
Received October 2, 2020, accepted October 20, 2020, date of publication November 5, 2020, date of current version November 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3036023

Start Code-Based Encryption and Decryption
Framework for HEVC
MIN KU LEE AND EUEE SEON JANG , (Senior Member, IEEE)
Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Euee Seon Jang (esjang@hanyang.ac.kr)

This work was supported by the Research Fund of the Signal Intelligence Research Center supervised by the Defense Acquisition
Program Administration and Agency for Defense Development of Korea.

ABSTRACT In this article, we propose a new selective encryption and decryption framework based on the
start code for high efficiency video coding. There is a growing need to encrypt video information to protect
video content from privacy invasion and intellectual property infringement caused by information leakage.
Although encrypting an entire video is a straightforward approach, the cost to encrypting a large amount
of video data is substantial, considering the resulting computational complexity. Consequently, selective
encryption algorithms have been actively researched in recent years and have contributed to reducing the
computational complexity. However, existing selective encryption algorithms have certain drawbacks. For
instance, it is difficult to separate the video encryption algorithm from the video compression algorithm
because the encryption framework is based on the syntax elements. Further, a partial reconstruction of the
encrypted video bitstream is often unavoidable. To solve these problems, the proposed method encrypts
the bitstream based on the start code rather than on the syntax elements. Encrypting the bitstream partially,
based on the start code, makes it easy to separate the video encryption algorithm from the video compression
algorithm. Furthermore, encrypting the part adjacent to the start code protects the video content, as video
reconstruction using a video decoder is impossible, unless the correct start code is returned to the bitstream.
The experimental results show that the proposed method reduced the encryption and decryption times by
approximately 97% and 98%, respectively, compared to the encryption and decryption of the entire video
bitstream.

INDEX TERMS High efficiency video coding, selective encryption algorithms, start code, video encryption.

I. INTRODUCTION
With the increasing usage of video applications such as video
on demand, video conferencing, and video surveillance, it has
become very important to protect video content from unau-
thorized access and usage. Hence, there is a dire need for
video content encryption, ranging from commercial videos
to home security camera recordings, to protect video data
from unauthorized access that could lead to leaked or hijacked
videos, and consequently, illegal usage and privacy exposure.

Most video encryption algorithms can be classified into
two types: naïve encryption algorithms (NEAs) and selective
encryption algorithms (SEAs). A NEA encrypts an entire
bitstream of video content using standard encryption algo-
rithms, such as the data encryption standard (DES) [1],
Rivest, Shamir, and Adleman (RSA) method [2], or advanced

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

encryption standard (AES) [3]. Because it encrypts an entire
video bitstream, a NEA provides the best security when con-
fidentiality is the top priority. Further, it is easy to implement
when integrated with existing multimedia systems because it
does not depend on video compression algorithms. However,
it provides its functionality at the cost of a substantially
increased computational complexity owing to the encryption
of an entire large bitstream.

By contrast, SEAs reduce the computational complexity
of encryption by encrypting only the highly sensitive por-
tions of a video, thus overcoming the shortcomings of the
NEA. The video bitstreams encrypted by SEAs result in a
distorted visual quality when the video is decoded without the
appropriate decryption, which degrades the information in the
video and renders the video less comprehensible. The SEA
might be more suitable for real-time applications owing to its
low computational complexity compared to that of the NEA.
However, the SEA remains vulnerable to partial decoding

202910 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6378-2407
https://orcid.org/0000-0002-5312-7078
https://orcid.org/0000-0002-5026-5416


M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

attempts, making them less desirable for highly sensitive
video content demanding full protection. In addition, the SEA
is, to a large extent, closely connected to video compression
algorithms. It is often difficult to imbed a SEA within a video
codec if it is impossible to implement the algorithms during
the internal process of the video encoding and decoding
(using either software or hardware). Because most standard
video codecs are already implemented in hardware, the SEA
is highly unlikely to be a viable solution.

In this article, we propose a novel video encryption algo-
rithm that encrypts a portion of the bitstream adjacent to
the start code. The proposed method achieves its protection
by preventing an unauthorized decoder from decoding the
bitstream unless the proper header information is restored.
The computational complexity of the proposed method is
comparable to that of the SEA because the bitstream is
only partially encrypted. In particular, the proposed algorithm
encrypts only the header information of the bitstream, which
is typically one-byte long. In the worst-case scenario, 256
combinations would be required to restore the header infor-
mation. The use of many start codes in the bitstream makes
it virtually impossible to break the encryption in real time.
In addition, the proposed method is easily integrated with
existing multimedia systems, similar to the NEA, because
it can be applied even after an entire bitstream has been
generated.

The remainder of this article is organized as follows.
In Section II, we describe the works related to NEAs and
SEAs. Details of the proposed method are provided in
Section III. In Section IV, we present the results of experi-
ments conducted to evaluate the proposed scheme. Finally,
we present the conclusions of the paper in Section V.

II. RELATED WORK
A. NAÏVE ENCRYPTION ALGORITHM
Naïve encryption entails fully encrypting the video content
following compression using standard encryption algorithms
such as the DES, RSA, or AES. The NEA processes a
video bitstream as a stream of binary data and encodes
every word in the bitstream, regardless of the type of video
codec. The NEA is one of the most secure video encryption
algorithms because it is applied to entire bitstreams using
standard encryption algorithms. In general, however, NEA-
based encryption is not recommended for use in real-time
video transmission applications of large video data because
it is computationally expensive.

For the NEA, there are many standard encryption algo-
rithms such as theDES, RSA, andAES. In [4] and [5], follow-
ing evaluation on video encryption, the AES was reportedly
the fastest of these standard encryption algorithms. Further-
more, according to some studies, including [6], the AES
reduces the computational complexity to an extent. However,
the overall improvement is marginal because the overall com-
plexity of the AES is determined by the size of the input
data.

B. SELECTIVE ENCRYPTION ALGORITHM
The primary limitation of theNEA is that it encrypts the entire
data; hence, the computation time is directly proportional
to the amount of data. For example, applying the NEA to
a high-capacity video bitstream, such as a typical two-hour
movie that is stored and transmitted in gigabits following
compression, presents the problem of computational com-
plexity. Therefore, the SEA has been studied as an alter-
native. A video bitstream consists of minimal data through
which the original video is reconstructed by exploiting the
redundancy of the original video data. Therefore, most (if
not all) parts of a video bitstream are interdependent and
the corruption of a small fraction of the bitstream may be
sufficient to damage the entire bitstream, which could make
it impossible to reconstruct the original video. The SEA
exploits this characteristic by encrypting the video bitstream
only partially. This approach enables it to protect the video
data with much less computational complexity compared to
that of the NEA.

Meyer and Gadegast [7] proposed a selective video encryp-
tion method called Secure MPEG (SECMPEG). In addition,
Maples and Spanos [8] proposed a selective video encryption
method called Aegis. Both SECMPEG and Aegis encrypt
only the I-frame or keyframe information, which is criti-
cal for a decoder to decode normally. Furthermore, it was
considered effective to encrypt only the I-frames using the
standard encryption algorithm, the DES, because it made it
difficult to properly reconstruct even P- and B-frames that
were reconstructed with reference to the I-frame. However,
the computational complexity was not significantly improved
compared to that of theNEAbecause the I-frames in the video
bitstream usually constitute between 30%–60% of the video
size.

Tang [9] proposed the zig-zag permutation algorithm that
reordered the transform coefficients in a zig-zag format after a
discrete cosine transform (DCT) in the process of generating
an I-frame in the video compression process. Because the
zig-zag permutation algorithm rearranges the order of data in
units ofmacroblocks constituting I-frames, the computational
complexity is low. Experiments have shown that the compu-
tational complexity of the zig-zag permutation algorithm was
only 1.56% of that of the NEA. Although the zig-zag permu-
tation algorithm has a fast encryption speed, it is problematic
in that it increases the size of the bitstream by approximately
50%.

Shi and Bharagava et al. [10] [11], Shi et al. [12] and pro-
posed SEAs, such as the video encryption algorithm (VEA),
modified VEA (MVEA), and real-time VEA (RVEA), which
encrypt the sign bits of the DCT coefficient of the I-frame
and the sign bits of the motion vector of the P- and B-frames.
Because the sign bits of the DCT coefficients and motion
vectors occupy only a small portion of the entire bitstream,
the computational complexity was evaluated to be only 10%,
compared to that of the NEA. However, these methods can-
not guarantee full security because useful video information
can be recovered by simply changing all the encrypted DC

VOLUME 8, 2020 202911



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

FIGURE 1. Process flow of video codec and security systems: (a) codec-embedded SEAs and (b) stand-alone SEA (proposed).

coefficients to 128 and all the encrypted AC coefficients to
positive numbers.

Most SEAs designed for the latest video codec, i.e.,
high efficiency video coding (HEVC), encrypt the bitstream
based on the syntax elements [13]–[21]. The syntax elements
selected for encryption are encrypted during the compres-
sion process; hence, video encryption based on the syn-
tax elements is closely coupled with the video compression
algorithm.

Overall, the portion of the entire bitstream encrypted by
SEAs is as small as possible and includes the I-frames, DCT
coefficients of the I-frame, sign bits of the DCT coeffi-
cients of the I-frame, sign bits of the motion vectors of the
P- and B-frames, and other syntax elements. This signif-
icantly improves the encryption speed compared with the
NEA. However, the existing SEAs have critical drawbacks
that should be resolved. The computational complexity is
not significantly reduced compared to that of the NEA. The
encrypted portion causes the size of the video bitstream to
increase. Because the encrypted part is easily recoverable, the
level of security becomesmore vulnerable.Moreover, in most
SEAs, it is difficult to separate encryption algorithms from
compression algorithms.

III. PROPOSED METHOD
The proposed method can be classified as a SEA-based
method. However, it differs from many existing SEAs
because it can be operated on top of a video codec. This
concept is illustrated in Fig. 1. As shown in Fig. 1(a), con-
ventional SEAs were designed to depend on the video codec
using the video encryption algorithms and video decryption
algorithms implemented in the video encoder and decoder,
respectively. Thus, it is difficult to separate the video security
algorithm from the video encoder and video decoder. In this
regard, conventional SEAs imbedded in video compression
algorithms are less viable because, to integrate the video
encryption algorithms, they require the standardized video
compression algorithms to be modified. Generally, standard-
ized video codecs are implemented according to the standard
specification, which makes it difficult, if not impossible,
to modify a standard codec to embed additional encryption
algorithms. Therefore, the proposed method is designed to

be independent of the video codec and video security sys-
tems. This was achieved by applying the video encryption
algorithm after video encoding and the video decryption
algorithm before decoding, as shown in Fig. 1(b).

Unlike traditional SEAs that encrypt certain syntax ele-
ments in the entire video bitstream, the proposed method
encrypts an important part of the bitstream that determines
the decoding process and is adjacent to the start code in
the video bitstream. Because the start code can be searched
after or during compression, the proposed method can be
incorporated into a video codec, as shown in Fig. 1(a).

As shown in Fig. 2(a), each top-level unit of the bit-
stream of the general standard video codecs (i.e., H.264/AVC,
HEVC, and IVC) contains the start code as a prefix, which is
a strong separator between the top-level units. For example,
as shown in Fig. 2(b), the video bitstream output by theHEVC
encoder can be separated into top-level units by the start
code, as shown in Fig. 2(a). The start code of the HEVC
bitstream is three-byte (i.e., 0 × 000001) long, as shown
in Fig. 2(b). The start code pattern in the HEVC is designed
to exploit the high unlikeliness of the arithmetic encoders to
generate the same pattern as the start code. Thus, a parser
attempting to locate the start code in a bitstream can quickly
split the bitstream into top-level units, without having to parse
every syntax element of the bitstream. As shown in Fig. 2,
in a bitstream compressed using the standard video codec,
the header is usually the sequence following the start code.
As shown in Fig. 2(b), the first byte of the network abstrac-
tion layer (NAL) unit header consists of forbidden_zero,
nal_unit_type, and nuh_layer_id. Because the one-bit val-
ues of forbidden_zero and nuh_layer_id are zeros, the first
byte of the NAL unit header is determined by the six bits of
nal_unit_type.
The value of the first byte of the NAL unit header by

nal_unit_type in the six-bit range from zero to 63, is listed
in Table 1. In addition, as shown in Fig. 2(b), the NAL unit
is composed of the header and raw byte sequence payload
(RBSP). The RBSP is defined in Table 1 by thenal_unit_type
of the header preceding the RBSP. Based on the first byte
of the NAL unit header, the RBSP can either be a non-
VCL NAL unit payload, such as VPS, SPS, and PPS, or
a VCL NAL unit payload, such as TRAIL_N, TRAIL_R,

202912 VOLUME 8, 2020



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

TABLE 1. First byte value of NAL unit header in HEVC bitstream.

FIGURE 2. Bitstream structure of video codec: (a) general standard codec and (b) HEVC.

and TSA_N. Each RBSP in the non-VCL class contains
basic video information such as the color sampling format,
image width and height, and the initial quantization parame-
ter. Each RBSP in the VCL class contains compressed video
information by classifying coded pictures such as I-, P-,
and B-frames into different coded slices according to the

network layer.More information on the RBSP can be found in
the HEVC standard [22]. Therefore, the first byte of the NAL
unit header is first parsed during the decoding process. The
remaining compressed video information is then extracted
from the RBSP based on syntax matching with the NAL unit
type. Failure to properly assign the first byte of the NAL unit

VOLUME 8, 2020 202913



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

header makes it very difficult, if not impossible, to decode
the video bitstream because how to decode the subsequent
RBSP would be unclear. Furthermore, the first byte of the
NAL unit header occupies a very small portion of the entire
HEVC bitstream. Therefore, the proposed encryption of the
first byte of the NAL unit header can effectively improve the
encryption speed.

The proposedmethod encrypts a video bitstream by scram-
bling the values of the first bytes of the NAL unit header
instead of using standard encryption algorithms such as the
AES and DES. Most existing SEAs encrypt only a selected
part of the bitstream by applying a standard encryption algo-
rithm. Generally, however, standard encryption algorithms
introduce computational complexity in terms of the number
of word units because they encrypt data using various pro-
cesses that use these units. The proposed method increases
the encryption speed because it does not use a standard
encryption algorithm.

The first byte of the NAL unit header can be one of 25 pos-
sibilities, excluding ‘‘Reserved’’ and ‘‘Unspecified,’’ which
are not yet used in the HEVC standard, as evident from
Table 1. The bitstream may contain as many as 25 head-
ers, although overlapping is not permitted. Therefore, in the
worst-case scenario, the number of cases required to recon-
struct the original bitstream would be 25^25. Assuming a
linear search is used, the average number of cases would be
(25^25)/2. In addition, after the video decoding process, it can
be confirmed whether each case will be recoverable.

Most importantly, in contrast to conventional SEAs,
the proposed encryption of the first byte of the NAL unit
header by scrambling ensures that decoding is impossible.
Therefore, the proposedmethod can provide security superior
to that of the existing SEAs.

A flow chart of the proposed encryption and decryption
processes is presented in Fig. 3. As shown in Fig. 3(a), the first
step in the encryption process is to generate an encryption
lookup table (ELUT) to encrypt and decrypt the first byte of
the NAL unit header. For encryption and decryption, the rows
of the first and second columns of the ELUT have different
values, as shown in Fig. 3. The next step in the encryption
process is to read a word corresponding to the start code size
from the bitstream and verify whether the current word is the
start code (i.e., 0 × 000001). If the current word is the start
code, the byte succeeding it in the bitstream is searched in
the first column of the ELUT, to be replaced by the value in
the second column corresponding to the first column of the
ELUT. For example, if the first byte of the NAL unit header
is equal to 0× 10 in the first column of the ELUT, as shown
in Fig. 3, it is replaced with 0 × 4A in the second column.
The encryption process is repeated according to the loop flow
shown in Fig. 3(a) until the first bytes of all the NAL unit
headers in the bitstream are encrypted.

In the decryption process, the ELUT generated during
the encryption process is used to reconstruct the original
bitstream from the encrypted bitstream, as shown in Fig. 3(b).
In the encrypted bitstream, the byte following the start code is

searched in the second column of the ELUT for replacement
by the value in the first column corresponding to the second
column of the ELUT. The decryption process is repeated
according to the loop flow shown in Fig. 3(b) until all
encrypted bytes following the start code in the encrypted
bitstream are decrypted.

The computational complexity (TP-E ) of the proposed
encryption algorithm (PEA) 1 is formulated as follows:

TP−E = CAPA + CBPB + CCPC + CDPD (1)

where CA, CB, CC , and CD indicate the complexity values
that are terminated at Processes A, B, C , and D, respectively,
and returned to the beginning of the loop in Fig. 3. In addition,
PA, PB, PC , and PD are the probabilities corresponding toCA,
CB, CC , and CD, respectively. The sum of PA, PB, PC , and
PD is 1.

When the operation applied in each process is expressed as
TA, TB, and TC , (1) can be reformulated as follows:

TP−E=TAPA+(TA+TB)PB+(TA+TB+TC )PC+CDPD
(2)

Because TA, TB, and TC are all comparison operations,
Tcomp = TA = TB = TC . In addition, because PB, PC , and
PD � PA, (2) can be approximated as follows:

TP−E ≈ TcompPA (3)

The proposed decryption performs the same operation as the
proposed encryption shown in Fig. 4; thus, the computational
complexity (TP−D) of the proposed decryption is formulated
as follows:

TP−D ≈ TcompPA (4)

The computational complexity (TAES-E ) of the AES encryp-
tion and that (TAES-D) of the AES decryption, which are com-
monly used in the NEA and SEA, as introduced in Section II,
are formulated in [23] as follows:

TAES−E = (46NbR− 30Nb)Ta + [31NbR+ 12(R− 1)

− 20Nb]To + [64NbR+ 96(R− 1)− 61Nb]Ts
(5)

TAES−D = TAES−E + (96NbTa + 72NbTo − 32NbTs)

× (R− 1) (6)

where Nb is the block size and R is the number of rounds.
Ta, To, and TS indicate the operations of the bytewise-AND,
bytewise-OR, and bytewise shift, respectively. Generally,
if Nb is 4 and R is 10 when the key length is the shortest
at 128 bits, (5) expresses the computational complexity for
encrypting 16-byte data, which is formulated as follows:

TAES−E = 1720Ta + 1268To + 3180Ts (7)

Equation (6) is the computational complexity of decrypting
16-byte data, which is formulated as follows:

TAES−D = 5176Ta + 3860To + 2028Ts (8)

202914 VOLUME 8, 2020



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

FIGURE 3. Flow chart of proposed method: (a) encryption and (b) decryption.

TABLE 2. Comparing the number of operations for NEA and PEA 1.

The comparison of the number of operations for PEA 1,
calculated using (3) and (4), and those for NEA, calculated
using (7) and (8), are shown in Table 2. Here, N is the size
of a byte unit of the bitstream to be encrypted and decrypted.
Based on the experimental results, the average value of PA
was 0.99. Because the NEA encrypts and decrypts the entire
bitstream in units of 16 bytes using the AES, the number
of operations for the NEA encryption can be obtained by
multiplying (7) byN /16. Thus, because PEA 1 requires fewer
operations for encryption and decryption, it is expected to be
significantly faster than the NEA, as evident from the results
in Table 2.

In addition, we propose PEA 2, which improves on the
security of PEA 1. The encryption space is small because
PEA 1 scrambles one byte after the start code. Therefore,
to improve on the security afforded by PEA 1, PEA 2
increases the encryption space by encrypting the 16 bytes
after the start code using the AES.

IV. EXPERIMENTAL RESULTS
The performances of the proposed methods were evaluated in
two experiments: verification of the encryption and decryp-
tion results and a comparison of the processing speed of the
NEA and PEAs. The results of the first experiment are shown

VOLUME 8, 2020 202915



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

FIGURE 4. Experimental design: (a) verification of encryption result, and measurement of encryption and decryption times of (b) NEA and (c) PEAs.

in Figs. 4(a) and (c) and those of the second experiment are
shown in Figs. 4(b) and (c). The original bitstreams used
in both experiments were 146 conformance bitstreams [24]
containing various NAL unit types compressed using various
HEVC encoder options. In the HEVC decoder, the HEVC
reference software HM-16.20 [25] and the VLCmedia player
were used [26]. This media player is a free, open-source
cross-platform multimedia player that can decode and play
most multimedia files, including HEVC bitstreams.

V. VERIFICATION OF ENCRYPTION AND
DECRYPTION RESULTS
The encryption was verified to determine whether decod-
ing is possible when the bitstream encrypted by the pro-
posed methods is decoded with the HEVC decoder, as shown
in Fig. 4(a). The decoding of all encrypted bitstreams using
HM-16.20 was terminated when a decoding error occurred.
In this case, the size of the reconstructed video output was
zero. For the case of the VLC media player, a pop-up indicat-
ing that the video could not be played appeared, and no frames
were played when all encrypted bitstreams were decoded.
The results showed that the bitstream encrypted using the
existing SEAs (introduced in Section II) could be decoded,
and the reconstructed video was encrypted with a distortion
in the video quality. However, it was impossible to decode
the bitstream encrypted using the proposed methods and no
video information could be found. Therefore, the proposed
methods were more secure than the existing SEAs.

The purpose of verifying the decryption was to confirm
whether the video reconstructed on the basis of the decrypted
bitstream completely corresponded with the video recon-
structed from the original bitstream. First, all the decrypted
bitstreams were decoded using HM-16.20, following which
all the original bitstreams were decoded using this software.

The results indicated that the decoded frames and the size
of the decrypted bitstreams were completely consistent with
those of the original bitstreams. A binary comparison was
used to confirm that the videos reconstructed from the
decrypted bitstream and the original bitstream were exactly
the same. The videos that were reconstructed from all
decrypted bitstreams that were decoded using the VLCmedia
player played normally without a distortion in the video
quality. The verification results with all the conformance
bitstreams clearly demonstrated the efficacy of the proposed
methods.

A. COMPARING THE SPEED OF NEA AND PEAS
The encryption speed of the NEA and PEAs was compared
by measuring the time taken to encrypt all original bitstreams
using each algorithm, as illustrated in Figs. 4(b) and (c). The
electronic code book (ECB)mode and the 128-bit key of AES
were used to encrypt and decrypt the test bitstreams using the
NEA. The ECB mode and the 128-bit key were the fastest
options for the AES.

The results of the speed measurement experiment are listed
in Tables 3 and 4. The experimental results for each file name
are for 11 representatives of all the test bitstreams. As shown
in Table 3, the times required for encryption and decryption
by PEA 1 are approximately 3% and 2% of that required by
the NEA, respectively, which is a difference of approximately
1%. This is to be expected, based on the number of operations
in PEA 1 and the NEA, as described in Section III. In the
case of PEA 1, the same number of operations is required
for encryption and decryption. By contrast, in the case of
the NEA, the number of operations required for decryption
was more than the one required for encryption. Furthermore,
as shown in Table 4, the times required for encryption and

202916 VOLUME 8, 2020



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

TABLE 3. Comparing the speed of NEA and PEA 1.

TABLE 4. Comparing the speed of NEA and PEA 2.

TABLE 5. Comparison of existing SEAs and PEAs.

decryption by PEA 2 are approximately 6% and 4% of those
required by the NEA, respectively.

Table 5 presents a comparative analysis of PEAs and
the existing SEAs [7], [9], [12] described in Section II.
Although the zig-zag permutation algorithm [9] is the fastest,
it is impractical because it increases the size of the bit-
stream by approximately 50% and is not compliant with
the standardized video codecs. The existing SEAs for the
HEVC [13]–[21] described in Section II are not compliant
with the standardized video codes, and thus they are not
included in the comparison in Table 5. Non-compliance with
the standardized video codec implies that the encryption algo-
rithms modify the standardized video codec, which makes a
standard decoder become not interoperable. Therefore, it is
impractical to embed encryption algorithms by modifying
standardized video decoding procedures. In this respect, PEA
1 was the fastest encryption method that was compliant with
standard video codecs and did not decrease the compression

efficiency. Although the encryption speed of PEA 2 was
slightly less than that of PEA 1, it was more secure.

VI. CONCLUSION
In this article, we proposed a novel selective encryption and
decryption framework based on the start code for HEVC.
The proposed methods had several advantages compared to
the existing SEAs. First, they were independent of the video
codec because they encrypted the portion adjacent to the start
code, which was generally included in the video bitstream.
Furthermore, the video codec-independent encryption frame-
work enabled compliance with the standard video codec,
which was not supported by the existing SEAs that depend
on a video codec. Second, the proposed methods disallowed
access to any information from a video that could not be
decoded. By contrast, existing SEAs partially enable infor-
mation acquisition from the decoded video with a quality
distortion. In addition, because they disallowed decoding,

VOLUME 8, 2020 202917



M. K. Lee, E. S. Jang: Start Code-Based Encryption and Decryption Framework for HEVC

the proposed methods offered higher security than the exist-
ing SEAs. Finally, the proposed methods are highly com-
petitive in terms of the processing speed when compared to
selected encryption algorithms. They are also compliant with
a standard video codec, with no decrease in the compres-
sion efficiency. In this regard, the encryption and decryption
framework of the proposed methods based on the start code
was practical and valuable.

REFERENCES
[1] US Department of Commerce, FIPS, PUB. 46-3. (1999). Data Encryption

Standard. Federal Information Processing Standards, National Bureau
of Standards. [Online]. Available: http://csrc.-nist.gov/publications/fips/
fips46-3/fips46-3.pdf

[2] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[3] US Department of Commerce, FIPS, PUB. 197. (2001). Advanced
Encryption Standard (AES), National Institute of Standards and Tech-
nology. [Online]. Available: http://csrc.nist.gov/publications/fips/fips-
197/fips-197.pdf

[4] M. A. Saleh, N. M. Tahir, E. Hisham, and H. Hashim, ‘‘An analysis and
comparison for popular video encryption algorithms,’’ inProc. IEEE Symp.
Comput. Appl. Ind. Electron. (ISCAIE), Langkawi, Malaysia, Apr. 2015,
pp. 90–94.

[5] M. M. Ahamad and M. I. Abdullah, ‘‘Comparison of encryption algo-
rithms for multimedia,’’ Rajshahi Univ. J. Sci. Eng., vol. 44, pp. 131–139,
Nov. 2016.

[6] P. Deshmukh and V. Kolhe, ‘‘Modified AES based algorithm for MPEG
video encryption,’’ in Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICI-
CES), Chennai, India, Feb. 2014, pp. 1–5.

[7] J. Meyer and F. Gadegast, ‘‘Security mechanisms for multimedia data with
the example MPEG-1 video,’’ Project Description SECMPEG, Tech. Univ.
Berlin, Berlin, Germany, 1995.

[8] G. A. Spanos and T. B. Maples, ‘‘Performance study of a selective encryp-
tion scheme for the security of networked, real-time video,’’ in Proc.
4th Int. Conf. Comput. Commun. Netw., Las Vegas, NV, USA, 1995,
p. 210.

[9] L. Tang, ‘‘Methods for encrypting and decrypting MPEG video data effi-
ciently,’’ inProc. 4th ACM Int. Conf. Multimedia, Boston,MA,USA, 1996,
pp. 219–229.

[10] C. Shi and B. Bhargava, ‘‘A fast MPEG video encryption algorithm,’’
in Proc. 6th ACM Int. Conf. Multimedia, New York, NY, USA, 1998,
pp. 81–88.

[11] C. Shi and B. Bhargava, ‘‘An efficientMPEG video encryption algorithm,’’
in Proc. 17th IEEE Symp. Reliable Distrib. Syst., West Lafayette, IN, USA,
Oct. 1998, pp. 381–386.

[12] C. Shi, S. Y. Wang, and B. Bhargava, ‘‘MPEG video encryption in real-
time using secret key cryptography,’’ in Proc. Int. Conf. Parallel Distrib.
Process. Techn. Appl., Las Vegas, NV, USA, 1999, pp. 2822–2828.

[13] G. VanWallendael, A. Boho, J. De Cock, A.Munteanu, and R. V. D.Walle,
‘‘Encryption for high efficiency video coding with video adaptation capa-
bilities,’’ IEEE Trans. Consum. Electron., vol. 59, no. 3, pp. 634–642,
Aug. 2013.

[14] H. Hofbauer, A. Uhl, and A. Unterweger, ‘‘Transparent encryption for
HEVC using bit-stream-based selective coefficient sign encryption,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Florence,
Italy, May 2014, pp. 2005–2009.

[15] Z. Shahid and W. Puech, ‘‘Visual protection of HEVC video by selective
encryption of CABAC binstrings,’’ IEEE Trans. Multimedia, vol. 16, no. 1,
pp. 24–36, Jan. 2014.

[16] Y. Tew, K. Minemura, and K. Wong, ‘‘HEVC selective encryption using
transform skip signal and sign bin,’’ in Proc. Asia–Pacific Signal Inf.
Process. Assoc. Annu. Summit Conf. (APSIPA), Honolulu, HI, USA,
Dec. 2015, pp. 963–970.

[17] F. Peng, H.-Y. Li, and M. Long, ‘‘An effective selective encryption scheme
for HEVC based on Rossler chaotic system,’’ in Proc. Int. Symp. Nonlinear
Theor. Appl., Hong Kong, 2015, pp. 1–4.

[18] M. Yang, L. Zhuo, J. Zhang, and X. Li, ‘‘An efficient format compliant
video encryption scheme for HEVC bitstream,’’ in Proc. IEEE Int. Conf.
Prog. Informat. Comput. (PIC), Nanjing, China, Dec. 2015, pp. 374–378.

[19] V. A. Memos and K. E. Psannis, ‘‘Encryption algorithm for efficient
transmission of HEVCmedia,’’ J. Real-Time Image Process., vol. 12, no. 2,
pp. 473–482, Aug. 2016.

[20] A. I. Sallam, E.-S.-M. El-Rabaie, and O. S. Faragallah, ‘‘CABAC-based
selective encryption for HEVC using RC6 in different operation modes,’’
Multimedia Tools Appl., vol. 77, no. 21, pp. 28395–28416, Nov. 2018.

[21] B. Boyadjis, C. Bergeron, B. Pesquet-Popescu, and F. Dufaux, ‘‘Extended
selective encryption of H.264/AVC (CABAC)- and HEVC-encoded video
streams,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 4,
pp. 892–906, Apr. 2017.

[22] Series H: Audiovisual and Multimedia Systems, Infrastructure of Audio-
visual Services—Coding of Moving Video, High Efficiency Video Coding,
Standard ITU-T, Recommendation H.265, Dec. 2016.

[23] M. R. Doomun, K. M. Sunjiv Soyjaudah, and D. Bundhoo, ‘‘Energy
consumption and computational analysis of rijndael-AES,’’ in Proc.
3rd IEEE/IFIP Int. Conf. Central Asia Internet, Tashkent, Uzbekistan,
Sep. 2007, pp. 1–6.

[24] Series H: Audiovisual and Multimedia Systems, Infrastructure of Audio-
visual Services—Coding of Moving Video, Conformance Specification for
ITU-T H.265 High Efficiency Video Coding, Standard ITU-T, Recommen-
dation H.265.1, Oct. 2018.

[25] HEVC Test Model (HM). Accessed: Mar. 8, 2019. [Online]. Available:
https://hevc.hhi.-fraunhofer.de/svn/svn_HEVCSoftware/tags/

[26] VLC Media Player. Accessed: Jul. 20, 2019. [Online]. Available:
https://www.videolan.org/

MIN KU LEE received the B.S. and M.S. degrees
from the Department of Information Telecommu-
nication Engineering, Soongsil University, Seoul,
South Korea, in 2000 and 2002, respectively.
He is currently pursuing the Ph.D. degree with the
Department of Computer Science, Hanyang Uni-
versity, Seoul. From 2002 to 2017, he worked on
multimedia compression (H.263, H.264, WMA,
AC3, AMR-NB, and AMR-WB), multimedia
transmission (H.222, UDP, RTP, and MTP), multi-

media security (WMDRM), and multimedia systems (DMB, Android smart
phones, IPTV, and MRF). His research interests include video security, 2D
video coding, 3D graphics coding, and point cloud compression.

EUEE SEON JANG (Senior Member, IEEE)
received the B.S. degree from Jeonbuk National
University, South Korea, and the Ph.D. degree
from SUNY at Buffalo, Buffalo, NY, USA. He is
currently a Professor with the Department of Com-
puter Science and Engineering, Hanyang Univer-
sity, Seoul, South Korea. He has authored more
than 150 articles on MPEG standardization, more
than 30 journal articles and conference papers,
35 pending or accepted patents, and two book

chapters. His research interests include image/video coding, reconfigurable
video coding, and computer graphics objects. He has also received three
ISO/IEC Certificates of Appreciation for contributions to MPEG-4 devel-
opment. Finally, he received the Presidential Award from the Korean
Government for his contribution to MPEG standardization.

202918 VOLUME 8, 2020


