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Abstract: Railway accidents are critical issues characterized by a large number of injuries and fatalities
per accident due to massive public transport systems. This study proposes a new approach for
evaluating the damages resulting from railway accidents using the two-part models (TPMs) such
as the zero-inflated Poisson regression model (ZIP model) and the zero-inflated negative-binomial
regression model (ZINB model) for the non-negative count measurements and the zero-inflated gamma
regression model (ZIG model) and the zero-inflated log-normal regression model (ZILN model) for the
semi-continuous measurements. The models are employed for the evaluation of the railway accidents
on Korea Railroad, considering the accident damages, such as the train delay time, the number of
trains delayed and the cost of considering the accident count responses, for the period 2008 to 2016.
From the results obtained, we found that the human-related factors, the high-speed railway system
or the Korea Train Express (KTX) and the number of casualties, are the main cost-escalating factors.
The number of trains delayed and the amount of delay time tend to increase both the probability
of incurring costs and the amount of cost. For better evaluation, the railway accident data should
contain accurate information with less recurrence of zeros.

Keywords: railway; accidents; damages; evaluation; two-part models

1. Introduction

The evaluation factors of the railway accidents are represented by the severity of injuries,
the fatalities, the damage of rolling stock and the associated infrastructure, and the environmental cost.
Therefore, the evaluation of railway safety is mainly related to the most common factors that have an
impact on accidents and their significance to the severity of the injury caused [1]. The cost of trains
getting delayed, which is required for handling accidents, are commonly included in the transport
network cost [2,3]. In order to evaluate and quantify the costs of railway accidents, conventionally,
the accident data is analyzed by using the aggregated cost of a long-term period, since railway accidents
are not as frequent as road accidents.

The studies for evaluating railroad accident-related damages have not been conducted as much
as road accident studies. This is because road accidents happen more often and plenty of data is
available to the public. Railway accidents rarely occur and access to the data is generally restricted by
the railway operators. Due to the limited number of studies on railway accidents, some studies are
related to the railway accident prediction models [4–10]. These studies analyzed accident factors and
constructed a reliable accident prediction model for the prevention of the railway accidents.
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The factors for predicting accidents consist of human, rolling stock, facilities, and operational
factors [4–6]. In particular, the analysis of accidents occurring at railroad-crossing related to facilities
research was dominant [7–9]. These studies have explored factors which have an impact on accidents
occurring between vehicles and trains, such as the number of train tracks, the number of highway
lanes, train and traffic volumes, train and vehicle speeds, site and surface characteristics, road/rail-side
appurtenances and so forth. Based on the accident factors, these studies introduced a logistic regression
model for the occurrence/non-occurrence accident data and a Poisson regression model for the number
of accident data.

Unlike accident prediction models, accident evaluation models have to consider the non-negative
and zero-inflated nature of accident damage data as dependent measures like the train delay time,
the number of trains delayed and the cost of considering the accident count responses. Even if an
accident occurs, there are quite a lot of cases where casualties, train delays and accident costs do not
occur. These cases are recorded as ‘zero’ in accident damage data. Therefore, statistical models for
accident evaluation should be applied differently from existing accident prediction models.

In order to introduce appropriate statistical models for railway accident evaluation, we review
the literature related to the statistical models implemented on railway accident data and the models
dealing with non-negative and the zero-inflated nature of data. Then, we propose reliable statistical
models and implement them to the train delay time, the number of trains delayed and the cost by using
railway accident data observed in Korea. The appropriate accident evaluation models can accurately
assess the damages caused by railroad accidents and accordingly, the railroad operator can reasonably
establish a plan for necessary actions to reduce the accident cost in the future.

2. State of Art Statistical Models

With respect to the statistical accident modeling efforts, some models were developed earlier for
predicting accidents, based on a multiple linear regression model [10]. Since then, the statistical models
applied to railway accident prediction have become more sophisticated by introducing categorical data
analysis along with accident severity data in the form of logistics. Hu et al. [5] developed a generalized
logit model to determine the categorical characteristics of accident severity on railroad grade crossing.
Different levels of injuries in accidents are modeled by either ordered logit or probit models [11–13].
By comparing various logit model structures such as the ordered probit, the multinomial logit and the
random parameter logit model, Zhao and Khattak [14] showed that the random parameter logit model
was the most suitable to evaluate the severities of injuries in railway level crossing accidents.

Due to the random, discrete and non-negative nature of accident data, the models such as
the Poisson regression model and the negative-binomial regression models [4] were widely used,
instead of the linear regression models. However, the two heterogeneous distributions of measurements
(for example, zero or positive) of accident data have not properly been explained by any classical
models. In order to handle the excessive frequencies of zero in railway accident data, with no injuries
and fatalities, the two-part models (TPMs) emerged as a solution, which consists of a degenerate
distribution at zero and a non-zero distribution otherwise. Until now, a few studies suggested a
zero-inflated negative-binomial and the zero-inflated Poisson model [15–17].

According to the non-zero distribution of a random component (or dependent variable), TPMs are
of two types; 1) zero-inflated regression models for non-negative count data and 2) zero-inflated
regression models for semi-continuous data; for example, zero-inflated Poisson model (ZIP) and
zero-inflated negative-binomial model (ZINB) belong to the former type and zero-inflated gamma
regression model (ZIG) and zero-inflated log-normal model (ZILN) belong to the latter type.

There has been a lot of research on the two-part models. Lambert [18] applied ZIP to predict
the number of defects in manufacturing. Ridout et al. [19] reviewed contemporary statistical models
for count data with excessive zeros. Joe and Zhu [20] compared generalized Poisson models with
ZINB. Mwalili et al. [21] contributed to significant correction for misclassification in caries research
by using ZINB. Neelon et al. [22] proposed a Bayesian model for zero-inflated count data with an
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analysis of the psychiatric outpatient service use. Neelon et al. [23] summarized TPMs for non-negative
count measurements and semi-continuous data. Kern and Wasser [24] considered ZIG to analyze
health care costs including a large proportion of $0 data. Nobre et al. [25] analyzed time spent on
leisure time physical activity using ZIG. Risio et al. [26] applied ZILN for the Prosopis caldenia
pod production data at tree level in the Argentinean semiarid pampas. Tong et al. [27] suggest a
zero-adjusted gamma model for mortgage loan loss given default contained extensive numbers of
zeroes. Neelon et al. [28] employed ZIP model with spatial effects to examine emergency department
visits. Ghosh et al. [29] proposed the Bayesian modeling approach for fitting zero-inflated regression
model. Bayesian approaches for modeling semi-continuous data are proposed by References [30–32].

This study proposes a new approach for evaluating the damages resulting from railway accidents
using the TPMs such as the ZIP model and the ZINB model for the non-negative count measurements
and the ZIG model and the ZILN model for the semi-continuous measurements. These models
consist of a degenerate distribution at zero and a non-zero distribution using railway accident
data. For real application, we extracted all the recorded accidents data for the period 2008 to 2016
obtained from the Korea Transportation Safety Authority (KOTSA) with respect to the train types
(urban train, general train and high-speed train), the organization types (metro and national railway),
the accident factors (non-human related and human-related) and the accident types (Traffic, Safety,
Misc., rolling stock). Then, we employed the statistical models to identify the independent variables
that are highly correlated with the accident types and the magnitude of accidents reflecting train delay
and causalities.

3. Two-Part Model

The two-part model framework provides an appropriate structure for modeling two types of
data—the non-negative count data and the semi-continuous data [19,21]. Let Yi be the non-negative

(or semi-continuous) outcome for subject i and xi =
(
Xi1, Xi2, · · ·Xip

)T
be a vector of covariates for

subject i; let β =
(
β1, β2, · · · βp

)T
be the parameter vector used in modeling the probability of positive

responses and let θ =
(
θ1,θ2, · · ·θq

)T
represent the mean and the dispersion parameters of the

conditional distribution of the positive responses. The two parts of the model can contain different
sets of covariates but we have assumed that they are the same and use {xi, i = 1, 2, · · · n} for both
parts of the model; hence, p = q. Thus, the probability of a positive response can be denoted as
pi = P(Yi > 0

∣∣∣xi,β) and the conditional distribution of the positive responses can be represented as

gθ
(
yi
∣∣∣yi >0, xi

)
. Therefore, the distribution of the response, gθ(yi

∣∣∣xi) is expressed as

gθ(yi
∣∣∣xi) = gθ(yi

∣∣∣∣yi = 0, xi) × I(Yi = 0) + gθ
(
yi
∣∣∣yi >0, xi

)
× (1− I(Yi = 0)),

where the indicator function, I(Yi = 0) is defined such that if Yi = 0 then, I(Yi = 0) = 1, else,
I(Yi = 0) = 0. Thus, this framework results in the following mixed probability function and likelihood:
for i = 1, 2, · · · , n,

f (yi
∣∣∣xi,β,θ) =

[
(1− pi) + pi·gθ(yi

∣∣∣yi = 0, xi)
]I(yi=0)

×

[
pi·gθ

(
yi
∣∣∣yi >0, xi

)]1−I(yi=0)
.

L(β, θ
∣∣∣y, X) =

[∏
yi=0

(1− pi) + pi·gθ(yi
∣∣∣yi = 0, xi)

][∏
yi>0

pi·gθ
(
yi
∣∣∣yi >0, xi

)]
. (1)

Here, y = (Y1, Y2, · · · , Yn)
T and X is a covariate matrix with a size of n× p. In case of non-negative count

responses, gθ(yi
∣∣∣yi = 0, xi) has its own positive probability whereas the distribution of semi-continuous

measurements is gθ
(
yi
∣∣∣yi >0, xi

)
= gθ(yi

∣∣∣xi). Equation (1) can be factored into two parts: one related
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to the β parameter vector involved in estimating pi
′s and the other with only the parameters involved

in estimating the θ parameter vector. The first part (logit part) for estimating β is expressed as follows:

logit(pi) = log
(

pi

1− pi

)
= xi

Tβ.

In this study, we consider two different TPMs in terms of the measurement types of the dependent
variable. In Section 3.1, the TPM for non-negative count measurements is introduced, especially ZIP
and ZINB models. In Section 3.2, the TPM for non-negatively continuous measurements is introduced,
including ZIG and ZILN models.

3.1. TPMs for Non-Negative Count Measurements

In general, Poisson regression analysis is the primary model which is used to find out the
causal relationship between the independent variables and the dependent variable. The dependent
variable must distribute as Poisson distribution. One of the assumptions of Poisson regression
is that the mean and the variance are equal but most of the data will have a larger variance or
overdispersion. Poisson distribution is a representative model for count responses, for example,
the count of defective products in a manufacturing process or the number of visits to the hospital.
We frequently encounter excessive zeros, which is more than that can be handled under a Poisson
distribution [18,19]. For example, the number of trains delayed due to railway accidents in this study
had 24% zero measurements. To counter this problem, we construct a model with alternative discrete
distributions. The ZIP (zero-inflated Poisson) distribution can be used to model the count responses
having excessive zeros. Lambert [18] first introduced the ZIP model in terms of mixed distribution,
where one distribution is the point mass at zero with a probability weight of 1− pi and the other is a
Poisson distribution with the mean rate, λi and weight, pi. The expectation maximization algorithm of
Dempster et al. [28] is generally used to find the maximum likelihood estimation of the ZIP model.

In this section, we briefly explain the ZIP distribution along with its property. Let Y denote the
count response variable that follows a mixture of the two distributions, the perfect one with zero state
degenerating at 0 and the other with Poisson distribution denoted as Poi(λi); with probabilities (1− pi)

and pi, respectively, where 0 ≤ pi ≤ 1. The probability distribution of Yi
′s can be expressed as

f (yi
∣∣∣xi,β,θ) =

 (1− pi) + pi·e−λi , yi = 0,

pi·
λi

yi e−λi

yi!
, yi = 1, 2, · · · .

(2)

As can be seen from Equation (2), ZIP distribution has an inflated probability of zeros by the amount
(1− pi)

(
1− e−λi

)
compared to e−λi . Using the moment generating function of the ZIP, which is of the

form E
(
etYi

)
= (1− pi) + pi·eλi(et

−1), we can easily find the mean and variance of Yi, E(Yi) = λipi and
V(Yi) = λipi[1 + (1− pi)λi]. The higher value of the variance compared with the mean denotes an
overdispersion in count data.

Based on the second part (Poisson part) of the Equation (2), the systematic component and its link
function is represented as follows:

log(λi) = xi
Tθ.

Given a dataset {(yi; xi)} of size n, we can write the log-likelihood function, l(·) of the ZIP model as

l(β, θ
∣∣∣y, X) =

∑
yi=0

log
[
(1− pi) + pi·e−λi

]
+

∑
yi>0

log
(
pi·
λi

yie−λi

yi!

)
.

We have explored analysis methods for the non-negative count responses containing excessive zeros.
This type of data can be modeled through a two-step process which involves modeling the probability
of a non-zero outcome and modeling the mean of the non-zero outcomes.
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The ZINB distribution is also used for count responses in modeling the overdispersion with
excessive zeros. The ZINB model is almost the same as the ZIP except for the probability distribution
of Yi

′s, which is expressed as

f (yi
∣∣∣xi,β,θ) =

 (1− pi) + pi·
(

δ
λi+δ

)δ
, yi = 0,

pi·
Γ(yi+δ)

Γ(yi+1)Γ(δ)

(
δ

λi+δ

)δ( λi
λi+δ

)yi , yi = 1, 2, · · · ,

and the log-likelihood function,

l(β, θ
∣∣∣y, X) =

∑
yi=0

log

(1− pi) + pi·

(
δ

λi + δ

)δ+∑
yi>0

log

pi·
Γ(yi + δ)

Γ(yi + 1)Γ(δ)

(
δ

λi + δ

)δ(
λi

λi + δ

)yi
,

where E(Yi) = λipi and V(Yi) = λipi[1 + (1− pi)λi + λi/δ]. If δ→∞ and pi → 0 , then the ZINB
reduces to the Poisson regression model.

3.2. TPMs for Semi-Continuous Measurements

When a variable is non-negatively continuous and has excessive zeros, we regard it as
semi-continuous. This type of data is frequently observed in economics, climatology, microbiology,
medical applications and so on. In this study, we introduce the TPMs for semi-continuous measurements,
which are the ZIG and ZILN models.

The ZIG model uses a gamma regression with a log link function to model the non-zero values.
Semi-continuous data can be modeled in two parts: one part (logit part) consisting of the probability
of a non-zero value and the other part (gamma part) consisting of the distribution of the continuous
non-zero values.

The ZIG likelihood follows the format of the Equation (1), where, logit(pi) = xi
Tβ and

gθ(yi
∣∣∣xi,µi, ν), such that

gθ(yi
∣∣∣xi,µi, ν) =

1
Γ(ν)

(
ν
µi

)ν
yi
ν−1exp

(
−
νyi

µi

)
,

where yi modeled as log(µi) = xi
Tθ and ν is the dispersion parameter [17]. This leads to the following

likelihood function:

L(β, θ
∣∣∣y, X, µ, ν) =

[∏
yi=0

(1− pi)
][∏

yi>0
pi·gθ(yi

∣∣∣xi,µi, ν)
]
. (3)

As can be seen in the Equation (3), the ZIG likelihood is factorable into one part with β and the other
part with θ and ν. Maximizing each of the parts separately will lead to the maximization of the overall
likelihood. This can be performed via the Newton-Raphson algorithm for each part.

ZILN regression also follows the Equation (1). The difference between the two models is the type
of the continuous distribution, gθ(·). For the ZILN regression, gθ

(
yi
∣∣∣xi,µi, σ2

)
is defined as

gθ
(
yi
∣∣∣xi,µi, σ2

)
=

1

yi
√

2πσ2
exp

− (log yi − µi)
2

2σ2

.

Here, σ2 is the population variance of the natural log of the data. So, its likelihood is expressed by

L
(
β, θ

∣∣∣y, X, µ, σ2
)
=

[∏
yi=0

(1− pi)
][∏

yi>0
pi·gθ

(
yi
∣∣∣xi,µi, σ2

)]
.

4. Real Application

Table 1 summarizes Korea’s railroad statistics for the year 2018, from the Ministry of Land,
Infrastructure and Transport (MOLIT) in Korea. There are three types of railways in operation:
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The Korea Train Express (KTX) and the general railroads, operated by KORAIL; the Korean National
Railroad; and 15 routes in 9 cities operated by 11 Metro private sectors. The high-speed rail has a
total length of 643 km on three routes, with a speed of 300 km/h and the general railway has 107 lines
in total, with a speed of 60–100 km/h, of which 52 lines are operated for passenger transportation.
With respect to the annual passenger transport statistics, Metros had a total of 3618 million passengers
and the high-speed railway carried 297.6 million passengers, while the general railway carried, merely,
a total of 92.1 million passengers due to its low frequency of passenger services.

Table 1. Description of railway statistics in Korea (2018).

Type Descriptions Operated Speed
(km/h) Length (km) No. Lines Passenger

(Million/Year)

KTX (Korea
Train Express)

High-speed railway
(operated by KORAIL) 300 643 3 297.6

General
Railway

Regional railway
(operated by KORAIL) 60~100 3492 107 (52 *) 92.1

Urban railway Metro (11 operators) 20~30 704 15 3618.3

Note: (*) represents the number of railway lines for passenger transport service.

We analyzed a railway accident dataset in South Korea for the period from 2008 to 2016, which was
obtained from the KOTSA. There were 5051 railway accidents during the mentioned period. Figure 1
presents the significantly decreasing temporal pattern of the number of railway accidents from 2008 to
2016. The number of accidents were 704 and 360 in 2008 and 2016, respectively, representing almost 50%
decrease in accidents in 9 years. In the Figure 1, the number of accidents over the years were compared
by the railroad types (KTX, Urban and General) and it was found that general railway-related accidents
dramatically decreased from 2008 to 2016, compared with other train types.
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Figure 1. Time series plot of the number of railway accidents (2008–2016).

According to MOLIT, the reasons for the reduction of railway accidents are in three folds:
(1) continuous railway facility improvements such as double tracks, electrification, new rolling stocks,
modernization of maintenance equipment and so forth, (2) investments in the expansion of safety
facilities such as three-dimensional crossing, installation of platform screen-doors (PSDs) and safety
fences along the roads, (3) reinforcement of education related to accident prevention and training for
railroad employees. These three actions have strengthened the overall railroad safety management
in the form of systematic establishment and maintenance of the railroad safety system and the
implementation of periodic facility safety inspections.
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Figure 2 shows the map of the number of railway accidents in 17 provinces of South Korea.
There were 892 accidents in Seoul, the capital of South Korea within the study period and 857 accidents
in Gyeonggi province, the area surrounding the capital. Thus, the total number of railway accidents in
Seoul and Gyeonggi province was 1749, which is about 34.6% of all accidents. The frequencies of all
KTX and the majority of urban railway lines have increased dramatically in this area in order to meet
the rising travel demand. As a result, train accidents are concentrated, mainly in the metropolitan area.
Therefore, it can be concluded that the number of accidents escalate with rise in train frequency.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Figure 2. Map of the number of railway accidents. 

In this study, we considered the following three damage variables from the railway accidents: 

number of delayed trains, delay time and amount of costs incurred in handling the accidents. The 

covariates related with the accidents are year, organization, train type, accident factor, accident type, 

the number of fatalities (casualties) and the number of derailed trains. These variables were given 

from the KOTSA dataset. For example, the accident factor was already defined as human and non-

human factors. The human factors are the accidents caused by passenger or driver. The non-human 

factors are defined as the accidents are caused by all factors other than human such as weather, traffic, 

nal failure, rolling-stock malfunctioned and so forth. Table 2 presents the list of variables used in the 

analysis. 

From the descriptive statistics of the railway accident data, it is found that about 88.8% of railway 

accidents occur in the railways operated by KORAIL, which dominate the railroad service network. 

As the accident factor, the human-related accidents and non-human-related accidents were 2606 

(51.6%) and 2445 (48.4%), respectively. The railroad type, which was categorized into high-speed 

railway, urban railway and general railway were 740 (14.7%), 1587 (31.4%) and 2718 (53.8%), 

respectively. The accident type is divided into four groups: traffic accident, safety-related accident, 

rolling-stock related accident and miscellaneous accident. The number of traffic accidents were 1557 

(30.8%), which can be classified into collisions between, vehicle(s) and trains at a railway-crossing, 

passenger(s) and trains and road worker(s) and trains. The number of safety related accidents were 

697 (13.8%), which occurred at railway facilities around the station, the platform and the train. The 

number of rolling-stock related accidents were 2357 (46.7%) that happened due to fire in the train, 

train collision and derailment. The number of miscellaneous accidents were 440 (8.7%) which are not 

included in the previous three categories. We considered the number of fatalities, casualties and 

derailed trains for modeling and evaluating the impact of railway accidents. 
  

Figure 2. Map of the number of railway accidents.

In this study, we considered the following three damage variables from the railway accidents:
number of delayed trains, delay time and amount of costs incurred in handling the accidents.
The covariates related with the accidents are year, organization, train type, accident factor, accident
type, the number of fatalities (casualties) and the number of derailed trains. These variables were
given from the KOTSA dataset. For example, the accident factor was already defined as human and
non-human factors. The human factors are the accidents caused by passenger or driver. The non-human
factors are defined as the accidents are caused by all factors other than human such as weather, traffic,
nal failure, rolling-stock malfunctioned and so forth. Table 2 presents the list of variables used in
the analysis.
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Table 2. Description of the Variables in Korea Transportation Safety Authority (KOTSA) Railway
Accidents Dataset.

Type Information Description

Dependent Variables

No. of Delayed Trains The number of trains delayed due
to railway accidents

Delay Time Train delay time due to railway
accidents (minute)

Amount of Costs Amount of costs due to railway
accidents (million won)

Independent Variables

Year Year (2008–2016)

Organization KORAIL (88.8%), Metro (11.2%)

Railroad Type KTX (14.7%), Urban (31.4%),
General (53.8%), missing (0.1%)

Accident Factor Human-related (51.6%),
Non-human-related (48.4%)

Accident Type Traffic (30.8%), Safety (13.8%),
Misc. (8.71%), rolling stock (46.7%)

No. of Derailed Trains The number of derailed trains due
to railway accidents

No. of Fatalities The number of fatalities due to
railway accidents

No. of Casualties The number of casualties due to
railway accidents

From the descriptive statistics of the railway accident data, it is found that about 88.8% of railway
accidents occur in the railways operated by KORAIL, which dominate the railroad service network.
As the accident factor, the human-related accidents and non-human-related accidents were 2606 (51.6%)
and 2445 (48.4%), respectively. The railroad type, which was categorized into high-speed railway,
urban railway and general railway were 740 (14.7%), 1587 (31.4%) and 2718 (53.8%), respectively.
The accident type is divided into four groups: traffic accident, safety-related accident, rolling-stock
related accident and miscellaneous accident. The number of traffic accidents were 1557 (30.8%),
which can be classified into collisions between, vehicle(s) and trains at a railway-crossing, passenger(s)
and trains and road worker(s) and trains. The number of safety related accidents were 697 (13.8%),
which occurred at railway facilities around the station, the platform and the train. The number of
rolling-stock related accidents were 2357 (46.7%) that happened due to fire in the train, train collision
and derailment. The number of miscellaneous accidents were 440 (8.7%) which are not included in the
previous three categories. We considered the number of fatalities, casualties and derailed trains for
modeling and evaluating the impact of railway accidents.

For the real application of the railway accident data, we used the SAS software (Version 9.4,
SAS Institute Inc., Cary, NC, USA.) for modeling TPMs and the R software (Version 3.6.3, R Foundation
for Statistical Computing, Vienna, Austria) for visualizing the data.

The continuous dependent variables in this study are delay time (Figure 3) and the amount of costs
incurred (Figure 4) due to railway accidents. As can be seen in Figures 3 and 4, 22.5% (1139) and 79.8%
(4029) of the sample size were recorded as no time delay and no cost, respectively. The histograms in the
figures show that the positive measurements for each variable are extremely right-skewed and, thus we
considered the gamma distribution and the log-normal distribution as good fits. The five-number
summary (minimum, 25th percentile, median, 75th percentile, maximum) for delay time is (0, 10, 22,
37 and 1432). For the positive measurements (20.2%) of the cost amount, the five-number summary is
expressed as (0.001, 0.434, 1.724, 6.6 and 13,933). No probability distribution of positive real-value
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random variables includes zero as one of the possible realizations. Therefore, TPMs for semi-continuous
data are essential to build both logit part for zero measurements and the gamma (or log-normal) part
for non-zero (or positive) measurements.
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Table 3 shows the frequencies of each of the categorized non-negative count variables such as the
number of fatalities (casualties), the number of derailed trains and the number of trains delayed due
to the railway accidents. All the variables in Table 3 have a lot of zero measurements (24.0–99.2%).
Hence, zero-inflated regression model for the variables is applied for the number of delayed trains.

Table 3. Contingency Table for Categorized Discrete Variables.

Discrete
Variables 0 1 2 3 4 5 6–10 11–20 21–50 50–

No. of Fatalities
4070 965 15 - - 1
−80.6 −19.1 −0.3 −0.02

No. of Casualties
2847 2126 44 12 7 2 6 3 3 1
−56.4 −42.1 −0.87 −0.24 −0.14 −0.04 −0.12 −0.06 −0.06 −0.02

No. of Derailed
Trains

5008 19 12 2 - 1 8 - 1
−99.2 −0.38 −0.24 −0.04 −0.02 −0.16 −0.02

No. of Delayed
Trains

1211 1950 546 338 210 168 322 177 110 19
−24 −38.6 −10.8 −6.69 −4.16 −3.33 −6.37 −3.5 −2.18 −0.38

The values are expressed as number of cases (percentage).
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Table 4 illustrates the regression analyses of the number of trains delayed due to the railway
accidents with some of the independent variables shown in Table 2. In general, positive estimates
increase the probability of having more trains delayed (or the number of trains delayed) but negative
estimates decrease them. As can be seen in Table 4, the estimation results are quite similar irrespective
of the models considered. For example, more trains are estimated to be delayed during the period of our
interest due to the railway accidents as the corresponding estimates are positive (0.063 in ZIP; 0.066 in
ZINB) and KORAIL has a smaller number of trains delayed than the other railway organizations in
that its associated estimates (−0.628 in ZIP; −0.891 in ZINB) are negative. Human-related accidents
resulted in less trains delayed compared to the non-human related accidents because of the negative
estimate (−0.165 in ZIP; −0.706 in ZINB). We can also see that the number of derailed trains has a
positive impact (0.063 in ZIP; 0.442 in ZINB) on the number of delayed trains. The ZIP model shows
that the KTX (0.005) does not cause more delayed trains under the significance level of 0.05 but the
urban trains (0.646) result in more delayed time than the general trains. We can also see that number of
fatalities increases the number of delayed trains. The interpretation also works for the ZINB model.
The logit part in the ZIP model has statistically significant effect of the accident factor (human-related
factor vs. non-human-related factor). However, none of the independent variables are of significance
in the logit part of ZINB model. In terms of Akaike Information Criterion Corrected (AICC) [24],
the ZINB model outperforms the ZIP model.

As mentioned earlier, we employed two different types of the TPM; (1) ZIP model and ZINB
model for discrete variables such as number of delayed trains (Table 4) due to railway accidents and
(2) ZIG model and ZILN model for semi-continuous variables. Tables 5 and 6 illustrate the statistical
results from the analyses of the TPMs for the two semi-continuous dependent variables: delayed time
and the amount of costs due to the railway accidents.

Table 5 displays the statistical results of the regression analysis on the amount of delayed time.
For every model, both the logit part and the positively continuous part (Gamma part or Log-normal
part) have the statistically significant coefficient estimates. Especially, the coefficient estimates in
logit parts are quite similar with each other. The possibility that a railway accident causes any time
delay increases when the accident is involved in KORAIL (0.580) compared to Metro. Human-related
accidents (−2.777) and number of fatalities (1.810) have meaningful impact on time delay resulting
from a railway accident. In case of the other part, the independent variables such as year and number
of casualties are only significant in the Gamma part though number of trains derailed due to railway
accidents are not significant in either of the two models. KORAIL (−1.141 in ZIG; −0.182 in ZILN)
tends to be have lesser delayed time and a human-related accident (−0.110 in ZILN) has a lower
probability of having a positive delayed time than a non-human-related accident. Train types such
as KTX (−0.582 in ZIG; −0.597 in ZILN) and urban trains (−0.341 in ZIG; −0.405 in ZILN) result in
less delayed time than general trains. Noteworthy in this case is that higher the number of casualties
(0.099) due to the railway accidents the longer the hours of train delay, especially in the ZIG model.
From the comparison between the two TPMs, the ZILN model slightly outperforms the ZIG model.
This is because the log-likelihood value of the former is larger and its AICC is smaller.
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Table 4. Two-Part Regression Analyses of Number of Trains delayed due to Railway Accidents.

Independent Variables
Zero-Inflated Poisson Regression Zero-Inflated Negative-Binomial Regression

Logit Part Poisson Part Logit Part Negative Binomial Part

Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value

Year (2008–2016) 0.004 0.016 0.827 0.063 0.003 <0.001 0.012 0.047 0.786 0.066 0.008 <0.001

Organization (vs. Metro)

KORAIL 0.004 0.016 0.827 −0.628 0.023 <0.001 −0.002 0.091 0.998 −0.891 0.073 <0.001

Accident Factor (vs. Non-human-related)

Human-related −0.955 0.107 <0.001 −0.165 0.022 <0.001 0.512 0.278 0.065 −0.706 0.045 <0.001

Train Type (vs. General)

KTX −0.037 0.027 0.177 0.005 0.056 0.936
Urban 0.702 0.020 <0.001 0.646 0.045 <0.001

No. of Fatalities 0.024 0.024 0.328 0.460 0.054 <0.001
No. of Trains Derailed 0.063 0.009 <0.001 0.442 0.095 <0.001

Log-likelihood −18,647.2 −10,706.0
AICC 37,318.4 21,438.0

Est., Estimate; S.E., standard error; AICC, Akaike Information Criterion Corrected (Hurvich and Tsai [33]).
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Table 5. Two-Part Regression Analyses of Delay Time (Minute) due to Railway Accidents.

Independent
Variables

Zero-Inflated Gamma Regression Zero-Inflated Log-Normal Regression

Logit Part Gamma Part Logit Part Log-Normal Part

Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value

Year (2008–2016) −0.017 0.005 <0.001 −0.001 0.004 0.826

Organization (vs. Metro)

KORAIL 0.580 0.114 <0.001 −1.141 0.048 <0.001 0.580 0.114 <0.001 −0.182 0.026 <0.001

Accident Factor (vs. Non-human-related)

Human-related −2.777 0.099 <0.001 −0.048 0.031 0.122 −2.777 0.099 <0.001 −0.110 0.026 <0.001

Train Type (vs. General)

KTX −0.582 0.033 <0.001 −0.597 0.031 <0.001
Urban −0.341 0.031 <0.001 −0.405 0.028 <0.001

No. of Casualties 0.099 0.021 <0.001 0.019 0.015 0.208
No. of Fatalities 1.810 0.103 <0.001 1.810 0.102 <0.001

No. of Trains
Derailed 0.061 0.038 0.102 0.042 0.022 0.055

Log-likelihood −19,770.7 −19,144.6
AICC 39,567.5 38,315.2

Est., Estimate; S.E., standard error; AICC, Akaike Information Criterion Corrected (Hurvich and Tsai [33]).
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Table 6. Two-Part Regression Analyses of Amount of Costs due to Railway Accidents.

Independent
Variables

Zero-Inflated Gamma Regression Zero-Inflated Log-Normal Regression

Logit Part Gamma Part Logit Part Log-normal Part

Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value Est. S.E. p-Value

Year (2008–2016) −0.228 0.019 <0.001 −0.018 0.022 0.414 −0.228 0.019 <0.001 0.004 0.026 0.886

Organization (vs. Metro)

KORAIL −2.842 0.200 <0.001 0.255 0.172 0.137 −2.841 0.200 <0.001 0.131 0.301 0.664

Accident Factor (vs. Non-human-related)

Human-related 0.485 0.122 <0.001 0.459 0.153 0.003

Train Type (vs. General)

KTX −0.222 0.225 0.326 0.790 0.133 <0.001 −0.218 0.225 0.333 1.593 0.150 <0.001
Urban −1.551 0.205 <0.001 0.534 0.169 0.001 −1.549 0.205 <0.101 −0.303 0.296 0.307

Accident Type (vs. rolling-stock)

Traffic −0.871 0.164 <0.001 −0.871 0.164 <0.001
Safety −1.103 0.677 0.103 −1.098 0.676 0.104

Miscellaneous −0.330 0.156 0.034 −0.331 0.156 0.034
No. of Delayed Trains 0.022 0.011 0.044 0.094 0.009 <0.001 0.022 0.011 0.043 0.053 0.006 <0.001

Interaction between No. of Trains Delayed and Train Types

KTX −0.003 0.031 0.918 −0.004 0.031 0.902
Urban 0.042 0.014 0.003 0.042 0.014 0.003

Delay Time 0.011 0.002 <0.001 0.007 0.001 <0.001 0.011 0.002 <0.001 0.001 0.001 0.145

Interaction between Delay Time and Train Types

KTX 0.048 0.009 <0.001 0.048 0.009 <0.001
Urban −0.012 0.002 <0.001 −0.012 0.002 <0.001

No. of Casualties 0.069 0.118 0.557 0.149 0.066 0.024 0.069 0.118 0.557 0.197 0.075 0.009
Log-likelihood −4156.3 −3999.3

AICC 8362.9 8048.9

Est., Estimate; S.E., standard error; AICC, Akaike Information Criterion Corrected (Hurvich and Tsai [33]).
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Table 6 illustrates the statistical results obtained from the TPM analysis on the amount of costs
incurred due to the railway accidents during the 9 years’ period of study. The severity of a railway
accident is generally assessed by the amount of costs, which was our primary end-point variable.
Therefore, we regarded some of the previously used dependent variables such as number of delayed
trains and amount of delayed time as potential independent variables, so as to assess their effects on the
amount of costs incurred during railway accidents. We also considered some interaction effects between
the two factors in the model, for example, the number of trains delayed and train types and the amount
of delayed time and train types. As mentioned earlier, we employed two different TPMs, the ZIG
model and ZILN model to take care of the dependent variables having excessive zeros and extremely
right-skewed distribution. Table 6 shows that the regression results of the two models are quite similar
and the two parts of each model are statistically meaningful. It was found that with the passage of
time, railway accidents incurring no costs are more likely to occur in that the corresponding estimates
are mostly negative (−0.228 and −0.018 in ZIG; −0.228 in ZILN). KORAIL organization has a higher
probability of causing railway accidents with no costs. Railway accidents resulting from human-related
factors are more likely to increase the amount of costs rather than those due to non-human-related
factors. In the case of train types, each logit part says that urban trains have a higher probability of
railway accidents with no cost (−1.551 in ZIG; −1.549 in ZILN) compared with the KTX and general
trains. However, railway accidents involving either the KTX (0.790) or the urban trains (0.534) result
in more costs than the general trains under the ZIG model while railway accidents involving only
KTX (1.593) cost more than the general trains under the ZILN model. In terms of the accident type,
traffic accidents result in less costs than rolling-stock related accidents but safety-related accidents do
not differ from the rolling-stock related accidents. As the number of delayed trains increases, due to
railway accidents, both the probability of incurring costs (0.022 in ZIG; 0.022 in ZILN) and its amount
(0.094 in ZIG; 0.053 in ZILN) increase. Further, amount of delayed time is positively related to the
amount of cost as well as the probability of incurring cost. As the number of casualties increases,
the amount of cost also increases. Along with the main factors explained so far, some interactions
too, have statistically meaningful effects on explaining the amount of costs. For example, as more
subsequent trains are delayed due to railway accidents involving urban trains, the costs are higher
compared with the general trains. As the delayed time increases because of railway accidents in KTX,
the probability of incurring costs rises. From the comparison of the two TPMs, the ZILN model slightly
outperforms the ZIG model in that the log-likelihood value of the former is larger and its AICC is
smaller even though the latter has more independent variable.

5. Conclusions

Although railroad accident evaluation is a very critical issue, not many studies related to accident
evaluation have been conducted. In this study, we propose appropriate statistical models that handle
the non-negative nature of accident data with respect to the damages from railway accident. As for
the damage data of railroad accidents, there are many cases where the damage did not occur even
though the railroad accident occurred, so a statistical approach that reflects this is necessary. To do
this, we employed the two-part regression models for evaluating the damages caused by railway
accidents such as the train delay time, the number of trains delayed and the costs incurred in handling
accidents. For the data set, we extracted all the recorded accidents data with respect to the railway
types (urban, general and high-speed railway), organization types (metro and KORAIL) and accident
factors (human-related and non-human related). Further, we analyzed the statistical results to identify
the variables that are highly correlated to the accident types and the magnitude of accidents reflecting
the train delay and the costs.

Overall, we found that the railway accidents in South Korea continued to decrease with the
passage of time in terms of the number of accidents occurred and the amount of costs incurred during
the period 2008 to 2016. During this analysis period, new rolling stocks replaced the old ones at the
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general railway system and PSDs were installed at the urban railway system in order to reduce suicide
attempts. It seems to have played a positive role in reducing the railway accidents.

From the statistical analyses, we found that the number of trains delayed tends to increase during
the period of our interest to the railway accidents but KORAIL had smaller number of trains delayed
than the other organizations. The KTX caused the least delay in trains, followed by the general trains
and urban railway resulted in the most delay in trains. Human-related accidents resulted in more
delays in trains compared to the non-human related accidents. It was also found that with increase in
derailed trains more trains got delayed. Considering the amount of delay time due to railway accidents,
KORAIL results in less delay time than the other organizations. Both the KTX and urban trains tend to
decrease the amount of delay time compared to that of the general trains. Human-related accidents
reduced the probability of having delay time rather than non-human related accidents. What is also
important here is that, as the number of casualties increased, it took longer time for train operations
to normalize.

We included the number of delayed trains as the dependent variable and the amount of time
delayed as potential independent variable in the TPMs, to comprehensively evaluate the amount of
costs from railway accidents. Some potential interactions between independent variables were also
included in the TPMS. With the passage of time, the probability of having railway accidents with
no costs generally increased. Especially, KORAIL tends to reduce the probability of causing railway
accidents with costs compared with metro. Railway accidents caused by human-related factors are
more likely to increase the amount of costs. Urban railways have the least chance of getting involved in
railway accidents with costs and KTX results in more costs than the general railways. It is interesting
that, as the number of delayed trains increases, both the probability of incurring costs and its amount
of costs increase. This is also the case for amount of delay time. The number of casualties has a positive
impact on the amount of costs. When an accident was involved in urban railway and more subsequent
trains are delayed, the costs are likely to increase compared to an accident involving general railway.
If an accident is human-related and has occurred in KTX, then the costs also escalate.

KORAIL operates both the KTX and the general railroads to provide regional transport services
between those cities that are quite far ranging from 50 km to 450 km. KTX operates on exclusive routes,
so the impact of accidents caused by external factors is very low. On the other hand, in the general
railway system, there are accidents due to collisions with vehicles and people, at the railroad-crossings.
This implies that there exist many factors in the external environment such as automobiles, pedestrians,
animals, weather and so forth, which cause railway accidents. Regarding the delay and the costs
associated with it due to accidents, general railways have a low frequency of operation, so the headways
are relatively long compared to the KTX and the urban railways. Hence the costs, due to accidents,
on the general railway system, are relatively low and the delay time of subsequent trains is also
short. In the case of urban railways, the interval between the trains is very short, so the number of
delayed trains and the delay time of the subsequent trains that follow in the event of an accident
can be quite large. Unlike the general and the urban railway system, KTX has a large cost to recover,
whenever there is a malfunctioning of the trains or the railroad systems due to the accident. Moreover,
the compensation costs for the passengers due to the delayed time, caused from accidents, are very
high due to the relatively higher fare.

Although the railway accident data provide detailed information regarding the number of trains
delayed and the costs incurred for accident recovery based on the railway type, operator and the
accident type, we cannot specify the full impact of the accidents and evaluate them. To enable more
detailed analysis in future, the railway accident data should contain more accurate information,
including the load of railway service by line, the location of the accident, causes, the accident recovery
costs and the time of accident and so forth. For example, the information about the load factors of
railway lines such as, the number of train operations and volume of passengers should be provided
so that relative comparisons of the magnitude of damages for each railway route can be evaluated.
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Even though the data are limited for the public, this study is informative for transit agencies to evaluate
the impact of railway accidents and to create better railway services for the public.
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