
Received October 27, 2020, accepted November 7, 2020, date of publication November 10, 2020, date of current version December 1, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037240

Analyses on Volatility Clustering in Financial
Time-Series Using Clustering Indices, Asymmetry,
and Visibility Graph
KYUNGWON KIM 1 AND JAE WOOK SONG 2
1AI Center, Samsung Research, Samsung Electronics Seoul Research and Development Campus, Seoul 06765, South Korea
2Department of Industrial Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Jae Wook Song (jwsong@hanyang.ac.kr)

This work was supported by the research fund of Hanyang University under Grant HY-2019.

ABSTRACT The volatility clustering has critical implications in financial risk management. This paper aims
to analyze the existence and cause of volatility clustering in financial time-series using different measures
simultaneously. Specifically, we utilize the clustering indices, asymmetry measures, and the power of the
scale freeness in the visibility graph. For the experiment, we utilize four representing financial time-series,
including the S&P500, one-year US Treasury Constant Maturity rate, Euro-Dollar exchange rate, and Crude
oil for the stock, bond, exchange, and commodity markets, respectively. The duration of the experiment is
from 2009 to 2018, which is divided into two sub-periods: crisis and post-crisis periods. At first, we identify
the positive and slowly decaying non-linear autocorrelation in all markets, which indicates the power-law
decay. Also, the autocorrelation of the simulated time-series suggests that the order of return-series with
respect to its magnitude contributes more to the volatility clustering than the heavy-tailed distributions.
Secondly, we detect that the scale of the return contributes more to volatility clustering than the sign of
the return. Lastly, we observe that the clustering and asymmetry measures are more robust measures to the
return distribution changes than the PSVG to analyze the volatility clustering.

INDEX TERMS Clustering asymmetry, clustering index, finance, pattern clustering, power-law decay,
statistical analysis, time series analysis, visibility graph, volatility clustering.

I. INTRODUCTION
The financial time-series and its associated return distribu-
tion, representing the market’s volatility, are of great interest
to both researchers and investors. In general, the finan-
cial time series are assumed to be independent and iden-
tically distributed (iid) generated from random walks [1].
Therefore, the probability density function of the return
should follow the Gaussian distribution. However, the clus-
tering of the large fluctuations in financial price-series is
observed accompanying the return distribution’s heavy tail
property [2], [3]. In other words, a large fluctuation is likely
to follow a previous large fluctuation, whereas a small fluc-
tuation is likely to follow a previous small fluctuation, which
rejects the iid assumption. Such a phenomenon is called the
volatility clustering. The financial market is characterized by
unexpected shocks. In this milieu, the volatility clustering has
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critical implications in financial risk management, especially
in calculating the Value-at-Risk or Expected Shortfall of the
portfolio.When an unexpected shock is realized, the volatility
of a financial market dramatically increases. Furthermore,
the existence of volatility clustering suggests the persistence
of extreme volatility for a while. Given that the risk measures
are estimated based on the historical return series, investors
must adjust the estimates to adequately manage and ensure
the institution’s capability against the additional risk. Hence,
it is important and necessary to analyze the existence and
causes of volatility clustering is the financial time-series.

From Econometrics’s perspective, the traditional method
to detect the causes of the volatility clustering is the Autore-
gressive Conditionally Heteroscedastic (ARCH) [3], which
is extended to GARCH (Generalized ARCH) [4]. These
methods are robust and descriptive approaches to analyze
the volatility clustering, but neither of these models explains
why such distribution appears. Also, both methods assume a
specific distribution for a financial time-series, which even
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makes the standard estimation process difficult since the
long-memory or heavy-tailed characteristics of the financial
time-series is changing over time [5]–[7].

From Econophysics’ perspective, many researchers have
discovered several stylized facts in financial markets.
In particular, the heavy tail and aggregated normal distribu-
tion of the asset return distribution [8]–[14], asymmetry on
rises and falls of the price dynamics, long-range autocorrela-
tion or cross-correlation [7], [15]–[20], volatility clustering
[21]–[24] have been studied, which generally suggest the
rejection of the traditional normality assumption on the return
distribution [25]–[29]. In this context, the volatility clustering
has been studied as one of the major stylized facts [5], [23].

At first, the quantitative method can be used to capture
the volatility clustering based on the autocorrelations of
the return series [2]. Significantly, the evidence of volatil-
ity clustering is the positive and slowly decaying (a.k.a.
power-law decay) autocorrelation. Note that such power-law
decay is observed in the absolute or squared return series,
often referred to as the non-linear autocorrelation, rather than
the plain log-returns. It is known that the slowly decaying
non-linear autocorrelation is mainly due to the correlation
between the large fluctuation of volatility clusters. However,
it is difficult to assert that the slow decay of nonlinearity
implies the long memory tendency of volatility [5]. Never-
theless, if a particular time series has long memory property,
or if the distribution of returns is close to non-normality,
many statistical estimates tend to possess the autocorrelation
or power-law decay [7], [19], [23].

Secondly, there is a network-driven method to detect the
volatility clustering based on the fact that the dynamic prop-
erties of the time series can be preserved in the network
framework. Specifically, many researchers have developed
the methods to explain the geometrical structure of the
time series, including the cycle approach [30], correlation
approach [31], visibility graph [32], recurrence network [33],
and isometric network [34]. Also, the monitoring of different
patterns of the complex systems in the time-series has been
studied [35]–[38]. Among them, we consider the visibility
graph to analyze the clustering behavior of the financial
time-series based on the following reasons. At first, the visi-
bility graph is known to map the time series into the network
values and successfully inherits the time series’s properties.
In particular, it is known that the visibility graph transforms
the random series into a random graph, the periodic series into
a regular graph [39], and the fractal series into a scale-free
graph [40]–[43]. In this regard, the visibility graph has been
utilized in various domains, including the geometric structure
of traffic pattern [44], analyzing exchange rate series [45],
and reflecting the geometric structure of the two-dimensional
Ising algorithm [46]. Secondly, the visibility graph has fast
computing time with a simple algorithmic structure, while
most complex network-based algorithms require long com-
puting time. Besides, the most recent development of the
visibility graph is the Power of Scale-freeness of Visibility
Graph (PSVG). Note that this method’s feature does not

require an infinite time series, so it is easy to implement in
the practical usages since the real-world time-series is always
finite. Hence, we employ the PSVG for the analyses.

The non-linear autocorrelation and visibility graphs are
useful methods to analyze the volatility clustering in the
financial time-series. However, there has been a lim-
ited attempt to simultaneously incorporate both methods
to explain the volatility clustering phenomenon in detail.
Therefore, in this study, we suggest the measures for reliable
estimation and explanation of the volatility clustering and
provide the relevance between two approaches by comparing
variations in clustering and fractality measures. In particular,
we utilized the clustering and asymmetry measures presented
in [22], [24]. Moreover, it is also necessary to measure the
degree of influence when the causes of clustering are related.
Hence, we analyze the values obtained from the measures of
volatility clustering effect. Specifically, we analyze the influ-
ence of positive/negative values, large/small fluctuations, and
each fluctuation ratio. In addition, the associated asymmetry
measures are included to identify the different causes. Note
that there are studies on the asymmetry degree, clustering
degree, or scale difference according to rising and falling,
which are also included in this research [47]–[50].

The rest of this paper is organized as follows. At first,
Section 2 presents the methods and measures used in this
paper where the Section 2.1, 2.2, and 2.3 explains the clus-
tering index and asymmetric volatility measures, the PSVG
approach, and the measures for their variations in differ-
ent conditions of return distributions, respectively. Then,
Section 3 presents the statistical properties and descriptive
information of fractality of four representing financial mar-
kets, and Section 4 analyzes and discusses the results of
the experiments, including the effects on clustering of the
distributional features, clustering and asymmetry effects by
the scale and sign of the data, and variations effects appear in
sequence. Lastly, Section 5 concludes.

II. METHODS
A. CLUSTERING INDEX AND ASYMMETRY
The volatility clustering in the financial time series can be
analyzed based on the daily log-return series. Let St be the
daily closing price of a financial asset at time t , then the daily
log-return, Rt , can be defined as

Rt = ln
(

St
St−1

)
. (1)

The volatility clustering can be quantitatively studied by
observing the positive and slowly decaying autocorrelation
of the absolute daily log-return series, which indicates the
power-law decay behavior. We follow the procedures defined
in [22], [24]. Let C(xt , xt+τ ) be the autocorrelation function
of time-series variable x for some time interval τ , then

C(x, xt+τ ) ≡
E [(xt − E[xt ])(xt+τ − E[xt+τ ]))√

E[x2t ]− (E[xt ])2
√
E[x2t+τ ]− E[xt+τ ]2

. (2)
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Note that the autocorrelation is analyzed to detect the
factor contributing to the volatility clustering by comparing
the original and Gaussian-rearranged financial return series.
The rearrangement procedure can be summarized as follows.
At first, we define the Gaussian distribution with its mean and
standard deviation analogous to those of the original return
series. Secondly, we draw an equal number of data from
this Gaussian distribution and refer it as Gaussian simulated
series. Thirdly, we sort both the empirical and the simulated
series in the descending order according to absolute returns.
Lastly, we substitute values in the empirical series by the sim-
ulated series one by one from the largest one to the smallest
one.

Then, we utilize the clustering index to analyze the volatil-
ity clustering in the financial time series. Let c denotes
the degree of volatility clustering, indicating the largest p%
within a time window of size n. Given that c is calculated
by sliding the moving window with a specified time step,
a clustering index, CIn, for time window n can be defined in
terms of the ratio of standard deviation c series such that,

CIn ≡
σO

σG
(3)

where σO and σG are the standard deviations of the
original and Gaussian-rearranged return series for the time
window n, respectively. In this regard, CIn indicates the ratio
of clustering patterns within the current data compared to the
simulated Gaussian distribution. In case when the clustering
is more similar to the original than the simulated Gaussian
distribution, the larger the time window size from 1 to 100,
the higher the number of largest p% included in the window.
Also, the larger the timewindow size, the smaller the standard
deviation represents the heavier tail. As a result, the largerCIn
is, the higher the degree of volatility clustering is compared
to the Gaussian distribution, which indicates the compara-
tively higher kurtosis and heavier tail. Besides, the theoretical
upper limit of the clustering index, CI limn , can be derived as
described in [22], [24]. Simply put, we can derive a standard
deviation of m clustering values using the probability that m
corresponding to largest p% are involved within the window
of size n such that,

σG =

√√√√ n∑
m=0

(
m−

p
100

n
)2 ( p

100

)m (
1−

p
100

)n−m
=

√
n
( p
100

) (
1−

p
100

)
(4)

where p
100n indicates a mean value of c series about window

of size n. In this context, the limit of a standard deviation can
be defined as follows. For the time series of length N ,

1
N − n+ 1

[( p
100

N − n
)(
n−

p
100

n
)2

+

((
1−

p
100

)
N − n

)( p
100

n
)2

+

n∑
m=0

(
m−

p
100

n
)2]

. (5)

Since p
100N and

(
1− p

100

)
N are larger than n, Eq.(5)

converges to n2( p
100 )(1 −

p
100 ). As N → ∞, the theoretical

limit of the standard deviation, σlim, converges to

σlim =

√
n2
( p
100

) (
1−

p
100

)
. (6)

Finally, the theoretical upper limit of clustering index, CI limn ,
is,

CI limn =
σlim

σG
=

√
n2( p

100 )(1−
p

100 )√
n( p

100 )(1−
p

100 )
=
√
n (7)

In general, the persistence of the volatility can be detected
using the GARCH estimation [4], [51], [52], which is widely
used to measure the degree of the volatility clustering. How-
ever, the GARCH-model only provides the existence of
clustering or persistence of the volatility with difficulties
in determination of the parameter order, error distribution,
the significance of estimated coefficients, and convergence
of the algorithm. In contrast, the clustering index does not
require such an estimation process. Therefore, the clustering
index has its advantage in measuring the degree of volatility
clustering in time-series.

Furthermore, the asymmetry of clustering also can be mea-
sured. In this study, we employ two asymmetry measures as
defined in [22], [24]. The first measure, Ascale, evaluates the
asymmetry between the largest values and smallest values of
the clustering index such that

Ascale =
CIL − CIS

CIL + CIS
(8)

whereCIL andCIS indicate the clustering indices due to large
and small values, respectively. Therefore, the measure shows
which of large or small fluctuation contains more clustering
as the window size increases. That is, the more large (small)
values clustering, the closer Ascale is to positive (negative)
value. The second measure, Asign, calculates the asymmetry
between large positive values and large negative values.

Asign =
CI+ − CI−

CI+ + CI−
(9)

where CI+ and CI− indicate the clustering indices due to
large positive returns and large negative returns, respectively.
Therefore, we can determine the degree of clustering due
to window size and large positive or large negative values.
Likewise, positive Asign refers to the existence of more clus-
tering in the positive return series.

B. VISIBILITY GRAPH ALGORITHM
It is possible to map the volatility in times series to its
visibility graph [10]. In this graph, the node corresponds
to the volatility values, whereas the undirected edge repre-
sents the connection between two volatility values when the
two nodes satisfy the following condition of the equation.
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Let Xi be the i-th point of the time series, then the condition
for the existence of the edge is

Xtc ≤ Xtb + (Xta − Xtb )
Xtb − Xtc
Xtb − Xta

(10)

where ta and tb correspond to the node for specific time(node)
in time series, with tc(ta ≤ tc ≤ tb). Note that more
detailed procedure can be found in [53]. Based on the con-
structed visibility graph, we count the number of connec-
tions in Xi(i = ta, . . . , tc, . . . , tb), which can be defined
as the k degree of the each node in the undirected graph.
In this context, the degree distribution(P(k) = nk/n) can
b e obtained by calculating the ratio of the total number of
nodes(n) to frequency nk for each k . The degree distribution is
known to follow the power-law behaviour, and the power-law
exponent(λ) is called as the Power of the Scale freeness in
Visibility Graph (PSVG) such that

P(k) ∼ k−λ. (11)

The PSVG is closely related to the complexity and fractal-
ity in time series. The PSVG has an inverse relationship with
the Hurst exponent(H (0 < H < 1)), which is also related
to the autocorrelation in time series. The time-series has the
characteristic of the fractional Brownian Motion(fBM) when
the λ and H are related as,

λ = 3− 2H (12)

where H = 0.5, H > 0.5, and H < 0.5 indicate the
non-correlated, correlated(persistent), and anti-correlated
(anti-persistent) time-series, respectively.

C. MEASURES OF VARIATIONS IN CLUSTERING,
ASYMMETRY, AND POWER-LAW EXPONENTS
For instance, if the largest p%for themeasure is set to be 20%,
the results of the measures only represent relatively high-risk
investments, including extremely large positive and negative
returns, which excludes the empirical evidence from the rel-
atively smaller returns. Therefore, we suggest investigating
the clustering pattern of volatility in more detail by analyzing
the variations within the proposed clustering and asymmetry
measures when p% is changed. In this research, we obtain
the variations in measures by comparing the largest 20%
and 40%. For the clustering indices (CIL ,CIS ,CI+,CI−)
and asymmetry measures (Ascale,Asign), the variations can be
simply obtained by subtracting the values of 40% from those
of 20%.

In addition, we also investigate the variations in PSVG,
the power-law coefficients, λ, in visibility graph. If the
power-law coefficient is denoted by λL(p) for largest p%,
it can be defined by the coefficient ratio of original data
and Gaussian simulated so that the results can be compa-
rable with those of CIL ,CIS ,CI+,CI−,Ascale and, Asign.
Therefore, the measures regarding the largest p%(λL(p)),
smallest p%(λS (p)), largest positive p%(λ+(p)), and smallest

negative p%(λ−(p)) can be defined such that,

λL(p) =
λLO(p)

λLG(p)

λS (p) =
λSO(p)

λSG(p)

λ+(p) =
λ+O(p)

λ+G(p)

λ−(p) =
λ−O(p)

λ−G(p)
(13)

where the subscripts O and G on the right-hand side of
the equations indicate the original and Gaussian simulated,
respectively. Also, the relative difference between largest and
smallest value λscalep , and that of large positive and large

negative value λsignp are similarly defined as follows.

λscale(p) = λL(p)− λS (p)

λsign(p) = λ+(p)− λ−(p) (14)

Based on the above measures, we can explore the variations
in power-law coefficients by subtracting the values of 40%
from those of 20%. The methods used in this research are
summarized in Figure 1.

III. DATA AND DESCRIPTIVE STATISTICS
In this study, we investigate the four representing finan-
cial time-series from different markets including the
S&P500(S&PCOMP) for the stock market, one year US
Treasury Constant Maturity rate bond(FRTCM1Y) for the
bond market, Euro-Dollar exchange rate(EUDOLLR) for the
exchange market, and the crude oil price(CRUDOIL) for
the commodity markets. Each data obtained from the Thom-
son Reuters Datastream includes the ten years of daily closing
prices from 2009 to 2018, resulting in 2608 observations. For
the analysis, we divide the ten years into two sub-periods
with equal size. The first sub-period (SP1) is from
2009-01-01 to 2013-12-31, which includes the outbreak of
the sub-prime mortgage crisis and the European debt crisis,
whereas the second sub-period (SP2) is from 2014-01-01 to
2018-12-31, which does not include any major financial
crisis. In this context, the division of sub-period can provide
empirical evidence of the volatility clustering in different
market conditions. Note that this paper focuses on the impact
of themagnitude(large and small values) and the sign(positive
and negative values) of volatility on the volatility clustering
or fractality by considering the daily return in percent to
represent the volatility.

Figure 2 shows the time-varying properties of the financial
price and return series. Specifically, the red and yellow lines
on the left are the daily returns and absolute return series,
respectively, in percent. The black lines on the right are the
rearranged Gaussian simulated returns. Note that the vertical
dotted lines in each figure represent the division point of the
sub-periods. Interestingly, we observe the repeated pattern
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FIGURE 1. Flow chart of the methods used in analyses.

TABLE 1. Descriptive Statistics of return series.

for large or small absolute returns for all markets and sub-
periods, which indicates the volatility clustering property.
Specifically, S&PCOMP in Figure 2(a) shows the relatively
high volatility in SP1 than that in the SP2. The highest volatil-
ity can be found in 2008, which indicates the sub-prime mort-
gage crisis. Some high volatility points exist in the second
sub-period, but it has a much smaller magnitude with shorter
duration. In the case of FRTCM1Y in Figure 2(b), constant
high volatility is observed from 2008 to 2015, which covers
the entire SP1 and the one-third of the SP2. Then, the volatil-
ity gradually decreases and becomes extremely small at the
end of the SP2. EUDOLLR and CRUDOIL in Figure 2(c,d)
show repeated patterns of large and small volatility for both
sub-periods. Thus, the various volatility pattern is observed
in different financial markets.

The descriptive statistics in Table 1 also shows the differ-
ent volatility patterns in different financial markets. In the
case of S&PCOMP, the mean and standard deviation of
the volatility, defined as the daily return series, in SP1 is
higher than those of SP2, as suggested in Figure 2(a). The
volatility in SP2 was more left-skewed than that of SP1.
The volatility in SP1 showed auto-correlation by the Ljung-
Box test in lag 10 and 20, whereas the volatility in SP2 shows
the weaker auto-correlation. Note that the test statistics on
auto-correlation implies that the volatility clustering is higher
in SP1 than SP2. In the case of FRTCM1Y, a kurtosis in SP2 is
twice larger than that in SP1, whereas the skewness in SP2 is
half of that in SP1. In the case of EUDOLLR, unlike other
financial assets, the statistics in SP1 and SP2 are analogous
in values. In addition, EUDOLLR shows no auto-correlation
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FIGURE 2. Time series of returns(left) and absolute returns(right) by sub-periods.

in both sub-period. Lastly, in CRUDOIL, the kurtosis in
SP1 is twice greater than that in SP2. Also, the Ljung-Box
auto-correlation test indicates weaker auto-correlation
in SP2.

Then, we infer the clustering pattern based on the con-
nectedness among distinct volatility values(nodes). At first,
Figure 3 illustrates the linear fit to estimate the PSVG on
four markets. The horizontal axis is the logarithm of degree
k (1/k for minus value), while the vertical axis indicates the
logarithm of degree distribution P(k). In addition, blue and
red dashed lines result from linear fitting for SP1 and SP2,
respectively, with layered areas representing standard error

of them. The results show that the degree distribution for
each market follows the power-law. The detailed statistics are
summarized in Table 2. At first, the PSVGs expressed as a
mean±standard deviation are around 1.6 for all markets and
sub-periods. Also, the PSVGs of all markets follow the frac-
tional Brownian motion, whose values can be ranged from
0 to 1. Note that the values of fractional Brownian motion
for all markets are ranged between 0.6 and 0.75, implying
a persistence behavior. While the descriptive statistics on
volatility show significantly different patterns amongmarkets
and sub-periods, the descriptive statistics on fractality show
similar patterns regardless of market and sub-period.
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FIGURE 3. The distribution and slope of linear fit (λp) for each sub-period.

TABLE 2. Descriptive statistics on fractality.

IV. EMPIRICAL RESULTS AND DISCUSSIONS
A. CLUSTERING DUE TO THE POSITION OF THE DATA IN
TIME AND DISTRIBUTIONAL CHARACTERISTICS
Based on the results in Section III, the financial time
series shows a high kurtosis or heavy-tail behavior. Thus,
it is reasonable to assume that its non-Gaussian distribu-
tional property might cause volatility clustering. Figure 4
shows the histograms of the original and Gaussian simulated
time-series of fourmarkets. Based on the results, theGaussian
series is simulated correctly, considering the Gaussian fit-
ting on the histogram for all markets and sub-periods.

Also, the histogram of the original series is different from the
Gaussian simulated series for all markets and sub-periods.

Figure 5 shows the auto-correlation of the absolute return
series for the original (red), Gaussian simulated (black), and
rearranged Gaussian simulated (blue) data in four markets.
For all markets, the original and rearranged Gaussian simu-
lated returns show the positive and slowly decaying behav-
ior, which indicates the existence of volatility clustering.
Furthermore, theGaussian simulated returns’ auto-correlation
whose values revolve around zero is different from those of
the original and rearranged Gaussian simulated returns in all
markets and sub-periods. The fact that the auto-correlation of
the rearranged Gaussian simulated series is more analogous
to that of the original series than that of the Gaussian sim-
ulated series implies that the position of the return series’s
magnitude in time causes the volatility clustering more sig-
nificantly than its distribution characteristics.

B. VOLATILITY CLUSTERING AND ASYMMETRY DUE TO
THE DATA SCALE AND SIGN
We observe that the position of the magnitude of the volatility
(absolute return) in time is a significant factor contributing to
the volatility clustering. In this regard, we further investigate
the factor for different types of returns. At first, we examine
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FIGURE 4. Comparison of histogram plots between the origin time series return(left) and gaussian simulated return(right).

the clustering effect due to large or small absolute returns.
Then, we examine the clustering effect due to the large pos-
itive and negative absolute returns. Figure 6 and 7 show the
volatility clustering affected by the scale and sign during the
SP1 and SP2, respectively, based on the clustering index.
Note that the solid black line is the theoretical limit, CI limn ,
and the blue and red lines in the left figures are the CIL and
CIS , respectively, whereas the blue and red lines in the right
figures are the CI+ and CI−, respectively. That is, the blue
lines indicate how many large returns exist within cluster-
ing data(time window) compared to Gaussian distribution,
whereas the red lines indicate how many small returns exist
within clustering data(time window) compared to Gaussian
distribution. Also, the dashed lines indicate the clustering
index when p = 0.2 (top 20% of the large or small returns),
whereas the dash-dotted lines indicate the clustering index
when p = 0.4 (top 40% of the large or small returns). For all
markets and sub-periods, the original data, which exhibits the
volatility clustering, possesses more of both large and small
returns than the Gaussian distribution. The results imply
that large or small returns promote the volatility clustering.
Also, there are more of both positive and negative returns in
large asset returns (p = 0.2). Therefore, the large positive

and large negative returns promote the volatility clustering.
Note that there are relatively more large returns than small
returns in the original data. Besides, the proportion of positive
and negative returns in clustering is due to large returns.
In summary, the contribution to the clustering effect within
top 40% clustering data is Large > Small > Large(−) >
Large(+).

The above results separate the contribution of large and
small returns(scale) to the clustering effect from that of
positive and negative returns(sign) within large returns.
Therefore, it is necessary to compare the scale and the sign
simultaneously and investigate the difference between sub-
periods. In this context, the asymmetry measures are shown
in Figure 8. Ascale, plotted as the blue line, indicates which
of the large returns and small returns has more impact on the
clustering, and Asign, plotted as the red line, indicates which
of the positive returns and negative returns has more impact
on the clustering. During the SP1, the top 20% asset return
tends to have many large returns than small returns, with
slightly more positive returns than negative returns. In addi-
tion, the top 40% volatility also has many large returns with
comparatively more negative returns than positive returns.
Lastly, as time window size increases, Ascale with p = 0.4 is
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FIGURE 5. Auto-correlation plots on daily, Gaussian simulated, and rearranged Gaussian simulated returns.
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FIGURE 6. Clustering effect by scale(left) and sign(right) during SP1.
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FIGURE 7. Clustering effect by scale(left) and sign(right) during SP2.
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FIGURE 8. Asymmetry by scale and sign sub-periods.
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TABLE 3. Median of clustering index and asymmetry on each market and sub-period.

TABLE 4. Top six ordering patterns of the clustering effects and their ratios and cases of market returns.

more decreased in SP2 than SP1. However, the overall trend
is very similar to that of SP1.

Table 3 summarizes the median of the clustering index
and the degree of asymmetry. Note that the median is
used to ensure the statistical robustness against dramatic
change caused by the time window’s small size. In other
words, the table shows the degree to which the scale and
the sign contribute to the clustering effect of Top 20%
and Top 40% returns. In the case of the clustering effect,
the clustering effects also become larger when the clustering
indices of large, large positive, large negative, and small
returns are larger. In the case of the asymmetry effect,
the positive(negative) values in the scale column mean small
returns have less(more) contribution to clustering in pos-
itive(negative) returns. The positive(negative) value in the
sign column means positive returns in large return contribute
more (less) to clustering than negative return does.

Lastly, the patterns in clustering effect are summarized
in Table 4. We reduce the total of sixteen patterns into six
major patterns contributing to the volatility clustering. The
most frequent pattern, which covers 50%, is the order of
Large> Large(+)> Large(−)> Small returns located in the
first row. This pattern holds for all markets and sub-periods in
the top 20% returns. The larger the asset return and the larger
the positive asset return, the higher the volatility clustering
and persistent behavior are. In contrast, all the remaining five
priority patterns occur in the Top 40% returns. It implies

that when lower returns (larger p) is desired, the factors
affecting the volatility clustering and persistent behavior
can be different according to the market and period. While
S&PCOMP consistently shows the order of Large> Small>
Large(−) > Large(+) in Top 40% asset return for SP1 and
SP2 as described in the third row, EUDOLLR shows different
pattern depending on sub-period as listed in the fifth and sixth
rows. In the case of FRTCM1Y and CRUDOIL, both the
large and small returns can be the most critical factor to the
volatility clustering and persistent behavior depending on
the sub-periods in the opposite way as described in the second
and fourth rows.

C. VARIATIONS OF VOLATILITY CLUSTERING,
ASYMMETRY, AND POWER-LAW PROPERTIES
Previously, we discover the factors contributing to the clus-
tering effect according to different markets and the sub-
periods. Especially, we observe the establishment of various
patterns regarding the order of contributing factors when p
is increased from 0.2 to 0.4. Note that the order is the same
for all markets and sub-periods when p = 0.2. Furthermore,
the detailed results on the variations of clustering and asym-
metric properties can be investigated in Table 5. Specifically,
the pattern of factors contributing to the clustering when
extending from high-returns(p = 0.2) to low-returns(p =
0.4) are summarized. The variations in six different measures
are presented based on the subtraction of the values of p =
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TABLE 5. Variations of clustering and asymmetry measures from the top 20% to 40% returns on each sub-period.

TABLE 6. Variations of power-law properties from the top 20% to 40% returns on each sub-period.

0.4 from those of p = 0.2 with its corresponding direc-
tion. At first, we examine the results in SP1. For instance,
the results of S&PCOMP show that the volatility cluster-
ing due to large returns, including the large, large positive,
and large negative returns, decreases as p increases (−0.75,
−0.88,−0.38). In contrast, the clustering due to small returns
increases (0.25). These results are consistent in the other
three markets. In terms of asymmetry measures, the volatility
clustering is increased by small and large negative returns

given that the scale and sign are −0.21 and −0.12, respec-
tively. If each market’s result is only considered in terms
of the direction, the volatility clustering due to small return
increases in all markets. In the case of the direction of asym-
metry measures, the clustering due to large negative return
becomes larger in all the markets except EUDOLLR when p
increases. The result of SP2 is analogous to that of SP1. Both
small and large negative return increases in all four markets
except EUDOLLR when p increases. That is, EUDOLLR
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TABLE 7. Directional consistency between the variations in clustering and asymmetry measures and power-law exponents.

has more large returns than small returns. Although the
market volatility is lower in SP2 than SP1 in four markets,
the effect of a factor on the volatility clustering remains the
same even under the non-Gaussian distribution. In summary,
the volatility clustering of the low-returns(p = 0.4) is more
affected by the small return and large negative returns than the
high-returns(p = 0.2).

Furthermore, we summarize the variation of fractality
in Eqs.(13) and (14) in Table 6. Similar to the Table 5,
we describe how PSVG changes when p increases from 0.2
(high-return) to 0.4 (low-return). Note that the positive value
and direction indicate the increases in persistent behavior in
volatility clustering, whereas the negative value and direc-
tion indicate the increases in anti-persistent behavior. For
instance, the result of S&PCOMP in SP1 shows that the
large returns (0.0299, 0.0655, 0.1314) increase the persistent
behavior in volatility clustering, whereas the small returns
contribute to the increase in anti-persistent behavior. The
same results can be found on the scale. Also, anti-persistent
behavior is more increased by large negative values than large
positive values. That is, small and large negative returns, criti-
cal factors in the clustering effect, increase the anti-persistent
behavior of volatility clustering. Again, all the four mar-
kets except EUDOLLR shows the same pattern. Unlike SP1,
the variations in PSVG in SP2 are hardly generalized for
different markets. While S&PCOMP in SP2 has the same
pattern in SP1, all the other markets have distinct fractality
patterns. In other words, unlike clustering and asymmetry
measures, the PSVG are highly affected by non-Gaussian
distribution. Note that the return distribution of SP2 is closer
to the Gaussian distribution than that of SP1 for all markets.
It implies that the clustering and asymmetry measures are
more robust than the PSVG in terms of generalization of the
pattern of factors contributing to the volatility clustering.

Lastly, Table 7 summarizes the comparison whether the
sign of directions in Table 5 and that of in Table 6 are
the same. Given that the number of trues in SP1 is much
smaller than that in SP2, we presume that the directions of

clustering and asymmetry measures when p increases from
0.2 to 0.4 and that of PSVG changes in opposite direction
when the market is highly volatile.

V. CONCLUSION
The prices of numerous financial products in the market
change over time and generate various financial time-series
patterns. In particular, volatility clustering exists, indicating
the phenomenon that the large (small) fluctuations of the
financial time-series consistently occur after the previous
large (small) fluctuations. There have been efforts to detect
the volatility clustering and explain the causes of the volatility
clustering within the market. In this study, we accumulate
state-of-the-art methods and analyzed volatility clustering
using the non-linear autocorrelation and various clustering
and asymmetry measures. We also provide a further explana-
tion of the causes of the volatility clustering when the target
return is changed. Note that, to the best of our knowledge,
this is the first attempt to utilize clustering and asymmetry
measures to analyze the volatility clustering simultaneously,
including their variations with respect to the target returns.

The findings of this paper are as follows. In terms of the
existence of volatility clustering, we observe that volatility
clustering occurs in all representative financial time series of
the four financial markets where the return distributions fol-
low the fractional Brownian motion rather than the Gaussian
distribution in most markets and sub-periods. Also, we con-
firm that the data positioning of the return series contributes
more to the volatility clustering than the distributional char-
acteristics such as heavy-tails. Specifically, we observe that
the four representative financial return-series show the pos-
itive and slowly decaying non-linear autocorrelation. Also,
we confirm that the Gaussian simulated returns, whose order
of returns are rearranged as the underlying real financial time-
series, also show the power-law decay.

The results above are further investigated by the clustering
and asymmetry measures. In particular, the factors affect-
ing the volatility clustering are studied in detail. At first,
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we observe that the order of contributing factors on volatility
clustering is Large > Large positive > Large negative >
Small returns for high target return (small p). In contrast,
the order of contributions of the factors appears differently
depending on the market conditions. Secondly, in most mar-
kets and sub-periods, we discover that the scale of the
return contributes more to volatility clustering than its sign.
It implies that the extreme upward or downward price move-
ment might last longer when realized. Thirdly, we find that
irrespective of market conditions, the group who obtain high
returns tends to keep their high returns where the order of con-
tributing factors are independent of the market or sub-periods
since the clustering and asymmetry measures show the
similar pattern regardless of market condition. In contrast,
the variation of PSVG shows different contributing factors
depending on market conditions. During the financial crisis
(SP1), the direction of increase or decrease in PSVG is similar
for all contributing factors. However, after the financial crisis
(SP2), the direction of increase or decrease in PSVG varies
depending on the market and contributing factors. Given
that the financial crisis and non-financial crisis periods show
different return distributions, the PSVG coefficients seem to
be affected by the non-Gaussian distribution, unlike cluster-
ing and asymmetry measures. Therefore, we presume that
clustering and asymmetrymeasures aremore robustmeasures
to distribution for the volatility clustering than PSVG. Lastly,
in a highly volatile market, an inverse relationship between
the directions of the clustering effect defined by the clustering
indices and asymmetry and PSVG is observed when the
variation is examined from high returns to low returns.

Based on the empirical evidences, we conclude that the
volatility clustering in the financial time-series exists whose
contributing factors varies for market condition and target
returns. Therefore, as a future work, we are planning to
model the Value-at-Risk and Expected Shortfall algorithms,
switching with respect to volatility clustering incurred from
different causes. Such algorithms can be further implemented
in terms of decentralized in financial risk management
system.
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