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ABSTRACT In this study, the unscented Kalman filter-based method was introduced as a new technique
for position estimation of the two-degree-of-freedom façade cleaning robot known as the Dual Ascender
Robot (DAR). While other façade cleaning robots use a winch, the DAR uses an ascender, resulting in
rope slip inside the ascender. Rope slip does easily cause errors in length data, so DARs cannot be easily
controlled based on length data as in the case of most façade cleaning robots. Therefore, the DARs estimate
the length data and use it through position estimation to overcome the rope slip for control. DARs use a rope
length-based sensor fusion method for position estimation. This method employs position data based on both
length data and angle data to estimate the position; however, it is difficult to use for long periods of time
owing to the increased error that accumulates with time. Therefore, the use of position data based on angle
data is proposed herein via application of the unscented Kalman filter. This unscented Kalman filter-based
method is tested to confirm that the positional estimation performance is improved relative to that achieved
via the previously used method. The performance improvements are compared in terms of accuracy and
repeatability using the double ball bar method, and the errors in accuracy and repeatability are found to be
reduced by approximately 2–3 times.

INDEX TERMS Dual ascender robot, façade cleaning robot, sensor fusion, unscented Kalman filter, position
estimation, IMU sensor.

I. INTRODUCTION
Buildings of increased heights are being constructed to use
space efficiently in cities. However, such increases in build-
ing heights prove disadvantageous from the perspective of
building maintenance. For maintaining cleanliness in such a
building, a person must hang on a rope to clean the building;
however, this is dangerous because no safety measures can
be provided in such a scenario. Therefore, research is being
actively conducted in various fields to help reduce the risk
borne by exterior wall cleaners. In this context, façade clean-
ing robots have been investigated in robot studies [1].

Most façade cleaning robots, such as building exterior wall
cleaners, use ropes to move over walls. Therefore, the degrees
of freedom (DOFs) and movement are determined by the
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number of ropes used by the robot. Façade cleaning robots
using one rope include SkyPro [2], [3], IPC Eagle [4], [5],
ROPE RIDE [6], and Tito 500 [7]. These possess one degree
of freedom (DOF) to move upward and downward. Such
1-DOF movement is advantageous in terms of the simple
control involved at varying speeds, regardless of the position
of the robot. However, the disadvantage here is a longer
cleaning time because the robot is not free to move around
significantly. Façade cleaning robots having 2 or more DOFs
and using two or more ropes are also being investigated to
compensate for the disadvantages of 1-DOF façade clean-
ing robots. Such robots can move not only upward and
downward but also in both sideward directions. KITE [8],
SkyScraper-I [9], and the DAR [10] are typical examples
of robots with more than 2-DOFs. Façade cleaning robots
with more than 2-DOFs inevitably require control because
they must exhibit movements in more than 2 DOFs using
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FIGURE 1. Difference between winch and ascender; (a) winch has a fixed
end point, so the rope length can be measured as a single constant value;
(b) ascender does not have a fixed end point, so the rope length
measured may contain an error.

rope alone. The control method used in such a case employs
the rope length data. Façade cleaning robots with more than
2 DOFs using rope employ a mechanical device called a
winch that winds and releases the rope; however, changes
in the rope length are not caused because the end points are
fixed when the robot is installed on the building, as shown
in Fig. 1 (a). Therefore, the robots equipped with a winch
consider this unchanged rope length data for modeling and
control. However, among the façade cleaning robots that
employmore than two ropes such as DAR cannot use the rope
length data for control. Because the structural properties of
the DAR do not require the use of a winch, the DAR exhibits
2-DOF movement on the outer wall of the building with a
unique method of control.

TheDARpossessing structural properties involving the use
of such a unique method of control is shown in Fig. 2 (a).
For each rope, the DAR uses a mechanical device called an
ascender, which is similar to a winch. However, there is one
difference between the ascender and winch. When the robot
is installed on the building, there is no fixed end point of
the rope inside the ascender. Therefore, each time the rope is
wound and released inside the ascender, rope slip occurs and
a change in the rope length is caused, as shown in Fig. 1 (b).
This implies that the DAR cannot use the control method that
most 2-DOF façade cleaning robots use.

To overcome rope slip inside the ascender, the DAR must
use the position data of the robot. Rope length data have
been previously obtained using inverse kinematics through
the robot position data and used for control. Owing to this
unique process, the DAR requires the correct robot position
data; the process of determining the position for control
of the DAR has therefore been defined as position estimation.
The position estimation process employed by the DAR uses
the various data that the robot comprises [11]. Fig. 2 (b) shows
these data; li is the rope length, θi is the angle between the
rope and the robot, and w is the distance between the rope

FIGURE 2. Actual appearance of dual ascender robot (DAR); (a) isometric
view of DAR. Each rope is wound to the ascender; (b) front view of DAR.
Rope length data, data of angle between rope and robot, and robot
rotation angle are measured using several sensors.

joints. The data are combined using forward kinematics to
create two-position data. The sensor fusion method is then
employed to apply the two-position data to position esti-
mation. However, error accumulates over time because the
existing position estimation method considers the error rope
length li for position estimation.
The rope angle-based Kalman filter method is proposed to

improve the accuracy of positioning of the DAR [12]. This
method involves the application of an unscentedKalman filter
to the position data used in the previous position estima-
tion method and sensor fusion method. In the sensor fusion
method, a cumulative error in position estimation is obtained
on using the error rope length; however, the rope angle-based
Kalman filter method is suitable for use in DARs because it
can capture the rope length error through filtering. For the
purpose of obtaining a comparison across different scenarios,
the same experiment was conducted to compare the position
of the robot obtained via the previous sensor fusion method,
and the new rope angle-based Kalman filter method.

The remainder of this paper is organized as follows.
Section 2 presents more details regarding the DAR position
estimation method previously used, and Section 3 discusses
the proposed rope angle basesd Kalman filter method to be
applied for improving the position estimation of the DAR.
Section 4 describes an experiment used to compare the per-
formance of the previous sensor fusion method with that of
the Kalman filter method. Section 5 presents the verifica-
tion of the experimental results and discusses whether the
positioning ability is improved via application of the Kalman
filter method to the DAR. Finally, in Section 6, the study is
concluded through an evaluation of the new DAR position
estimation method

II. PREVIOUS DAR’S POSITION ESTIMATION METHOD
In previous studies, DARs employed a unique rope length-
based sensor fusion method to estimate the position [10].
This sensor fusion method used data received from various
sensors on the robot to perform position estimation. The
details of these sensors are summarized in Table 1. Through
the angle of rotation of the rotary encoder on the rope end
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TABLE 1. Specifications of DAR’s sensors.

FIGURE 3. Dual ascender robot’s modeling on global coordinate.

point, the angle data (θ i) were obtained; through the degree
of rotation of the pulley connected to the rotary encoder
on the side, the length data (l i) were obtained; this length
was increased and decreased. In the inertial measurement
unit (IMU) sensor, the roll value was read to obtain the angle
ψ , which is the angle the robot returned, as shown in Fig. 3.
After the obtained data were fused to calculate position data
based on both angle data and length data, the weight matrix
was multiplied to each position data according to the position
of the DAR for position estimation [10].

A. POSITION DATA
As mentioned earlier, two position data points are required
to estimate the position of the DAR. The position data entail
information regarding the location of the anchor (A1,A2),
rope length (l1, l2), angle of the robot’s rotation ψ , angle
of the robot and the rope (θ1, θ2), and angle of the rope
and anchor (θ3, θ4). Fig. 3 illustrates a simple model for
estimating the position of the robot. The red line denotes the
rope, and the black line, the distance between the joints on
which the robot is suspended (w).

Based on Fig.3, forward kinematics is applied. The main
agent of forward kinematics is from center of joints’ position
on which the robot is suspended to each anchor’s position.
These forward kinematics is represented to 4 equations as

follow:

f =



A1,x + l1 cos θ4 +
1
2
w cosψ − xA1

A2,x − l2 cos θ3 −
1
2
w cosψ − xA2

A1,y − l1 sin θ4 −
1
2
w sinψ − yA1

A2,y − l2 sin θ3 −
1
2
w sinψ − yA2


(1)

where xAi,yAi are the coordinates of the points on which the
robot is suspended from the rope at each anchor (Ai) and f is
the position error. The two position data points are modified
by in turn modifying Eq. (1) based on xAi,yAi . Position data
based on angle data were calculated by varying the rope
length li to the angle θi of the robot and rope. Subsequently,
position data based on length data are the same as that based
on the length of the rope (l1, l2) as well as that which locates
the robot based on the angle ψ of the robot’s turn. As with
the position data based on the angle data, the angle θi of the
robot is varied to the rope length li in Eq. (1).

B. POSITION ESTIMATION
If the position based on the length or angle of the rope is
estimated using two position data points obtained via forward
kinematics, the process of weighting the position data is
necessary. Position data depend on which data are based on
the position of the outer wall. Therefore, to increase position
accuracy, the DAR adopted a sensor fusion method, which
helps select position data based on length data and angle data
by multiplying the weight of the weight matrix [13]. The
weight matrix is defined as follows:

Minimize f T6−1
f f over x (2)

Eq. (2), the weight matrix is calculated by multiplying the
position error f and the weight factor6−1

f of the position data
obtained via forward kinematics. The weight matrix serves as
a type of switch and selects reliable data corresponding to the
position of the robot between the two position data points;
thus, the more accurate are the position data, the better is the
performance. However, if the experimental time increases,
the position data based on the length data become inaccurate.
This is because a greater error in the rope length li is accu-
mulated owing to the structural property of the robot; further,
a difference is observed in the actual position and data of the
robot. To eliminate this error, rope angle-based Kalman filter
method is proposed.

III. ROPE ANGLE-BASED KALMAN FILTER METHOD
A. KALMAN FILTER
Kalman filters can be used recursively to solve discrete data
linear filtering problems [14]. Because of Kalman filter’s
recursive use, modelling of the system that is linear is suit-
able to apply data filtering. The Kalman filter applicable to
systems in a linear ideal state is called the linear Kalman filter
(LKF) [15]. However, the system does not linear because
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FIGURE 4. Schematic of DAR’s Kalman filter method; irrespective of the
Kalman filter selected, measurement and prediction data are required.

of various factors such as disturbance in a dynamic state.
The Kalman filter, which came out to filter the data of the
nonlinear systemwith disturbance, is called extendedKalman
filter (EKF) [16]. However, there are not only linear states
and linear states with disturbance in the system. In addition,
system defined by nonlinear and modelling itself becomes
difficult when a disturbance is added to the nonlinear system.
Thus, the Kalman filter, which came out to filter the data of
the nonlinear system, is called unscentedKalman filter (UKF)
[17], [21]. Although the performances of the three Kalman
filters depend on the system modeling, they require measure-
ment data (mk ), which are the filtering and prediction data
(x̂k ) that ensure the filtering standard for filter applications,
as shown in Fig. 4. After select two required data, full-fledged
filtering could be realized. However, the basic concept of
filtering is the same for all three Kalman filters. Data were
filtered in five steps. The first step is the prediction step to
calculate x̂k and P̂k as follows:

x̂k = Axk−1 (3)

P̂k = APk−1AT
+Q (4)

where hat denotes the predicted value, and A, the system
modeling. Further, the initial values x0,P0, and noise valueQ
must be specified. The second step is to calculate the Kalman
gain (Kk ) using the values calculated in the first step Eq. (5).

Kk = P̂kHT(HP̂kHT
+ R)

−1
(5)

mk = Hxk (6)

where H represents the relationship between the measure-
ment data (mk ) and the status variable, and R is the noise
value Eq. (6). The third step is implemented by calculating
the entered measurement data (mk ) to estimate the data (xk )
Eq. (7).

xk = x̂k +Kk
(
mk−Hx̂k

)
(7)

The fourth step is to obtain the error covariance (Pk ),
which is the standard for determining the accuracy of the
estimation data (xk ). The error covariance (Pk ) is calculated
using Eq. (8).

Pk = P̂k −KkHP̂k (8)

The fifth step is the recursive step. The covariance Pk
obtained in Eq. (8) is substituted in Eq. (4).

B. KALMAN FILTER METHOD ON DAR
To apply the Kalman filter to the DAR, the two aforemen-
tioned data, measurement (mk ) and prediction data (x̂k ), are
selected as prerequisites in Fig. 4. First, the data available
as measurement data (mk ) are the two position data points
used by the DAR for rope length-based sensor fusion method.
However, position data based on angle data among the two
position data points are used as measurement data (mk ). This
is because the error of the position data, which are based on
length data, accumulates. Subsequently, angular acceleration
is used as the prediction data (x̂k ) and are obtained using the
IMU sensor. Once the required main data are determined,
the five steps of the Kalman filter are implemented to estimate
the position of the DAR. The prediction data (x̂k ) are defined
as follows:

x̂k =
(
sx
sy

)
(9)

where sx , sy are the coordinates of the robot calculated based
on the acceleration values. However, obtaining the prediction
data (x̂k ) using the acceleration raw data, in turn obtained
using the IMU sensor, results in a accumulative error, which is
an integral problem. IMU sensor’s data accumulative error is
similar to nonlinear system with disturbance therefore, DAR
uses UKF to overcome this problem. UKF uses the sigma
point (χ i) to surmount dissipation of the data. The sigma point
(χ i) of the acceleration value is selected and the weight (ωi) is
calculated. Then, Eq. (3) is implemented. As such, the DAR
uses the characteristics of UKF to employ IMU sensor values
as prediction data (x̂k ) without cumulative error.

x̂k = x̂k−1ωiχ ig
(
χ i
)

(10)

g
(
χ i
)
= (I+

1
2
1t2)χ i (11)

where Eq. (10) helps calculate the prediction data (x̂k ) by the
UKF of Eq. (3), I is identical matrix,1t is difference between
two loop time scales and sigma point (χ i)’s i represents
number of loop. Next, measurement data (mk ) is employed
as position data based on angle data, as defined previously.

mk =

(
ex
ey

)
(12)

where ex , ey are the x and y values of the position data
based on the angle data. Using Eq. (13) and Eq. (14), the
error covariance of the prediction data (x̂k ) and measurement
data (mk ) is predicted through unscented transformation (UT)
with sigma point (χ i) and weight (ωi), obtained using the
angular acceleration, in turn obtained using the IMU sensor.

Px̂k = UT(χ iωi)+Q (13)

Pmk = UTχ iωi + R (14)

P helps obtain the estimation data (mk ) based on
gains by calculating the predicted error covariance; Q and
R denote noise and UT denotes unscented transforma-
tion [18]. Through the predicted error covariance, the Kalman
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FIGURE 5. Test bench and measurement device: (a) test bench, red points
denote rope anchors; (b) measurement device, magnetic encoders are
used to measure the DAR’s actual position.

gain (Kk ) is calculated as shown in Eq. (5) and prediction data
(x̂k ) is modified based on the Kalman gain (Kk ).

Kk = PkP−1mk (15)

Pk = Pk−1ωi(g
(
χ i
)
x̂k )χT

i (16)

xk = x̂k +Kkmk (17)

The final process of the Kalman filter is to obtain the error
covariance of the estimation data (mk ).

P = Px̂k −KkPmkK
T
k (18)

The error covariance of the obtained measurement data
(mk ) is calculated using Eq. (13) to recursively filter and
continuously estimate the position of the DAR. During all the
processes, the Kalman filter method was implemented, which
is a new positioning method for the DAR.

IV. EXPERIMENTAL PLANNING
A. TEST BENCH
To compare the performances of the DAR’s previous and new
position estimationmethods, an experiment wherein the robot
was practically utilized was conducted. Because the DAR is
a façade cleaning robot that hangs on an outer wall via a
rope, a test bench with a false wall made by a wood plate
that serves as the outer wall of the building is considered
along with an anchor that can hang the rope. Fig. 5 (a) is a
3D modeling figure of the test bench with a height of 4 m
and whose distance from the anchor (Ai) is 2.55 m. At the
center of the test bench is a mechanical device, which is used
in connection with the DAR. Fig. 5 (b) shows the x- and
y-axis coordinates of the robot when it moves over the false
wall using the magnetic encoder. The data measured by the
measuring device are referred to as the real position data of
the robot.

B. EXPERIMENT METHOD AND STANDARD OF
COMPARISON
The experiment was commenced by connecting the DAR to
the measuring device and then hanging it to the test bench,
as shown in Fig. 6 (a). As mentioned earlier, the DAR is a
2-DOF façade cleaning robot and moves in a manner similar
to a mobile robot; however, owing to gravity, which does not

FIGURE 6. DAR’s position estimation experiment: (a) hanging DAR from
the test bench and (b) implementation of the double ball bar method; R
is radius of target movement circle and v is velocity of move.

TABLE 2. Position estimation method comparison experiment.

work in the same direction as that of the mobile robots, a dif-
ference in their movements can be observed. This difference
means that an evaluation standard for the position estimation
accuracy and repeatability of the DAR cannot be set, as can
be realized for mobile robots. Therefore, a double ball bar
method, which is used in repeatability machines as a basis
for evaluation, is employed [19], [20].

The double ball bar method is employed to assess the accu-
racy and repeatability of the position or control corresponding
to the circular shapes of machines or robots within a certain
number of DOFs. This method can be applied to the DAR,
such that is can move in a circular motion with a radius of
R corresponding to its real position at a speed of v without
any control Fig. 6 (b). To verify the accuracy of the position
estimation method, position data determined via the sensor
fusion method and Kalman filter method were compared with
the real position data, and each experiment was conducted
four times to obtain information regarding the repeatability.
The experiment design is summarized in Table 2.

V. EXPERIMENT RESULTS
The experimental results are plotted in Fig. 7. The figure
entails three position data points in total. First, the black
data denote the position data obtained using the measurement
device (Section 4). Therefore, the measured position is the
standard for determining the repeatability and accuracy of
other position data. The red data denote the position data
obtained via the sensor fusion method, which are the previous
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FIGURE 7. Experiment results according to DAR’s velocity, each color represent different position data; (a) DAR’s velocity = 0.01 m/s;
(b) DAR’s velocity = 0.03 m/s.

position estimation data of the DAR. Finally, the blue data
are the position estimation data obtained using the proposed
rope angle-based Kalman filter method. The position data
obtained from the experiment were compared in terms of their
repeatability and accuracy.

A. REPEATABILITY PERFORMANCE COMPARISON
To estimate the repeatability of the position data, the graphs
corresponding to the position data when the DARwas rotated
in a circle were created and superimposed. The better is the
iteration, the better a graph overlaps with the previous graph.
Fig. 7 shows that the graphs obtained for the sensor fusion
method, previously used for the DAR position estimation,
do not overlap with each other often; this phenomenon is
particularly prominent when it ascends or descends toward
the highest or lowest point on the y-axis. In contrast, the
graphs obtained for the proposed rope angle-based Kalman
filter method overlap irrespective of the number of times the
circle has been rotated. Quantitative figures were introduced
and compared, as summarized in Fig. 8, to more accurately
estimate repeatability. During the experiment, the center of
the circle was determined corresponding to circle graph and
was compared position with the center obtained by previous
drawn circle graph. Further, the extent to which the circle
overlapped was identified in terms of a root-mean-square
error (RMS).

Fig. 8 summarizes that the variation in error is not linear;
however, both the sensor fusion and rope angle-basedKalman
filter methods exhibit minor errors. The error approximately
doubled in the 0.01 m/s experiment and increased by approx-
imately five times in the 0.03 m/s experiment. The results
demonstrate that the rope angle-based Kalman filter method
was better than the sensor fusion method in terms of repeata-
bility.

B. ACCURACY PERFORMANCE COMPARISON
To estimate the accuracy of position data, the position data
obtained via the sensor fusion and rope angle-based Kalman

FIGURE 8. Circle center error compare with previous rotation; (a) DAR’s
velocity = 0.01 m/s; (b) DAR’s velocity = 0.03 m/s.

filter methods were compared with the measured position
data. The y-axis in the graph in Fig. 9 represents the RMS
error. Irrespective of speed, the overall error in the position
data obtained via the rope angle-based Kalman filter and sen-
sor fusion methods were similar. However, the two methods
exhibit differences as the experiment progresses. In Fig. 9 (a),
when the DAR moves at 0.01 m/s, a small error is obtained
in the sensor fusion method for 1 to 2 rotations. Fewer errors
are observed in the rope angle-based Kalman filter method
over time. Unlike Fig. 9 (a), Fig. 9 (b) has fewer position esti-
mation errors in the rope angle-based Kalman filter method
in all time zones, irrespective of the number of rotations.
The increase in error can evidently be observed in Fig. 10,
the error rate. The results confirmed that the rope angle-based
Kalman filter method exhibits better accuracy on the x-axis
and sensor fusion method on the y-axis. However, the sensor
fusion method exhibits one limitation. Fig. 9 shows that the
error graph of the rope angle-based Kalman filter method is
constant, while that of the sensor fusion method increases.
An increase in amplitude means that the accuracy decreases
over time. Therefore, if the rope angle-based Kalman fil-
ter and sensor fusion methods exhibit similar performance,
the more robust rope angle-based Kalman filter method is
more accurate.
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FIGURE 9. Position error relative to a reference, which is measured using a separate device: (a) DAR’s velocity = 0.01 m/s; (b) DAR’s
velocity = 0.03 m/s.

FIGURE 10. Each axis’ position estimation error rate; (a) DAR’s velocity =

0.01 m/s; (b) DAR’s velocity = 0.03 m/s.

VI. CONCLUSION
In this study, a new position estimation method, the Kalman
filter method based on rope angle data, was proposed and
applied to the DAR. Unlike the previously employed posi-
tion estimation method, the new position estimation method
uses an unscented Kalman filter. Two sets of data, namely,
the measurement data and prediction data, are required to
apply this unscentedKalman filter. Themeasurement data did
not use position data based on length data; instead, it used
position data based on angle data, which rendered the pre-
vious position estimation method disadvantageous. The pre-
diction data used the angular acceleration value of the IMU
sensor after unscented transformation.

However, the DAR position estimation method was eval-
uated using the double ball bar method to compare the per-
formance of the new rope angle-based Kalman filter method
with that of the sensor fusion method. The double ball
bar method evaluates the performance of the machine by
making the machine move in a circle. Here, repeatability
and accuracy constitute the evaluation standards. Therefore,
an experiment involving changing the speed of the DAR and
rotating it four times to a circle 0.5 m in radius was also
conducted. As a result of the experiment, the rope angle-
based Kalman filter method showed better performance in

terms of the repeatability of position estimation. Circular
overlapping according to rotation occurred more in the rope
angle-based Kalman filter method than in the sensor fusion
method; moreover, the sensor fusion method gave rise to
errors approximately 2–3 times greater than those in the rope
angle-based Kalman filter method when the change in the
center of the circle position was considered according to each
rotation. In terms of the accuracy of position estimations,
different degrees of performance were obtained depending on
the axis. While the rope angle-based Kalman filter method
showed good performance for the x-axis, the sensor fusion
method showed good performance for the y-axis. However,
as shown in Fig. 8, the amplitude of the sensor fusion method
error graph appeared to grow gradually, indicating an increase
in error over time. According to the experimental results,
the accuracy of the rope angle-based Kalman filter method
was also better than that of the sensor fusionmethod. The rope
angle-based Kalman filter method, a new position estimation
method for DARs, is applicable to DAR control because it
has resulted in improvements in performance in terms of
accuracy and repeatability relative to that of the previous
method. Overall, it is expected that DAR control with the
new position estimation method will become more robust to
accumulative length data error.
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