36) of
the proposed method, ‘‘sgn’’ function that is the function of
e2 was used. As shown in Fig. 2 (d), the sign of e2 did not
vary frequently. Thus, the chattering was not a problem in the
proposed method.

B. CASE 2
In Case 2, to evaluate the performance of the proposed
method with the disturbances those are suddenly changed,

FIGURE 5. Estimation performance of the proposed method for Case1.

FIGURE 6. Tracking errors of the backstepping with the DOB (38) for
Case 2.

d1 and d2 was used as follows:

d1=

{
10 sin(5× 2π t), 0 ≤ t < 2
10 sin(5× 2π t)+ 5 sin(5× 4π t), t ≥ 2

d2=

{
5 sin(2× 2π t)+2 sin(3× 2π t) 0 ≤ t < 2
5 sin(2× 2π t)+2 sin(3× 2π t)+3 sin(2π t), t ≥ 2.

(37)
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FIGURE 7. Tracking errors and adaptive gains of the proposed method
for Case 2.

The proposed method was compablack to the backstepping
with the DOB as follows:

x1d = sin(2π t)

x2d =
1

2+ sin(x1)
(−x1 + ẋ1d − k1 e1 − d̂1 − ρ1sgn(e1))

τ2 ˙̄x2d + x̄2d
= x2d

u = −x1 x2 + ẋd2 − (2+ sin(x1))e1 − k2 e2 − d̂2
− ρ2sgn(e2) (38)

where e1 = x1 − x1d and e2 = x2 − x̄2d , k1 = 1, k2 = 1,
ρ1 = 2, ρ2 = 0.7. In (38), the disturbance estimated by the
DOB 35was used. Themain difference between the proposed
method (36) and the backstepping with the DOB (38) was
the control gain of the discontinuous function ‘‘sgn’’. In the
backstepping with the DOB (38), the constant gains ρ1 and
ρ2 were used. For the backstepping with the DOB (38),
we consideblack the case where the change of the distur-
bances were not expected. From the simulation results of
Case 1, the sufficiently large gains ρ1 = 2 and ρ2 = 0.7 were
used in the backstepping with the DOB (38). The simulation
results of the proposed method are shown in Figs. 5, 6, and 7.
The estimated disturbances were shown in Fig. 5. The dis-
turbances suddenly changed in t = 2. The tracking errors
of the backstepping with the DOB (38) were smaller than
those of the proposed method for t < 2 because the large
gains were used. After the disturbances got larger in t = 2,
the tracking errors of the backstepping with the DOB (38)
increased due to the increased disturbances. In the proposed
method, the tracking errors increased due to the increased
disturbances in t = 2. However, the tracking errors were
again blackuced until |e1| = 0.005 and |e1| = 0.003 because
the adaptive gains 0̂1 and 0̂2 increased until |e1| = 0.005 and
|e1| = 0.003 as shown in Figs. 7 (c) and (d).

VI. CONCLUSION
Nonlinear output tracking control was developed to reject
unmatched biased sinusoidal disturbances for nonlinear sys-
tems. A DOBwas proposed to estimate biased sinusoidal dis-
turbances with unknown frequencies. An adaptive nonlinear
controller was designed via the backstepping procedure to
compensate for the disturbance estimation errors and ensure
global output tracking. The discontinuous ‘‘sgn’’ function
with adaptive gain was applied to the controller to compen-
sate for the disturbance estimation errors. Low-pass filters
were embedded in the controller to smooth the derivative
of the discontinuous ‘‘sgn’’ function. Through simulations,
it was shown that the proposed method was effective for out-
put tracking under multiple biased sinusoidal disturbances.
Furthermore, it was observed that the proposed method was
robust against the suddenly changed disturbances. In future
work, we will design the controller to cancel general distur-
bances without the information of the nonlinear terms of the
system and full state feedback.
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