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Abstract
In this paper, we introduce a new class of convex functions, so-called n-polynomial
p-convex functions. We discuss some algebraic properties and present
Hermite–Hadamard type inequalities for this generalization. Moreover, we establish
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1 Introduction
Some geometric properties of convex sets and, to a lesser extent, of convex functions were
studied before 1960 by outstanding mathematicians, first of all by Hermann Minkowski
and Werner Fenchel. At the beginning of 1960 convex analysis was greatly developed in
the works of R. Tyrrell Rockafellar and Jean-Jacques Morreau who initiated a systematic
study of this new field. There are several books devoted to different aspects of convex
analysis and optimization. See [1–6].

Let I = [c, d] ⊂ R be an interval. Then a real-valued function ψ : I → R is said to be
convex on I if

ψ
(
tx + (1 – t)y

) ≤ tψ(x) + (1 – t)ψ(y) (1.1)

holds for all x, y in I and t ∈ (0, 1). The function ψ : I →R is said to be concave if inequality
(1.1) is reversed. For more on convexity, see [7–12].

The idea of convexity is not new one even it occurs in some other form in Archimede’s
treatment of orbit length. Nowadays, the application of several works on convexity can be
directly or indirectly seen in various subjects like real analysis, functional analysis, linear
algebra, and geometry. Convexity theory has appeared as a powerful technique to study
a wide class of unrelated problems in pure and applied sciences. Many articles have been
written by a number of mathematicians on convex functions and inequalities for their dif-
ferent classes. In the last few decades, the subject of convex analysis got rapid development
because of its geometry and its role in the optimization. The deep relation between con-
vex analysis and fractional calculus can never be ignored. For recent work on fractional
calculus, we refer to [13–17].
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Let ψ : I →R be a convex function, then for all x, y ∈ I and t ∈ (0, 1), the following holds:

ψ

(
c + d

2

)
≤ 1

d – c

∫ d

c
ψ(x) dx ≤ ψ(c) + ψ(d)

2
. (1.2)

For the extended version of the above inequality, see [18, 19].
In [20], Lipot Fejér presented an extended version of (1.2) inequality known as Fejér

inequality or a weighted version of the Hermite–Hadamard inequality. If ψ : I → R is a
convex function, then

ψ

(
a + b

2

)∫ d

c
w(x) dx ≤ 1

d – c

∫ d

c
w(x)ψ(x) dx ≤ ψ(c) + ψ(d)

2

∫ d

c
w(x) dx, (1.3)

where c ≤ d, and w : I → R is nonnegative, integrable, and symmetric about c+d
2 .

The present paper is organized as follows:
First we give some preliminary material and basic definition for n-polynomial p-convex

function. In the second section we give some basic results for our newly defined general-
ization. Next we develop Hermite–Hadamard type inequality. In the last section, we give
some theorems related to our work.

2 Preliminaries
We start with some basic definitions.

Definition 2.1 (p-convex set [21]) The interval I is said to be a p-convex set if [(txp + (1 –
t)yp)

1
p ] ∈ I for all x, y ∈ I , p > 0 and t ∈ [0, 1].

Definition 2.2 ((p-convex function) [22]) A function ψ : I → R is said to be p-convex if
the following inequality

ψ
[(

txp + (1 – t)yp) 1
p
] ≤ tψ(x) + (1 – t)ψ(y) (2.1)

holds for all x, y ∈ I = [c, d] and t ∈ [0, 1] where p > 0.

It can be easily seen that, for p = 1, p-convexity is reduced to the classical convexity of
functions defined on I ⊂ (0,∞).

Now we recall the definition of harmonically convex function as follows.

Definition 2.3 (Harmonic convex function [23]) Let I ⊂ R be an interval. Then a real-
valued function ψ : I →R is said to be harmonically convex if

ψ

(
xy

tx + (1 – t)y

)
≤ tψ(y) + (1 – t)ψ(x) (2.2)

holds for all x, y ∈ I and t ∈ [0, 1].

In [24] n-polynomial convexity has been defined.
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Definition 2.4 (n-polynomial convex function) Let n ∈ N. A nonnegative function ψ :
I → R is called n-polynomial convex function if, for every x, y ∈ I and t ∈ [0, 1],

ψ
(
tx + (1 – t)y

) ≤ 1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y). (2.3)

We will denote by POLC(I) the class of all n-polynomial convex functions on interval I .

We note that every n-polynomial convex function is an h-convex function with the func-
tion h(t) =

∑n
s=1[1 – (1 – t)s].

In [25] n-polynomial harmonically convexity has been defined.

Definition 2.5 (n-polynomial harmonic convex function) Let n ∈N. A nonnegative func-
tion ψ : I → R is called n-polynomial harmonically convex function if, for every x, y ∈ I
and t ∈ [0, 1],

ψ

(
xy

tx + (1 – t)y

)
≤ 1

n

n∑

s=1

[
1 – (1 – t)s]ψ(y) +

1
n

n∑

s=1

[
1 – ts]ψ(x). (2.4)

From Definition 2.5, for n = 2, we can see that the class of n-polynomial harmonically
convex functions satisfies the inequality

ψ

(
xy

tx + (1 – t)y

)
≤ 3t – t2

2
ψ(y) +

2 – t – t2

2
ψ(x) (2.5)

for all x, y ∈ I and t ∈ [0, 1].
Now we are going to introduce a new generalization of n-polynomial convex function.

Definition 2.6 (n-polynomial p-convex function) Let n ∈ N. A nonnegative function ψ :
I → R is called n-polynomial p-convex function if, for every x, y ∈ I , p > 0 and t ∈ [0, 1],

ψ
[(

txp + (1 – t)yp) 1
p
] ≤ 1

n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y) (2.6)

holds.

Remark 2.7 1: if we put p = –1, then (2.6) is reduced to (2.4) n-polynomial harmonic con-
vex function [25].

2: if we put p = 1, then (2.6) is reduced to (2.3) n-polynomial convex function [24].

3 Basic results
In this section we derive some basic results and propositions related to our new general-
ization.

The following proposition shows the linearity of n-polynomial p-convex function.

Proposition 3.1 Let φ : I → R be a nonnegative n-polynomial p-convex function, and
where for n ∈N, x, y ∈ I , p > 0 and t ∈ [0, 1], then ψ + φ is an n-polynomial p-convex func-
tion.
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Proof Let ψ and φ be two n-polynomial p-convex functions, then for all x, y ∈ I , p > 0 and
∈ [0, 1] we have

(ψ + φ)
[(

txp + (1 – t)yp) 1
p
]

= ψ
[(

txp + (1 – t)yp) 1
p
]

+ φ
[(

txp + (1 – t)yp) 1
p
]

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y)

+
1
n

n∑

s=1

[
1 – (1 – t)s]φ(x) +

1
n

n∑

s=1

[
1 – ts]φ(y)

=
1
n

n∑

s=1

[
1 – (1 – t)s](ψ + φ)(x) +

1
n

n∑

s=1

[
1 – ts](ψ + φ)(y), (3.1)

this assures the n-polynomial p-convexity of ψ + φ. �

Now we will discus the scalar multiplication of n-polynomial p-convex function.

Proposition 3.2 Let ψ : I →R be a nonnegative n-polynomial p-convex function and λ >
0, where for n ∈ N, x, y ∈ I , p > 0 and t ∈ [0, 1], then λψ : I → R is also an n-polynomial
p-convex function.

Proof Let ψ be an n-polynomial p-convex function, then for all x, y ∈ I , p > 0 and t ∈ [0, 1],
where λ > 0, we have

(λψ)
[(

txp + (1 – t)yp) 1
p
]

= λ
[
ψ

(
txp + (1 – t)yp) 1

p
]

≤ λ

[
1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y)

]

=
1
n

n∑

s=1

[
1 – (1 – t)s](λψ)(x) +

1
n

n∑

s=1

[
1 – ts](λψ)(y), (3.2)

which shows that λψ is also an n-polynomial p-convex function. �

Proposition 3.3 Let ψ : I → R be a nonnegative n-polynomial p-convex function, and
where for n ∈ N, x, y ∈ I , p > 0 and t ∈ [0, 1], then

ψ = max{ψi, i = 1, 2, 3, . . . , n}

is also an n-polynomial p-convex function.

Proof Take any x, y ∈ Rn and t ∈ [0, 1]. Denote ψ = maxψi, where i = 1, 2, 3, . . . , n ,

ψ
[(

txp + (1 – t)yp) 1
p
]

= max
{
ψi

[(
txp + (1 – t)yp) 1

p
]
, i = 1, 2, 3, . . . n

}

= ψw
[(

txp + (1 – t)yp) 1
p
]
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≤ 1
n

n∑

s=1

[
1 – (1 – t)s]ψw(x) +

1
n

n∑

s=1

[
1 – ts]ψw(y)

=
1
n

n∑

s=1

[
1 – (1 – t)s]maxψi(x) +

1
n

n∑

s=1

[
1 – ts]maxψi(y)

=
1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y), (3.3)

�⇒ ψ = max{ψi, i = 1, 2, 3, . . . , n} is also an n-polynomial p-convex function.
This completes the proof. �

Proposition 3.4 Let ψi : Rn → R̄ for i ∈ I be a collection of n polynomial p-convex func-
tions. Then the supremum function

ψ(x) = supψi(x), i ∈ I,

is also n polynomial p-convex function.
Hint. If ψ(x) = sup ψi(x), i ∈ I , then ψ(x) ≥ ψi(x), ∀ i ∈ I .

Proof Fix x, y ∈ Rn, p > 0 and t ∈ [0, 1], then for every i ∈ I we have

ψi
[(

kxp + (1 – k)yp) 1
p
] ≤ 1

n

n∑

s=1

[
1 – (1 – t)s]ψi(x) +

1
n

n∑

s=1

[
1 – ts]ψi(y)

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y), (3.4)

which implies in turn that

ψ
[(

txp + (1 – t)yp) 1
p
]

= sup
i∈I

[
ψi

(
txp + (1 – t)yp) 1

p
]

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]ψ(x) +

1
n

n∑

s=1

[
1 – ts]ψ(y). (3.5)

This justifies the convexity of supremum function. �

Remark 3.5 1: If we insert p = –1 in Proposition 3.4, then we will get the result for an
n-polynomial harmonically convex function [25, Theorem 2.2].

4 Hermite–Hadamard type inequality for n-polynomial p-convex function
The goal of this paper is to establish some inequalities of Hermite–Hadamard type for
n-polynomial p-convex function. Throughout the section, L[c, d] will represent the space
of (Lebesgue) integrable functions on [c, d] ⊆ R. For more on Hermite–Hadamard type
inequality, see [23, 26–29].

Theorem 4.1 (Hermite–Hadamard type inequality) Let ψ : [c, d] → R be an n-poly-
nomial p-convex function. If c < d and ψ ∈ L[c, d], where p > 0, then the following Hermite–
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Hadamard type inequalities hold:

1
2

(
n

n + 2–n – 1

)
ψ

[(
cp + dp

2

) 1
p
]

≤ p
dp – cp

∫ d

c

ψ(x)
x1–p dx

≤
(

ψ(c) + ψ(d)
n

) n∑

s=1

s
s + 1

. (4.1)

Proof Fix x, y ∈ Rn, p > 0, and t ∈ [0, 1], then for every i ∈ I , by the definition of n-
polynomial p-convex function of ψ ,we have

ψ

[(
cp + dp

2

) 1
p
]

= ψ

[(
[tcp + (1 – t)dp] + [(1 – t)cp + tdp]

2

) 1
p
]

= ψ

[(
[tcp + (1 – t)dp]

2
+

[tcp + (1 – t)dp]
2

) 1
p
]

≤ 1
n

n∑

s=1

[
1 –

(
1 –

1
2

)s]
ψ

(
tcp + (1 – t)dp)

+
1
n

n∑

s=1

[
1 –

(
1
2

)s]
ψ

(
tdp + (1 – t)cp). (4.2)

Integration in the last inequality with respect to t ∈ [0, 1] yields that

ψ

[(
cp + dp

2

) 1
p
]

≤ 1
n

n∑

s=1

[
1 –

(
1 –

1
2

)s]∫ 1

0
ψ

(
tcp + (1 – t)dp)dt

+
1
n

n∑

s=1

[
1 –

(
1
2

)s]∫ 1

0
ψ

(
tdp + (1 – t)cp)dt

=
1
n

n∑

s=1

[
1 –

(
1
2

)s][∫ 1

0
ψ

(
tcp + (1 – t)dp)dt +

∫ 1

0
ψ

(
tdp + (1 – t)cp)dt

]
. (4.3)

After solving the above inequality (4.3), we get

ψ

[(
cp + dp

2

) 1
p
]

≤ 2p
dp – cp

(
n + 2–n – 1

n

)∫ d

c

ψ(x)
x1–p dx (4.4)

(
n

2(n + 2–n – 1)

)
ψ

[(
cp + dp

2

) 1
p
]

≤ p
dp – cp

∫ d

c

ψ(x)
x1–p dx, (4.5)

which is the left-hand side of the theorem.
To prove the right-hand side of the theorem, take

p
dp – cp

∫ d

c

ψ(x)
x1–p dx =

∫ 1

0
ψ

(
tcp + (1 – t)dp) 1

p dt, (4.6)
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since ψ is an n-polynomial p-convex function:

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

≤
∫ 1

0

[
1
n

n∑

s=1

[
1 – (1 – t)s]ψ(c) +

1
n

n∑

s=1

[
1 – ts]ψ(d)

]

dt

=
ψ(c)

n

∫ 1

0

n∑

s=1

[
1 – (1 – t)s]dt +

ψ(d)
n

∫ 1

0

[
1 – ts]dt

=
ψ(c)

n

n∑

s=1

∫ 1

0

[
1 – (1 – t)s]dt +

ψ(d)
n

n∑

s=1

∫ 1

0

[
1 – ts]dt

=
[

ψ(c) + ψ(d)
n

] n∑

s=1

s
s + 1

, (4.7)

which is the right-hand side of the theorem. �

Remark 4.2 Imposing some condition on Theorem (4.1), we get a different version of
Hermite–Hadamard type inequality.

1. For n = 1 and p = 1, we obtain Hermite–Hadamard type inequality (1.2) for classical
convex functions.

2. For p = –1, we obtain Hermite–Hadamard type inequality for n-polynomial harmon-
ically convex function [25].

3. For p = 1, we obtain Hermite–Hadamard type inequality for n-polynomial classical
convex function [24].

5 New inequalities for n-polynomial p-convex function
In this section, we establish new estimates that refine Hermite–Hadamard inequality for a
function whose first derivative is absolute value, raised to a certain power which is greater
than one.

In [26] the following lemma is given, which will be helpful for generating refinements of
Hermite–Hadamard type inequality.

Lemma 5.1 ([26]) Let ψ : I = [c, d] ⊂ R → R be a differentiable function on Io with c < d.
If ψ ′ ∈ L[c, d], then

ψ(c) + ψ(d)
2

–
p

dp – cp

∫ d

c

ψ(x)
x1–p dx

=
dp – cp

2p

∫ 1

0
M–1

p (c, d; t)(1 – 2t)ψ ′(Mp(c, d; t)
)

dt, (5.1)

where M–1
p (c, d; t) = [tcp + (1 – t)dp]

1
p –1.

Theorem 5.2 Let ψ : I → R be a differentiable function on Io, c, d ∈ Io with c < d and
assume that ψ ′ ∈ L[c, d]. If ψ ′ is an n-polynomial p-convex function on the interval [c, d],
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then the following inequality holds for t ∈ [0, 1]:

∣
∣∣
∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣
∣∣
∣ ≤ dp – cp

2np

n∑

s=1

[∣∣ψ ′(c)
∣∣C1(t, s) +

∣∣ψ ′(d)C2(t, s)
∣∣],

where

C1(t, s) =
∫ 1

0
|1 – 2t|[1 – (1 – t)s]∣∣tcp + (1 – t)dp∣∣

1
p –1 dt (5.2)

and

C2(t, s) =
∫ 1

0
|1 – 2t|[1 – ts]∣∣tcp + (1 – t)dp∣∣

1
p –1 dt. (5.3)

Proof The definition of n-polynomial convexity and Lemma 5.1 yields the following:

∣∣ψ ′(tcp + (1 – t)dp) 1
p
∣∣

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]∣∣ψ ′(c)

∣∣ +
1
n

n∑

s=1

[
1 – (t)s]∣∣ψ ′(d)

∣∣. (5.4)

We get

∣∣
∣∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣∣
∣∣

≤
∣
∣∣
∣
dp – cp

2p

∫ 1

0
(1 – 2t)

(
tcp + (1 – t)dp) 1

p –1
ψ ′(tcp + (1 – t)dp) 1

p

∣
∣∣
∣

≤ dp – cp

2np

(
∣∣ψ ′(c)

∣∣
∫ 1

0
|1 – 2t|∣∣tcp + (1 – t)dp∣∣

1
p –1

n∑

s=1

[
1 – (1 – t)s]dt

)

+
dp – cp

2np

(
∣
∣ψ ′(d)

∣
∣
∫ 1

0
|1 – 2t|∣∣tcp + (1 – t)dp∣∣

1
p –1

n∑

s=1

[
1 – (t)s]dt

)

=
dp – cp

2np

n∑

s=1

[∣∣ψ ′(c)
∣
∣C1(t, s) +

∣
∣ψ ′(d)C2(t, s)

∣
∣]. (5.5)

This completes the proof. �

Remark 5.3 1. For p = 1, we have [24, Theorem 5].

Corollary 5.4 If we take n = 1 and p = 1 in inequality (4.1), we get the following inequality:

∣
∣∣
∣
ψ(c) + ψ(d)

2
–

1
d – c

∫ d

c
ψ(x) dx

∣
∣∣
∣ ≤ d – c

2

(
1

p + 1

) 1
p

A
(∣∣ψ ′(c)

∣∣,
∣∣ψ ′(d)

∣∣). (5.6)

This inequality coincides with the inequality in [26].

In [30], Iscan gave a refinement of Holder integral inequality as follows.
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Theorem 5.5 (Holder–Iscan integral inequality [30]) Let p > 1 and 1
p + 1

q = 1. If ψ and φ

are real functions defined on the interval [c, d] and if |ψ |q and |φ|q are integrable functions
on [c, d], then

∫ d

c

∣
∣ψ(x)φ(x)

∣
∣dx

≤ 1
d – c

{(∫ d

c
(d – x)

∣
∣ψ(x)

∣
∣p dx

) 1
p
(∫ d

c
(d – x)

∣
∣φ(x)

∣
∣q dx

) 1
q
}

+
1

d – c

{(∫ d

c
(x – c)

∣∣ψ(x)
∣∣p dx

) 1
p
(∫ d

c
(x – c)

∣∣φ(x)
∣∣q dx

)} 1
q

. (5.7)

A refinement of the power mean integral inequality as a different version of the Holder–
Iscan integral inequality is given as follows.

Theorem 5.6 (Improved power-mean integral inequality [31]) Let q > 0. If ψ and φ are
real functions defined on the interval [c, d] and if |ψ |, |ψ ||φ|q are integrable functions on
[c, d], then

∫ d

c

∣
∣ψ(x)φ(x)

∣
∣dx

≤ 1
d – c

{(∫ d

c
(d – x)

∣
∣ψ(x)

∣
∣p dx

)1– 1
q
(∫ d

c
(d – x)

∣
∣φ(x)

∣
∣q dx

) 1
q
}

+
1

d – c

{(∫ d

c
(x – c)

∣∣ψ(x)
∣∣p dx

)1– 1
q
(∫ d

c
(x – c)

∣∣φ(x)
∣∣q dx

)} 1
q

(5.8)

holds.

Theorem 5.7 Let ψ : I → R be a differentiable function on Io, c, d ∈ Io with c < d, q > 1,
1
p + 1

q = 1, and assume that ψ ′ ∈ L[c, d]. If ψ ′ is an n-polynomial p-convex function on the
interval [c, d], then the following inequality holds for t ∈ [0, 1]:

∣
∣∣
∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣
∣∣
∣

≤ dp – cp

2p
(
C3(p)

) 1
p

(
2
n

n∑

s=1

s
s + 1

) 1
q

A
1
q
(∣∣ψ ′(c)

∣
∣q,

∣
∣ψ ′(d)

∣
∣q), (5.9)

where

C3(p) =
∫ 1

0

|1 – 2t|p
|(tcp + (1 – t)dp)1– 1

p |p
dt.

Proof Using the definition of n-polynomial convexity and Lemma 5.1, we have

∣
∣ψ ′(tcp + (1 – t)dp) 1

p
∣
∣

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]∣∣ψ ′(c)

∣∣ +
1
n

n∑

s=1

[
1 – (t)s]∣∣ψ ′(d)

∣∣, (5.10)
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which is an n-polynomial p-convex function of |ψ ′|q, we get

∣∣∣
∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣∣∣
∣

≤ dp – cp

2p

∫ 1

0
|1 – 2t|(tcp + (1 – t)dp) 1

p –1∣∣ψ ′(tcp + (1 – t)dp) 1
p
∣∣dt

≤ dp – cp

2p

(∫ 1

0

|1 – 2t|p
|(tcp + (1 – t)dp)1– 1

p |p
dt

) 1
p
(∫ 1

0

∣
∣ψ ′(tcp + (1 – t)dp)∣∣q

) 1
q

dt

≤ dp – cp

2p
(
C3(p)

) 1
p

(
|ψ ′(c)|q

n

n∑

s=1

∫ 1

0

[
1 – (1 – t)s]dt +

|ψ ′(d)|q
n

n∑

s=1

∫ 1

0

[
1 – ts]dt

) 1
q

=
dp – cp

2p
(
C3(p)

) 1
p

(
∣∣ψ ′(c)

∣∣q 1
n

n∑

s=1

s
s + 1

+
∣∣ψ ′(d)

∣∣q 1
n

n∑

s=1

s
s + 1

) 1
q

× dp – cp

2p
(
C3(p)

) 1
p

(
2
n

n∑

s=1

s
s + 1

) 1
q

A
1
q
(∣∣ψ ′(c)

∣∣q,
∣∣ψ ′(d)

∣∣q), (5.11)

where
∫ 1

0

[
1 – (1 – t)s]dt =

∫ 1

0

[
1 – ts]dt =

s
s + 1

,

and A is arithmetic mean. This completes the proof of the theorem. �

Remark 5.8 1. For p = 1, we have [24, Theorem 6].

Corollary 5.9 If we take n = 1 and p = 1 in inequality (4.1), we get the following inequality:

∣
∣∣∣
ψ(c) + ψ(d)

2
–

1
d – c

∫ d

c
f (x) dx

∣
∣∣∣ ≤ d – c

2

(
1

p + 1

) 1
p

A
1
q
(∣∣ψ ′(c)

∣∣q,
∣∣ψ ′(d)

∣∣q). (5.12)

This inequality coincides with the inequality in [26].

Theorem 5.10 Let ψ : I → R be a differentiable function on Io, c, d ∈ Io with c < d, q > 1,
and assume that |ψ ′|q is an n-polynomial p-convex function on the interval [c, d], then the
following inequality holds for t ∈ [0, 1]:

∣∣
∣∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣∣
∣∣

≤ dp – cp

2p
(
C4(p)

)1– 1
q

[( |ψ ′(c)|q
n

C1(p) +
|ψ ′(d)|q

n
C2(p)

)] 1
q

. (5.13)

Proof The definition of n-polynomial convexity and Lemma 5.1 yields the following:

∣
∣ψ ′(tcp + (1 – t)dp) 1

p
∣
∣

≤ 1
n

n∑

s=1

[
1 – (1 – t)s]∣∣ψ ′(c)

∣∣ +
1
n

n∑

s=1

[
1 – (t)s]∣∣ψ ′(d)

∣∣, (5.14)



Park et al. Advances in Difference Equations        (2020) 2020:666 Page 11 of 12

∣
∣∣
∣
ψ(c) + ψ(d)

2
–

p
dp – cp

∫ d

c

ψ(x)
x1–p dx

∣
∣∣
∣

≤ dp – cp

2p

(∫ 1

0
|1 – 2t|∣∣(tcp + (1 – t)dp) 1

p –1∣∣dt
)1– 1

q

×
(∫ 1

0

∣∣ψ ′(tcp + (1 – t)dp) 1
p
∣∣
) 1

q
dt

≤ dp – cp

2p
(
C4(p)

)1– 1
q

(∫ 1

0
|1 – 2t|∣∣(tcp + (1 – t)dp) 1

p –1∣∣

×
[

1
n

n∑

s=1

[
1 – (1 – t)s]∣∣ψ ′(c)

∣∣q
]) 1

q

+
dp – cp

2p
(
C4(p)

)1– 1
q

(∫ 1

0
|1 – 2t|∣∣(tcp + (1 – t)dp) 1

p –1∣∣

×
[

1
n

n∑

s=1

[
1 – ts]∣∣ψ ′(d)

∣
∣q

]) 1
q

=
dp – cp

2p
(
C4(p)

)1– 1
q

[( |ψ ′(c)|q
n

C1(p) +
|ψ ′(d)|q

n
C2(p)

)] 1
q

. (5.15)

This completes the proof of the theorem. �

Remark 5.11 1. For p = 1, we have [24, Theorem 7].

Corollary 5.12 If we take n = 1 and p = 1 in (4.1), we get the following inequality:

∣
∣∣
∣
ψ(c) + ψ(d)

2
–

1
b – a

∫ d

c
ψ(x) dx

∣
∣∣
∣ ≤ d – c

4
A

1
q
(∣∣ψ ′(c)

∣∣q,
∣∣ψ ′(d)

∣∣q). (5.16)

This inequality coincides with the inequality in [26] with q = 1.
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