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ABSTRACT Much compelling evidence urges that the isolation provided by the hypervisor in a virtualized
system is not complete at all, and in practice can be neutralized by elaborated adversaries, which con-
sequently emphasizes the need of techniques to detect attacks on the guest VM kernels. In this regard,
learning-based HIDSs have received much attention, which inspect the internals of each VM through
monitoring models built by machine learning techniques. The inspection capability of learning-based
HIDSs depends on the quality of the monitoring models, which in turn can be improved by using rich
runtime information reflecting the exact behavior of VMs. However, as extracting such runtime behavior
information is onerous on account of its vast quantity, many learning-based HIDSs have resorted to using
only fragmentary runtime behavior information. To address this problem, in this paper, we present SBGen,
a framework for efficient extraction of rich runtime behavior information of VMs, namely the system call
traces and the execution paths of the kernel taken to serve system calls. To trace execution of the kernel
efficiently, SBGen leverages a salient hardware feature, Intel Processor Trace (PT). Once receiving the
execution of the kernel traces from PT, SBGen elaborately decodes and purifies them to extract execution
paths of the kernel associated with system calls. The extracted runtime behavior information of VMs is
fed into learning-based HIDSs to improve their detection accuracy. Our experiments show that SBGen can
extract and supply runtime behavior information efficiently enough for learning-based HIDSs to detect in a
timely fashion real-world attacks on the guest VM kernels running in a virtualized system, while incurring
a reasonable amount of performance overhead.

INDEX TERMS Intel Processor Trace (PT), learning-based HIDS, VM monitoring, extraction of runtime
behavior information, guest VM kernel execution traces.

I. INTRODUCTION

Virtualization allows multiple users to share a single physical
machine by installing and executing their own guest virtual
machines (VMs) on the machine. Since being introduced,
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therefore, virtualization has been widely adopted as an
enabling technique to establish and manage with high effi-
ciency and low cost modern computing infrastructures, par-
ticularly for cloud computing. In such a virtualized system
with multiple tenants, HIDS (Host-based Intrusion Detection
System) is being considered as a promising security approach
to protect individual VMs and thereby the entire virtualized
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system. The HIDS inspects the internals of each VM to detect
signs of intrusions into VMs. Depending on the methodology
of a VM inspection, the HIDS is divided into rule-based
and learning-based. The rule-based HIDS [1]-[3] relies on
monitoring rules manually defined by the system develop-
ers with expert knowledge on VMs, and the learning-based
HIDS [4] leverages a monitoring model automatically built by
machine learning (ML) techniques. Of these two approaches,
the learning-based one has been preferred recently, in par-
ticular in terms of low reliance on human effort. Unlike the
rule-based one, which requires significant human effort to
define monitoring rules, the learning-based one can learn its
monitoring model from data with minimal human interven-
tion, and thus has the advantage of being built without being
confined to human intuition or expertise.

In running a learning-based HIDS, extracting a runtime
behavior of VMs is extremely important because they are
used as materials to generate and run a monitoring model,
which are directly linked to the inspection capability of the
HIDS. Unfortunately, extracting runtime behavior consist-
ing of function calls, system calls, branches, etc. is oner-
ous on account of their vast quantity, which becomes even
larger in a system where multiple VMs are running. For
this reason, many learning-based HIDSs have resorted to
using only fragmentary runtime behaviors such as system call
traces to perform monitoring. However, this may be some-
what undesirable, given the intrinsic complexity of running
systems whose abnormality cannot be determined through
only a fragmentary runtime behavior. Along this notion,
we have found in our preliminary experiments, motivating
examples, which will be discussed in more detail in Section II,
where it is more desirable for a learning-based HIDS to
adopt a model with a multimodal approach that can associate
various inputs together in order to improve its monitoring
capability.

As such, to fulfill such improvements, a learning-based
HIDS needs to be able to efficiently extract multiple corre-
lated runtime behaviors from VMs, which motivated us to
design a framework for efficient runtime behavior extraction,
SBGen. As most studies on learning-based HIDS focus on
modeling and discerning software execution flow [5]-[8]
such as system calls or branch sequences, SBGen focuses
on providing correlated execution flow information. Specif-
ically, SBGen aims to extract from each VM, system call
traces (abbreviated as syscall traces), which are the sequences
of system calls invoked by a process, and their correspond-
ing execution paths, which is a sequence of branches that
the kernel takes to serve each system call. Recent HIDS
tends to separately examine the execution behavior of each
process and therefore, SBGen is built to extract the syscall
traces and their corresponding execution paths separately
for each unique process. In other words, SBGen differenti-
ates the syscall traces and execution paths of each process
and each VM. Through this, SBGen ultimately enables a
learning-based HIDS to inspect VMs with high accuracy and
low overhead by providing the correlated data of extracted
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syscall traces and the entailed execution paths as learning
material.

To achieve its goal efficiently, SBGen leverages the Intel
Processor Trace (PT) [9], a hardware feature that the latest
(5th and 6th) generations of Intel x86/64 architectures began
to support. To be concrete, SBGen uses the Intel PT to
efficiently capture execution traces of the system and subse-
quently, from them extracts the syscall traces and the involved
execution paths. To achieve its goal, SBGen faces the follow-
ing challenges. First, it should be noted that the PT captures
the execution traces in the form of a sequence of branches
taken during execution, which are low-level data that does
not clearly indicate which system calls are invoked. Second,
to make matters worse, the execution of each system call can
be interrupted or resumed at anytime by the preemptive nature
of the kernel; therefore the execution paths of distinct syscalls
will be fragmented and mixed with those of other syscalls
in the PT-captured execution traces. Besides, this problem
can be exacerbated because in a virtualized system being tar-
geted by SBGen, a number of processes created by multiple
VMs will execute syscalls simultaneously. To tackle these
challenges, SBGen purifies the execution traces captured by
the PT. More specifically, SBGen employs a technique of
inserting several indicators for the beginning and end of a
syscall, process context switching, VM context switching
into the execution traces while being captured by the PT,
and analyzes the execution traces to extract syscall traces
and the involved execution paths capitalizing on the inserted
indicators.

In order to evaluate our work, we implement SBGen
and incorporate it to our learning-based HIDS, called
HIDS-SBGen, which is a renovated version of a conventional
learning-based HIDS [10] to employ advanced input features
from SBGen. In this setup, SBGen incurs 11.67 % overhead
on processes running in VMs and can deliver data to the
HIDS within 467 us. However as we found that an average
of 45.63 syscalls and 162.873 M branches occur every sec-
ond, significant processing resource is needed for a HIDS
to process this data in real time. This could make SBGen
scale poorly for usage in real virtual environments such as
cloud systems. Therefore we also built and evaluated SBGen-
lite, a relaxed variant version of SBGen. We observed that
arguments passed into syscall exerts significant influence on
the initial part of the execution path, and thus monitoring the
initial part is typically worth more. This observation has also
been supported in the literature [11], which argues that execu-
tion space can be partitioned into the front small exploitable
and the remaining post-exploitable parts due to the attribute
of exploit payloads that should be delicately designed based
on the strict hypothesis regarding the execution environment.
Upon this observation, SBGen-lite extracts and delivers to
the HIDS, syscall traces and the first 30 branches of their
corresponding execution paths. SBGen-lite incurs 1.78 %
overhead on processes running in VMs and can deliver data to
the HIDS within 189 us. With the reduction in the amount of
delivered data, the computing resource needed to process the
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data is significantly relaxed and a single GPU could support
an HIDS for 4 CPU cores running VMs in real time. And
though theoretically the loss of data in SBGen-lite compared
to SBGen, i.e., the execution path after its 30th branch, could
result in the HIDS being unable to catch malicious behavior
in that execution path, we have found that for the attacks used
in our evaluation, the HDIS supported by SBGen-lite showed
no degradation in its capability of discerning the attacks from
normal behavior.
Our contributions in this paper can be summarized as
follow:
o« We present SBGen, a framework for learning-based
HIDS on a virtualized system with multiple VMs.
o We devise a VM-aware mechanism to efficiently extract
execution traces by VM using Intel PT.
o We demonstrate the effectiveness of SBGen by devel-
oping HIDS-SBGen and performing evaluation against
real security threats on VMs.

TABLE 1. Trace packets in Intel PT.

Packet Name Packet Description

Paging Information packet (PIP)
Flow Update packet (FUP)

Packet Description

Provides the source address for asynchronous
events such as those triggering Interrupts
Records the target address of control transfers
such as indirect jumps and indirect calls
Indicates the direction of direct conditional

Target IP packet (TIP)

TNT packet branches and represents the information
about returns
Time Stamp Counter (TSC) Provides timing information of packet

generation

Il. BACKGROUND AND MOTIVATION
A. INTEL PT
Intel PT is a hardware feature that is supported by the lat-
est x86/64 architectures to facilitate efficient capturing and
recording of execution flow traces generated by CPU. Exe-
cution traces are formed by sequentially concatenating data
packets, each encoded with the information about dynamic
control flow changes, such as branch targets and branch
taken indications. Table 1 describes several types of the
data packets constituting an execution trace provided by PT.
PIP and FUP are generated by CPU, respectively when the
CR3 register is updated and when asynchronous events like
interrupts occur. These packets appear relatively rarely in a
trace, but are of importance in a sense that they can be used
to dissect the sequential trace into multiple execution units
(i.e., processes) each with its own context. TIP and TNT
take up most of packets in the captured trace, each of which
denotes every one of the changes in control flows of a process.
TIP records the target of an indirect branch (e.g., register
indirect jmp/call and ret) and TNT indicates whether each
conditional branch is taken or non-taken (e.g., jz, je, loop,
etc). Lastly, TSCs are periodically issued by PT to provide
precise timing information about when packets are generated.
For better space and time efficiency, Intel PT applies
special optimizations to packet generation. One such
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optimization aims to minimize the size of packets by logging
TIP and TNT in a bit-level compression format. Another
is to minimize the number of generated packets by leav-
ing out those for certain types of branches (e.g., direct
jmp/call) which has a statically specified target in the pro-
gram. To enable efficient analysis of data packets, Intel PT
offers the selective tracing mechanism which is available to
selectively enable or disable the packet generation by means
of three different hardware features: instruction pointer (IP),
CR3 or current privilege level (CPL). First of all, Intel PT
can be configured to generate packets depending on whether
or not the IP stays within the specified range. Similarly,
PT can be configured to enable the packet generation only
when CR3 and CPL are equal to specific values, respectively.
As every process is assigned a unique CR3 value to use its
own page table, the PT trace is enabled only for a process
with the specific CR3 value. The PT trace can also be con-
fined to generate packets for either or both of two levels
(CPL=0 or 3) of execution where CPL=0 and 3 indicate
kernel-level and user-level, respectively. As will be discussed
later, the selective tracing mechanism based on CPL has been
greatly helpful in our data packet analysis for SBGen. When
packets are generated, PT stores them directly into the host
machine memory in different ways as directed by its modes:
single range (SR) and table of physical addresses (ToPA).
In the SR mode, the buffer to store packets is allocated to
a physically contiguous region. Contrarily in the ToPA mode,
the buffer management is more flexible in that the buffer can
be allocated to several non-adjacent regions. In both modes,
the buffer is usually used in a circular fashion to improve
memory efficiency.

B. LSTM NETWORK

RNNs are artificial neural networks that are designed to
operate in a recurrent manner so that its operation on input
x; is affected by prior inputs x; through x;_1. This is typi-
cally accomplished by recurrently using output of the prior
iteration y,_1 (from processing the prior input x;_1) when
calculating output of the current iteration y; from input x;.
Long Short Term Memory (LSTM) is a type of RNN which
uses, in addition to the prior output y,_1, a special memory
block to perform such recurrent operations. Through the use
of this memory block, LSTM networks can maintain informa-
tion over long distances (relative to typical RNNs) between
inputs which gives it the capability to correlate inputs over
large gaps. The LSTM memory block contains a memory cell
storing ¢;, a context vector representing information of prior
inputs, as well as three gates regulating the data flow into
and out of the memory cell. The input gate i controls how
much the current input x; and prior output y;_ would affect
the calculation for ¢;. The forget gate f decides how much
of the prior information represented in c¢;_; should be kept
for the current iteration. From the outputs of these two gates,
¢; is calculated. The output gate o controls how the new values
stored in ¢; should be represented in output of the current
iteration y,. And from the output of o and the values in c,

VOLUME 8, 2020



J. Seo et al.: SBGen: A Framework to Efficiently Supply Runtime Information for a Learning-Based HIDS

IEEE Access

the current output yj, is calculated. The explicit operations of
each gate, which can be found in [12], is omitted here for the
sake of brevity.

C. ANOMALY DETECTION

HIDS is a security framework of monitoring the events occur-
ring in the target system and analyzing them for signs of viola-
tions or imminent threats to computer security policies. HIDS
assume intruder behavior differs from legitimate users and
determines an intrusion by generating a profile (or model) of a
system’s behavior. IDS can be classified by what kind of pro-
file/model it employs for detection: misuse detection system
and anomaly detection system. Anomaly detection creates
models for legitimate behavior while misuse detection creates
them for malicious behavior. Since misuse detection only
alerts known behavior of intruders, recent researchers prefer
anomaly detection to misuse detection [13]-[16]. However,
though anomaly detection has the potential to detect unknown
attacks unlike misuse detection, its detection capability in
principle depends on the accuracy of the model it uses. The
model of poor quality causes false alarms with a high rate;
thus, researchers have tried to improve its quality by applying
machine learning [14]-[16].

D. MOTIVATION

As we have briefly mentioned in Section I, most current
work on learning-based HIDS focus on only single aspects
of runtime behavior such as system call sequences [6]-[8]
or branch sequences [10], [17]. Unfortunately, it was shown
that adversaries could evade HIDS examining system call
sequences [13], [18] with mimicry attacks [19], [20] in which
adversaries manipulate the execution of malware or attacks so
that their runtime system call sequences appear to be similar
to those of benign executions. Recent work [8], [21], [22]
argued that, by examining runtime branch sequences, a HIDS
could become resilient to mimicry attacks as the branch
sequences of manipulated system calls often differ from those
of benign system calls and also that branch sequences are
much harder for an adversary to mimic while performing
malicious activity. Though we agree that branch sequences
offer an innate resilience to mimicry attempts, in our pre-
liminary experiments, we have found that a HIDS examining
branch sequences alone was not able to detect anomalies that
were detectable with system call sequences. This was due to
the fact that, when examining branch sequences, the HIDS
is flooded with branch information, it was nearly impossible
to relate dependency between distant runtime events. On the
other hand, as hundreds of branches occur to service a sin-
gle system call, even runtime events that are thousands of
branches apart are only a few system calls apart from each
other, which makes it much more likely for a learning-based
HIDS to relate the events within a sequence. From this expe-
rience, we believe that a HIDS would benefit from relating
high level behavior such as system call sequences to their cor-
responding low level behavior such as branch sequences. The
low level behavior would provide resilience against mimicry
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attempts while the high level behavior would provide a way to
relate distant runtime events. We have tested this correlation
on a few toy example codes and achieved promising results,
however, the collection and processing of system calls and
branch events became too time consuming for testing on more
real world software. This motivated us to develop SBGen
to provide an efficient way to collect and correlate high
level runtime behavior alongside its corresponding low level
runtime behavior.

Ill. RELATED WORK

A. INTEL PT USES IN OTHER SECURITY PROBLEMS

A series of studies [23]-[26] have employed PT for control
flow integrity (CFI) solutions that detect control flow hijack-
ing attacks that subvert the control flow of a process. Their
solutions use PT to efficiently chase after changes in control
flow of the target process in order to ensure that any changes
do not deviate from the legitimate control flow defined by the
process’s control flow graph. Other studies [27] have utilized
PT to implement fuzzing solutions for efficient kernel testing.
Their solutions obtain from PT a control flow trace of the tar-
get kernel which is in turn used as feedback to maximize code
coverage in fuzzing. As in our SBGen, both CFI and fuzzing
solutions employ Intel PT to gain the advantage of enabling
transparent and efficient execution tracing. However, there is
a clear difference between the way they and we operate on the
outputs of PT. They basically use trace packets in almost the
same form as they are decoded from raw compressed data.
Contrarily in SBGen, after being decoded, the packets are
analyzed elaborately and processed heavily through cascade
steps: packet separation, packet filtering and execution path
purification. A primary reason for the difference is that they
usually need to only track control flows of a specific victim
application while we must have the capability of tracking
many different kernel execution flows concurrently generated
by multiple guest VMs running on a multicore system.

B. TRADITIONAL SYSTEM CALL INTROSPECTION
SOLUTIONS

Research on system call introspection (SCI) has been car-
ried out to detect anomalous invocations of system calls to
detect attacks originating from the software with user-level
privilege. One (or, the most) common approach in this line
of research on system call introspection is to check system
call sequences made by user applications to interact with
their kernels. The rationale behind this approach is two fold.
Firstly, for user-level software to leave a lasting effect on the
kernel, it must invoke system calls to access and manipulate
the system resources under control of the kernel. Secondly,
the conventions or practices of making system calls for such a
lasting effect tend to differ for malicious and benign software.
The work in [13] is, to the best of our knowledge, the most
prominent one that learns from system call traces for anomaly
detection. They propose that a context-free grammar could
be applied to system call traces and generate a dictionary
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of phrases, contiguous patterns of system calls, from given
system call traces and train their model with it. Though their
model shows fairly high accuracy as discussed in section I,
their strategy that examines only system call traces render
their introspection vulnerable to mimicry attacks [19], which
as the matter of fact, were born to defeat such previous
SCI solutions that focus on system call traces. For instance,
a mimicry attack sequence is handcrafted by transforming an
existing attack to emit a system call sequence that would be
viewed as a normal sequence by SCI solutions. The transfor-
mation relies on dummy system calls (e.g., mkdir() invoked
with an invalid pointer) which can be made in a way that
they would not compromise their original malicious effects
on the kernel, and yet disguise their system call footprints
of malicious code. This mimicry technique would nullify
SCI solutions that are interested only in the invocation pat-
tern of system calls, subsequently demanding researchers
to leverage the contextual data better characterizing system
call sequences in order to defeat attackers by differentiating
dummy system calls from genuine ones used in the attack
sequence.

As mentioned in Section I, many SCI solutions have
adopted system call input arguments for such contextual
data because the arguments are believed to well characterize
system calls by providing individual execution contexts for
kernel routines serving the system calls. In [22], they used a
rule-learning system to combine rules for system call argu-
ments and sequences. Though their solution is reported to
improve accuracy, it runs up to 10x slower when incorporat-
ing system call arguments. In [21], the authors have also used
system call arguments to detect mimicry attacks. However,
they additionally require hand-crafted specifications of the
system to lower false positives in its detection results. All
in all, these attempts to use system call arguments have
evinced a promise in increasing SCI accuracy especially in
the detection of mimicry attacks. But, the requirement is here
that the arguments should be parsed into features that could
be used by their SCI systems. Unfortunately, to meet this
requirement, a developer must have hands-on experience and
deep knowledge of real attacks and their invocation pattern of
system calls when they provide the rules for parsing. In such
a situation, SBGen is designed to glean an execution context
of the kernel code serving system calls from kernel execution
paths, which eliminates the need to use expensive algorithms
for complex data analysis as well as to rely on strenuous
human intervention.

C. VIRTUAL MACHINE INTROSPECTION

With the recent increase in virtualization, virtual machine
introspection (VMI) has been an active area of research,
emerging as a feasible method for monitoring the runtime
state of a guest OS. Most research on VMI [28]-[30] provides
an inspector with a capability of intercepting and forwarding
guest VM kernel events like system calls to the hypervisor
layer where the inspector resides and examines the kernel
behavior. The work in [28] could be related to our SBGen
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in that they interpret VM-internal system call events at the
hypervisor layer. They propose a VMI mechanism that col-
lects system calls invoked by all processes running inside a
honeypot. To check the honeypot VM internal events from
the outside, they inspect each system call by examining its
parameters and semantics. Though this solution provides a
fine-grained monitoring tool for a virtualization platform, itis
difficult to apply in a large-scale virtualization environment,
as this monitoring function may only run in an individual
target VM. Furthermore, since this solution is only used
for later investigation about trace analysis, it cannot detect
attacks invoking anomalous system call at the same time
the associated guest VM is up and running. We believe that
SBGen can be used to relieve these issues by facilitating
runtime introspection of system calls from multiple VMs.

IV. DESIGN

SBGen is a framework to extract runtime behavior of VMs
expressed as syscall traces that record invoked system calls
in sequence and execution paths that enumerate the taken
branches of the VM kernel to serve each system call. SBGen
is ultimately aimed to supply the extracted behavior to
learning-based HIDSs, enabling better accuracy and efficient
monitoring for VMs. In this section, we present a brief
overview of SBGen, and then give a detailed description of
its operations.

A. OVERVIEW

Learning-based HIDSs have considered monitoring system
calls as an effective approach to stymie attacks on a kernel.
The reason is that system calls are the only pathways to reach
the kernel from user space, and thus virtually all known kernel
attacks could be thwarted effectively if blocking malicious
attempts to find and abuse the weakness in such narrow path-
ways. In light of this, SBGen provides rich information rele-
vant to system calls, i.e., syscall traces and the corresponding
execution paths with the learning-based HIDSs to allow them
to perform system call monitoring on guest VM kernels in
the fight against adversaries who try to penetrate into the
kernels via system calls. Figure 1 illustrates the design of
SBGen. In our implementation, SBGen runs on a dedicated
CPU core, separately from the other cores executing guest
VMs, so that they can work concurrently with the VMs. For
being fortified against attacks from guest VMs, SBGen runs
in the highest privilege mode, namely the VMX root (or more
conventionally, hypervisor) mode.

SBGen is responsible for obtaining syscall traces and the
execution paths that will be used as the input features for
learning-based HIDSs. Because SBGen persistently works
as long as guest VMs are active, its extraction task must
work with low overhead in order to minimize the impact
on system performance. To this end, SBGen leverages Intel
PT, which is the hardware support for low-cost execution
trace. Once receiving trace packets from PT, it converts the
raw data in the packets into appropriate formats for use
by learning-based HIDSs. For the conversion, the raw data
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FIGURE 1. The overall architecture of SBGen.

originally compressed in a packet must be decoded and rep-
resented as an execution path in the form of a sequence of
branches. The execution path in the original form is basically
a mixture of kernel branch instructions generated by various
system events, such as multiple system calls, interrupts, and
kernel threads. SBGen, therefore, purifies the execution path
to contain only the branches executed in kernel code for each
system calls, by getting rid of those executed for other types
of events. Now, the resulting execution paths solely reflect the
execution context for the kernel routines that handle system
calls, such that SBGen can finally organize them in order by
system call. Finally, SBGen can offer the extracted syscall
traces and execution paths as such to learning-based HIDSs
for use in offline model training and online inferencing to
detect the existence of anomalies in a series of system calls
invoked by guest VMs at runtime. In the following, we will
give a more detailed description about the operations of
SBGen.

B. FEATURE EXTRACTION

Every time a system call is invoked by an application, SBGen
generates as a training feature for learning-based HIDSs the
execution path in kernel code of the target VM made to handle
the call. As mentioned above, for minimizing performance
degradation, the extraction task must work as efficiently as
possible. But not only that, the task must perform with high
accuracy as the extracted features are to determine the accu-
racy of the output results of learning-based HIDSs.

1) EXTRACTING EXECUTION PATHS VIA INTEL PT

The greatest benefit of using Intel PT is that it allows SBGen
to obtain execution paths efficiently with little interruption to
the target guest VM kernels. As explained in subsection II-A,
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PT records execution traces in various types of packets. Note
that guest VMs must be deprived of the control authority
over PT because otherwise, they may manipulate several
configurable features of PT, particularly selective tracing,
to impede the effort of SBGen to acquire proper trace packets.
Fortunately, the Intel architecture ensures that guest VMs are
forced to be out of control over PT when virtualization is
enabled [9].

a: PACKET SEPARATION BY VM

As SBGen assumes a virtualized system where multiple guest
VMs run simultaneously, it receives trace packets of every
guest VM randomly intermingled in the order they are gen-
erated from the CPU regardless of their origin VMs. It is
noteworthy that each PT packet for one guest VM stores a
partial sequence of branches executed in the VM. Thus in our
view, a full sequence of such packets with the same origin
VM forms an entire execution behavior of the VM woven
with the executed branches. Following our view, we have
designed SBGen to keep track of packet sequences separately
for each and every VM. To fulfill its task, when SBGen
receives a new PT packet for one VM, it must be able to
incrementally construct a packet sequence exclusively for
the VM by appending this packet to an existing sequence of
earlier packets for the same VM. To facilitate this individ-
ual sequence construction for every VM, we utilize the fact
that each VM is allocated a group of vcpus, virtual CPUs
which will be mapped respectively to physical CPUs by the
hypervisor in a virtualized system. As every VM instruction
is conceptually executed by vcpus, a sequence of PT packets
for one VM will be generated and emitted by a specific
vepu that executes the VM. In our work, we build up a
packet sequence dedicated for each vcpu by preparing a trace
buffer per vepu when a guest VM is created and allocated
a vepu (or vepus if set to be a multicore machine). During
VM execution, VM-enter functions to transfer control from
the host (i.e., hypervisor) to its guest running on a vcpu.
By utilizing this function, whenever a VM-enter occurs in
a vepu, SBGen configures Intel PT to store the succeeding
packets emitted by the vcpu into the corresponding trace
buffer. As a result, by reading each individual trace buffer,
SBGen is able to trace packets in order respectively for all
VMs currently running in the system. In order to reduce the
likelihood of the overflow of the trace buffers and consequent
packet losses, we implement the trace buffers as ring buffers
to increase their space utilization. In addition, we empirically
allocate the trace buffers large enough to store the packets
that are generated during the specific time slice given for a
VM by a scheduler. The multi-threaded decoding mechanism
that will be described soon virtually empties the trace buffers
at every VM-exit by copying the stacked contents to decoder
buffers.

b: PACKET FILTERING
Recall that SBGen is interested just in the execution paths
which the guest VM kernel code follows to serve system calls.
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Therefore, to receive PT packets relevant only to kernel code
execution, SBGen relies on the CPL-based selective tracing
capability of Intel PT by enabling packet generation only
when the vcpu runs in kernel mode (i.e., CPL 0). However
in a virtualized system, there are two types of kernel that are
the host and the guest, and CPL is set to O for both cases
when the vepu runs in either host or guest kernel mode. This
means that even if PT is configured to trace selectively for
CPL=0, SBGen would receive the PT packets generated by
both the host and guest kernels. This is undesirable obvi-
ously because as mentioned above, SBGen needs only the
execution path of the guest kernel. Fortunately, as introduced
in subsection II-A, the special PT packet, PIP, conveys the
non-root (NR) bit that indicates whether each packet orig-
inates from the host or guest VM kernel. In consequence,
merely by checking the bit, SBGen can drop the packets from
the host kernel, and only save those from the guest.

c: DECODING

The raw data in trace packets emitted by PT are compressed
at bit level for saving space. Hence for substantive uses of
the data, SBGen decodes the compressed data into actual
execution paths in the form of branch sequences. To decode
the packets in time and minimize the performance impact on
guest VMs in the system, the decoding task is carried out
by the dedicated thread on a separate CPU core. Every time
VM-exit occurs, the packets for a guest kernel saved in the
corresponding trace buffer are copied to the decode buffer and
start to be processed.

2) PURIFYING EXECUTION PATHS

As been repeatedly revealed, the very information SBGen
extracts from each VM is kernel execution paths taken to
serve system calls, that is, sequences of kernel branch instruc-
tions executed during system call invocation, which will
be basically the input features accepted by learning-based
HIDS:s for training and inference. By decoding trace packets
from PT, we now hold kernel execution paths of guest VMs,
each corresponding to a sequence of all branches executed
in kernel code. In the end, these paths will be fed into the
learning-based HIDSs to conduct anomaly detection on each
guest VM. However, until we resolve the four design prob-
lems listed below, the learning-based HIDSs cannot accept
as inputs the just-decoded paths per se. Thus, SBGen should
take an additional step for preprocessing these decoded exe-
cution paths, namely, purifying the paths, to be acceptable by
learning-based HIDSs. Ultimately, the paths are grouped by
the processes/threads running in our target guest VMs, and
each group turns into two acceptable forms of the monitoring
model input for learning-based HIDSs that are (1) a sequence
of system calls invoked by the corresponding process/thread
and (2) the kernel branch sequences (i.e., execution contexts)
which are executed to handle the corresponding system calls,
respectively. If explained more, in the actual implementation,
whenever a system call is discovered in the decoded paths,
the associated execution paths are immediately assembled
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and sent to the learning-based HIDSs in pairs with the system
call.

a: EXECUTION PATHS IRRELEVANT TO SYSTEM CALLS

A trace packet from PT contains not only execution paths
derived from (thus, relevant to) system calls, but also other
irrelevant ones because kernel instructions are executed for
many different system events including system calls, inter-
rupts, kernel threads and so on. Consequently, the decoded
outputs of a PT packet will reflect diversified system events
besides system calls. To tackle this problem, SBGen must fil-
ter such irrelevant ones out of the original decoded execution
paths and leaves only those relevant to system calls.

b: PREEMPTIVE KERNEL EXECUTION

The second problem arises from the preemptive nature of the
kernel. The kernel execution triggered by a system call is
likely to be interrupted anytime by different types of events or
even by other system calls. The interrupted execution would
certainly resume later. But hereupon, we must notice that
the original execution path for the system call is broken into
two subpaths before and after the interruption, which are
independently delivered, being apart from each other in a
stream of PT packets from the CPU running the kernel. It is
evident that in order for SBGen to achieve its goal of grasping
the whole picture of execution behavior for the system call,
the broken subpaths must be bonded together and become
a single contiguous path which will be used as the input of
the learning-based HIDSs. As such, weaving in an orderly
fashion all broken pieces of an execution path derived from
the same system call is another mission of SBGen.

¢: PROCESS/THREAD-WISE SYSTEM CALL CLUSTERING

The third design problem is somewhat an extension of the sec-
ond one because even if we successfully construct a complete,
unbroken execution path for every system call, there still
lies another requirement before us. To explain this, we first
need to notice that from the perspective of learning-based
HIDSs, a system call sequence for each thread/process is
considered to be an independent history of its runtime
behavior. Therefore when receiving system calls sequentially
streaming from PT, the learning-based HIDSs are required
to cluster all related system calls invoked by the same pro-
cess/thread so that they can detect any malicious attempts of
the process/thread on the kernel by analyzing the clustered
calls, each coupled with the associated execution path. This
requirement is boiled down to a problem of pinpointing the
exact process/thread that invokes each system call. To unravel
this problem, when a system call is loaded into the PT packet
stream destined for our learning models, the process/thread
identifier must be included along with the call in the stream.
Now, by receiving each system call together with the iden-
tifier for its caller process/thread, our models are able to
cluster all call invoked by the identical caller. For the process
identifier, the problem is straightforward because, at every
process context-switch, Intel PT automatically issues a PIP
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that carries the new CR3 value identifying the process just
switched in. That is, we can solve the problem simply by
delivering to the learning models the register value as the
identifier for each system call. On the other hand, for the
thread identifier, the problem demands a more elaborated
solution since PT does not have any means to notify us
straight of thread context-switch. Below we will discuss our
solution to this problem in the design of our SBGen.

d: PROCESS/THREAD MIGRATION

The last problem applies only when a guest VM runs on
multiple CPU cores (i.e., multiple vcpus). In a multicore
system, process migration commonly occurs mainly for load
balancing between cores. As a process migrates over multiple
cores during its life time, its execution would be divided and
distributed across those cores. This implies that even if system
calls are orderly invoked by the process, the total ordered
sequence of them will not be built simply by concatenating
all the partial sequences fetched from the trace buffers for
different cores unless we do not know the relative order
between these partial sequences. As a result, to restore the
total order of all system calls invoked by the same caller
process, SBGen somehow has to find a way for lining up all
the partial sequences arriving (most probably, out of order)
from different sources.

(1) [2) (3] [4] [5) [6)
Core #1 | ey Interrupt SCH#1 sc#2 SC#1 SC#1
(start) (start & end) (start) (end)
PIP = 784c1000 NSS (TNT,TIPY TID=2723 SD=1 TID = 2720
TID = 2720 {TNT,TIP}* SID =2 {TNT,TIP}* {TNT, TIP}*
<packets> g p _ 4 NSE {TNT,TIPY* SCE
{TNT,TIPY* SCE
(7]
Core #2 P2 SC#1
(end)

TID = 2723
{TNT, TIP}y*
SCE

<packets>

FIGURE 2. An example of the execution of a dual-core guest VM running
two processes P1 and p2. p1 has two threads p1_T1 and P1_T2. Below
each time epoch from @ to @, trace packets extracted by PT are listed in
chronological order.

Now, let us explain how we design SBGen to tackle the
problems stated above. For this, consider Figure 2 where we
present an example of the execution of a guest VM that runs
two processes, P1 and P2, in a dual-core virtual machine.
We assume that P1 has two threads, P1_T1 and P1_T2.
During process execution, the VM experiences several sys-
tem events that divide the whole execution into seven time
epochs, each denoted by the number @. Firstly on Core #1,
P1_T1 invokes the system call, SC1, which initiates kernel
execution (@). While the kernel is serving the system call,
an interrupt is raised, which instantly suspends the current
kernel execution and jumps the control to the associated
interrupt handler (). As soon as the handler finishes its
work, the suspended execution for SC1 resumes. When the
time slice of P1_T1 is complete, it is halted in the middle
of execution, and the control is handed over to P1_T2 ().

VOLUME 8, 2020

During the next time epoch @, P1_T2 continues to execute,
making the system call SC2. As soon as the system call is
returned, P1_ T2 makes another call SC1 (®). Suppose that
the time slice for P1_T2 is expired while the kernel code is
still being executed to handle SC1. Then, the control is again
back to P1_T1, thereby restarting the halted kernel execution
for sC1. By the end of epoch ®, the system call finishes.
While P1 is running on Core #1, assume that P2 occupies
Core #2. When the execution of P2 is ended, P1 occupies
Core #2 and resumes the suspended execution of SC1 for
P1_T2 (®).

In this example, when it comes to P1, SBGen should be
able to obtain three distinct execution paths respectively for
SC1 of P1_T1 (@-©-®), SC2 of P1_T2 (@), and SC1
of P1_T2 (®-@). As can be seen, the path stretching over
time epoch @ is the only one that is not disconnected by
any system events. In contrast, the other kernel execution
paths have been disturbed by an interrupt or thread context-
switches, resultantly being divided into several partial paths.
In this example, the mission of SBGen is first to connect
together such divided execution paths and form two distinct
contiguous paths, respectively relevant to two different invo-
cations to the system call SC1. Then, it is to identify the
individual process/thread making each invocation. If the mis-
sion is duly complete, we can obtain at once three execution
paths (including path @) along with their relevant system
call invocations and the caller processes/threads making the
invocations. Recall that we at this moment have collected all
essential input data needed by learning-based HIDSs to per-
form anomaly detection. Therefore by packing and shipping
all these data to learning-based HIDSs, the mission of SBGen
is basically complete.

TABLE 2. Special packets defined by SBGen.

Packet Name  Packet Description
TID Reports a thread identifier
SID Reports a system call identifier
SCE Reports a system call exit
NSS Indicates the start point of the execution path not related to system call
NSE Indicates the end point of the execution path not related to system call

Let us look more closely at the example. In order to solve
the first three design problems listed above, we use a tech-
nique that injects into a stream of PT packets the special
packets delivering all necessary information to the PT recip-
ients. In the current implementation, we provide five special
packets for this purpose, as listed in Table 2. The packets,
NSS and NSE, are used to distinguish system calls from
other types of events. The pair of NSS and NSE marks the
beginning and end points for the execution paths irrelevant
to system calls so that they are useful to filter out those
execution paths. For instance, by injecting NSS and NSE
around time epoch @, we can eliminate the corresponding
path created by an interrupt, thereby resulting in six execution
paths relevant to system calls. The packets SID, SCE and
TID are used to inform the packet recipient of two impor-
tant system events, system call and thread context-switch,
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respectively. Since there are system call invocations at the
beginning of time epochs @, @ and ®, SIDs are injected at
those points. Each SID is not only indicating the system call
event, but also carrying the unique number which has been
assigned a priori to identify individual system calls. In the
example, SIDs for SC1 and SC2 are respectively 1 and 2,
and so three SIDs 1, 2 and 1 are injected along with the
paths @, ® and @, as displayed in Figure 2. Each SID is
paired with a SCE that indicates the end of the execution
for the associated system call event. In the above trace, two
SCEs are injected at the end of time epochs @, ® and @.
From Figure 2, we see the thread context-switches at time
epochs @, @, ® and @. Accordingly in Figure 2, we see that
TIDs are inserted three times, 2720, 2723 and 2720, where
2720 and 2723 are the identifiers of the two threads P1_T1
and P1_T2, respectively. Notice here that we do not have
a special packet for process context-switch because as said
previously, we put the CR3 value from a PT-issued PIP to
direct use as the process identifier. In our implementation,
execution paths are clustered according to the values of SID,
TID and PIP. For instance, the paths covering three epochs
0-0-0 are clustered and arranged to form a contiguous
execution path for system call 1 invoked by thread 2720,
as shown in Figure 2. To build a contiguous path by clustering
the partial paths covering two epochs @-@, we have to solve
the last design problem regarding the process/thread migra-
tion as the thread P1_ T2 migrates from Core#1 to Core#2 in
the middle of its execution. In fact, clustering the two paths
is trivial because both have the same SID, TID and PIP.
However, arranging ® and @ in order to form a single full
path ®-@ requires additional information since we do not
know the relative time order of these two paths when they
are retrieved respectively from two different trace buffers for
Core#1 and Core#2. To supplement this missing information,
we rely on a special packet, TSC, issued periodically by Intel
PT to provide timing information, as described in section II.
By examining TSCs issued around the times when these two
partial paths are stored to the trace buffers, SBGen gets to
know their relative order in time and arrange them accurately
in the full path.

C. COOPERATION WITH HIDS

SBGen aims ultimately to improve the accuracy of
learning-based HIDSs by providing salient input features,
namely syscall traces along with execution-paths, according
to subsection II-D. For an empirical demonstration, we design
a learning-based HIDS, HIDS-SBGen, that gets input fea-
tures from SBGen and performs runtime anomaly detection
for the system running multiple VMs. HIDS-SBGen is a
renovated version of the conventional HIDS [10], DeePBM,
which accepts only execution branch sequences extracted
by Intel PT as input feature. We modified DeePBM to get
input features processed by SBGen from multiple VMs.
Therefore, HIDS-SBGen is able to analyze both syscall traces
and their execution paths that are generated from SBGen.
The Figure 3 describes the overall structure of HIDS-SBGen.
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FIGURE 3. The overview of HIDS-SBGen.

The HIDS-SBGen sequentially receives from SBGen the
input data that include system calls and their associated exe-
cution paths (as their execution contexts). Given the inputs,
it employs two LSTM models: a system call model and an
execution path model, which detect any wrongful actions of
user applications against our target guest VM kernel by infer-
ring anomaly in the way they interact with the kernel. To be
specific, every time a system call is invoked in one of the
guest VMs, HIDS-SBGen receives a pair of the invoked the
system call and execution path alongside the process/thread
identifier and the VM identifier that points to the actual
VM handling the system call. The data in each pair are then
transformed into one-hot encoded vectors by the preprocessor
and delivered as input to the LSTM models. The VM and
process/thread identifiers are used by the context manager to
make our model examine the system call and execution path
in relation to prior system call invocations from the same
VM and process/thread. The LSTM models then consume
the input vectors to calculate the degree of the anomaly of
the current system call associated with its execution path.
Finally, from this anomaly degree, the output manager makes
a verdict on the malice of the process against the target VM,
which is completed by comparing the computed perplexity of
and the predefined threshold values of the LSTM models.

V. IMPLEMENTATION

We have implemented our prototype of SBGen as a part
of KVM, which is a hypervisor that virtualizes guest VMs
within a host Linux system. In our prototype, we make the
modifications required by SBGen to a Linux kernel and per-
form introspection with our model on guest VMs running the
modified kernel. SBGen runs as a single process on the host
kernel.

A. SPECIAL PACKET GENERATION ROUTINES

The main objective of SBGen is to extract from PT packets
the execution paths taken to serve each system call. Unfortu-
nately, as the conventional PT packets do not contain enough
information to accurately extract execution paths, SBGen
devises a technique of injecting special informative packets,
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such as TID, SID, SCE, NSS, and NSE, into the stream of
PT packets as mentioned in subsubsection IV-B2. We have
implemented this technique by deploying several types of
special packet generation routines into Linux kernel of the
guest VM at source code level.

Algorithm 1 Generating TID

1: function generate_TID (thread_id)

2:  indirect_jump_to(OXAAAA) = generating TIP to indicate

3:  while each bit in thread_id the beginning of the TNTs

4: if bit is 1 then

5: NOP = generating TNT:N (not taken)
6: else

7: NOP = generating TNT:T (taken)

8 endif

9: endwhile

10: indirect_jump_to(0xBBBB) = generating TIP to indicate

the end of the TNTs

FIGURE 4. Packet generation routine for TID.

Figure 4 shows the pseudocode of the packet genera-
tion routine for TID. The routine is inserted at the thread
context-switch routine of the kernel (e.g., ___switch_to ()
in Linux). Most kernels already manage a unique
number per thread for thread identification, such as
task_struct->pid in Linux. Therefore, what we need
to do is to load the unique value to a packet of Intel PT, but
sadly, PT does not provide direct support for this function.!
To overcome this limitation, the packet generation routine
employs TNT that notifies whether a conditional branch
was taken or not. The routine first loads a thread identifier
and then iterates over the bit-length of the identifier while
executing the conditional branch that is either taken or not
depending on each bit of the identifier. As the result of this
routine, we have the thread identifier encoded as a sequence
of TNTs which will be transferred in the trace data of PT.
Later, the packet recipient may be able to get the thread
identifier by simply decoding the transferred TNT sequence.
To accomplish this, however, the TNT sequence should be
perceivable within the incoming stream of trace packets.
For this purpose, the routine uses TIP that indicates the
destination address of an indirect branch. Right before and
after generating the TNT sequence, the routine executes two
delimiting indirect branches that jump to predefined unique
target addresses (OXAAAA and OxBBBB in the example) and
return immediately, thereby marking the beginning and end
of the sequence. Later when the packet recipient perceives in
the incoming packet stream a TIP with the first target address,
it can be aware of the presence of a thread identifier encoded
in a TNT sequence immediately following the TIP. It then will
read the sequence until it hits another TIP carrying the second
target address.

The packet generation routine for SID is located at the entry
point of system call handlers. As the system call identifier has
a limited range of value depending on the number of types

ntel PT on Atom architecture serves this function through PTWRITE
packet, but it is not available to our SBGen targeting Intel x64.
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of system calls, it is sufficient for the routine to only use
TIP. The routine prepares as many predefined target addresses
as the system call identifier can have, and then executes an
indirect branch that jumps to one of the predefined target
addresses according to the system call identifier, allowing
SBGen to discern which system call is invoked through the
TIP that will be generated. To generate SCE, NSS and NSE,
similar but more simplified packet generation routines are
used. The routine for SCE is inserted at the exit point of
system call handlers and the routines for NSS and NSE are
inserted at entry and exit points that are not related to system
calls, such as of interrupts handlers and kernel threads. these
routines simply generate TIPs with the predefined unique
target addresses (e.g., 0OXCCCC and 0xDDDD). As a result,
SBGen is able to recognize the end of system call processing
and the non-system call related execution paths.

B. SBGen-LITE

SBGen is by default designed to extract full execution paths
for all system calls of each VM. However, according to
our preliminary investigation for a VM, up to hundreds of
system calls can be invoked every second and the associated
execution paths to each system call can be comprised of up
to millions of branch outcomes that are expressed with TIPs
and TNTs. In this situation, it is impossible for learning-based
HIDSs to realize online inference while monitoring every
system call and the entire execution paths offered by SBGen.
To tackle this problem, we implemented a relaxed version
of SBGen, SBGen-lite to reduce the performance overhead
minimizing losing the monitoring accuracy of learning-based
HIDSs. First, SBGen-lite reduces the number of system
calls that it extracts by filtering out certain harmless system
calls (e.g. alarm, break, poll, time) that are known to be
not exploitable [31]. Moreover, SBGen-lite only extracts the
front part of each execution path instead of the entire. This
strategy was inspired by a rational intuition that an exploit
behavior occurs during the beginning of execution after the
input containing exploit payloads is provided. This intuition
has also been supported in the literature [11], which argues
that execution space can be partitioned into the front small
exploitable and the remaining post-exploitable parts due to
the attribute of exploit payloads that should be delicately
designed based on strict hypothesis regarding the execution
environment. To see its effectiveness, we run the model with
different packets for execution paths, and the results of these
experiments will be explained in section VI.

VI. EVALUATION

In this section, we evaluate SBGen by considering the fol-
lowing points: (1) the performance of SBGen in extracting
the syscall traces and the execution paths and (2) the security
when using SBGen with learning-based HIDSs. All experi-
ments were conducted on a machine with Intel i5-8500 Coffee
Lake 3.00 GHz cores, 8 GB DDR4 RAM and an Nvidia
GeForce 1080 graphic card. We have implemented the pro-
totype of SBGen on the KVM hypervisor included in Ubuntu
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FIGURE 6. Runtime performance impact of HIDS-SBGen with SBgen-lite when one or two guest VMs are running.

TABLE 3. Summary of generated datasets for SBGen.

The size of data  System call Exe-path
Lookup table 283 4096
Training data 3733 3343194
Validation data 414 371466
Normal test data 5560 4390484
Attack test data 285 75715

16.04 with Linux kernel 4.8.0. SBGen is designed to allow
each guest VM to run a heterogeneous OS. For simplicity
in this paper, however, we assume that all guest VMs run
the same OS of Ubuntu 16.04 with Linux 4.8.0. The LSTM
models of HIDS-SBGen is implemented using Tensorflow”
v1.11 with GPU support, one of the most popular frameworks
for machine learning.

A. PERFORMANCE OF SBgen

To show the efficiency of SBGen, we conducted experiments
to measure its runtime performance. For this, we ran the
SPEC CPU2006 benchmark suite, respectively when one or
two guest VMs are running. We measured the impact on
runtime performance by examining how much the bench-
marks slow down on guest VMs when SBGen is enabled.
Figure 5 shows the measurement results of activating Intel PT
and the feature extraction function one by one. On average,
PT alone incurs 4.90 % (with one VM) and 7.28 % (with two
VMs) slowdown. After the feature extraction function runs
additionally, it introduces 8.51 % (with one VM) and 11.67 %
(with two VMs) slowdown on average.

2https://Www.te:nsorflow.org
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B. SECURITY OF LEARNING-BASED HIDSs WITH SBGen
The HIDS-SBGen described in subsection IV-C empirically
shows how SBGen is helpful to improve the effectiveness of
HIDS. Below, we evaluate it in terms of both performance
and security. Table 5 shows the detailed parameters for model
configuration and the hyperparameters for training.

1) RUNTIME ANOMALY DETECTION

By cooperating with SBGen, HIDS-SBGen can perform run-
time anomaly detection on a multi-tenant VM system. To see
its effectiveness, we conducted the performance and security
assessments. First, as performance assessment, we measured
the amount of performance degradation of the system when
HIDS-SBGen is running. Next, as a security assessment,
we confirmed that HIDS-SBGen can detect major security
attacks threatening VM kernels, such as privilege escalation
attacks and mimicry attacks.

2) PERFORMANCE IMPACT ON THE SYSTEM

HIDS-SBGen can potentially work with either SBGen
or SBGen-lite. Given the limited processing capacity of
the LSTM models HIDS-SBGen having, we experimented
HIDS-SBGen with SBGen-lite. As shown in Figure 6, when
all HIDS-SBGen run with SBGen-lite, the average slowdown
of the system is 5.47 % (with one VM) and 8.01 % (with two
VMs). The performance impact appears to grow depending
on the number of running VMs, which is due apparently
to the increasing number of packets that HIDS-SBGen and
SBGen-lite have to handle. We believe the measured results
show the efficiency of SBGen-lite. Particularly noteworthy
in the performance evaluation is that HIDS-SBGen with
SBGen-lite achieves online inference for the runtime behav-
ior of guest VMs.
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TABLE 4. Detection accuracy of HIDS-SBGen with SBGen-lite, given as the area under the receiver operating characteristic curve (AUC), equal error rate
(EER), mean values (xp: normal data, ;4: attack data) of the perplexity and standard deviations (o5: normal data, o4: attack data) of the perplexity.
SC-LSTM and EP-LSTM mean the system call model and execution path model, respectively.

Both models Both models
Attack System call model only Types of Exe-path Execution path model only w/ fixed SC-LSTM | w/ fixed EP-LSTM
AUC EER Hn on La Ta AUC EER Hn On Ha Ta AUC EER AUC EER
Top 10 TIPs 09828 00171  6.6921 89 426655 0011 | 09746  0.0483 | 09895  0.0322
Top 10 packets | 0.9828 00172  3.3272 12881 94320 00021 | 09742  0.0490 | 09902  0.0200
Top 30 TIPs 09922 00079 22399 11818  7.5265 00067 | 09781  0.0416 | 09960  0.0078
MySQL 0.9633 00416 90703 50406 188338 08423 | p 50 ackets | 10000 0.0000  1.5666 13555 83367 00142 | 09784  0.0416 | 1.0000  0.0000
Top 50 TIPs 09820 00179 134720 309662 144.6756  0.6697 | 0.9774  0.0420 | 09900  0.0200
Top 50 packets | 0.9836 00200 23025 27803 149158 04422 | 09866  0.0219 | 0.9904  0.0200
Top 10 TIPs 09451 00800 88645 144369  53.5781  13.6822 | 09968  0.0063 | 09568  0.0790
Top 10 packets | 0.9903 00600  4.6462 16735  15.6253 53937 | 09968  0.0063 | 0.9716  0.0538
Top 30 TIPs 09859 00800 19049 16352  7.0758 10087 | 09968  0.0063 | 09564  0.0806
GNUScreen | 0.9949 0.0063  8.1248 47441 202001 14133 | 350 packers | 09839 0.0800 14097 1.1178 6.1845 11514 | 09968  0.0063 | 0.9559  0.0814
Top 50 TIPs 09546  0.0800 57.3161 201.8759  653.0443  223.6096 | 0.9968  0.0063 | 0.9578  0.0800
Top 50 packets | 0.9693 00800  8.9046 307609 117.8157  56.6203 | 0.9968  0.0063 | 09579  0.0800
Top 10 TIPs 09615 0.1127 119058 38320 185696 17747 | 09760  0.0456 | 09384  0.1093
Top 10 packets | 09149  0.1800 14.3649 41852 183741 29480 | 09760  0.0458 | 0.9081  0.1800
Top 30 TIPs 09563 00800 115844 33405 159058  3.6798 | 0.9760  0.0456 | 0.9560  0.0800
BPF 0.9746  0.0463  24.1608  10.7867 489005  6.9342 | g ackers | 09365 0.1288 127027 40323 18712 30832 | 0.9760 00456 | 09258  0.1284
Top 50 TIPs 09863 00202 116743 35821 167481 23213 | 09760  0.0456 | 09849  0.0292
TopSOpackets | 09164 0.1222 134069 37322  17.2987 45319 | 09760  0.0456 | 09377  0.1106
Top 10 TIPs 09789 00600 110623 32144 185696 17747 | 09550  0.0799 | 09654  0.0600
Top 10 packets | 0.9635 00480 152260 42874  20.2858 34978 | 09545  0.0800 | 0.9729  0.0479
) Top 30 TIPs 09877 00530 109526  3.1133 147328 24357 | 09543 00799 | 09734  0.0504
Netlink socket | 0.9792 0.0800 223541 106255  60.5400 137846 | . hyg ociere | 09773 00422 148705 42134 201404 49962 | 0.9545 00799 | 0.9766  0.0421
Top 50 TIPs 09814 00800 10.6403 29636  13.6755 32490 | 09559  0.0799 | 09567  0.0800
Top SOpackets | 0.9942 00400 13.8503 38450  17.5891 42100 | 09565  0.0799 | 0.9794  0.0400
Top 10 TIPs 09572 0.1111 11.6395 33062 132536 0.1833 | 09641 00670 | 09570  0.1111
Top 10 packets | 0.9901 00177  3.7701 12335 64948 44615 | 09641  0.0670 | 09911  0.0174
Top 30 TIPs 09740 00494 129517 33062  13.2536 02901 | 09641  0.0670 | 09849  0.0519
sudo 0.9859 00598  47.6893 257166 779265 41966 | p 30 packets | 09482 01362 59862 23984  10.5974 68960 | 0.9641  0.0670 | 09192  0.1342
Top 50 TIPs 09468 0.1111 112450  3.1914 129546  0.1505 | 09641  0.0670 | 09380  0.1110
Top 50 packets | 0.9855 0.0283  4.8228 18214  8.6975 58806 | 0.9643 00666 | 0.9909  0.0291
Top 10 TIPs 09722 00333 173101  10.1487 912013 653277 | 09826 00331 | 09830  0.0324
Top 10 packets | 0.8655 0.1680  7.2042  3.1343 153141 147254 | 09775  0.0421 | 09147  0.1456
) Top 30 TIPs 09866 00161 11085 08705 44418 12635 | 09930 00135 | 09919  0.0160
Rootkit 09997 0.0143 154255 91038 39315 22312 | o hg ket | 09977 00071 L1206 0.6161 23387 10335 | 09931 00135 | 0.9959  0.0081
Top 50 TIPs 09846 00185 323415  7.5349 336.3354 1753800 | 09925  0.0142 | 09906  0.0183
Top S0 packets | 0.9870 00153 101095  10.1095  89.3687 535788 | 09926  0.0142 | 0.9923 00152
3) PRIVILEGE ESCALATION ATTACKS HEUR:Backdoor.Linux.Ganiw.d, Linux.Xorddos, Trojan.

Privilege escalation attacks [32]-[34] are a major threat to
the kernel in that malicious applications, out of the con-
trol of the kernel, can compromise other applications or
even the kernel. To test that HIDS-SBGen can detect this
type of attacks, we first trained the LSTM models with
data, namely the syscall traces and execution-paths, from
benign VMs running various benign applications including
MySQL, GNU Screen, BPF and a Netlink socket [35]-[38].
Four applications were specially selected as they were
the target victims of publicly available privilege escala-
tion attacks: CVE-2016-6663 and CVE-2016-6664 [39], [40]
against MySQL, EDB-ID-41154 [41] against GNU Screen,
CVE-2017-16995 [38] against BPF program, CVE-2017-
11176 [37] against a Netlink socket, and CVE-2019-18634
against sudo with pwfeedback enabled.

The data for training is obtained in a controlled environ-
ment, that is, without any attacks. In order to induce the pro-
gram to show normal behavior, we provide a mix of human
input, statements or commands to be exact, and simulated
human input, a random combination of records of actual
human input activities.

For our inference with HIDS-SBGen, we give a mix-
ture of normal and attack inputs to MySQL, GNU Screen,
BPF and Netlink socket as well as execute benign appli-
cations (that were not included in the training of a
model) and rootkits (Trojan.Elf32.Ganiw.dirahq, Back-
door.Linux.Gates.B, virus.elf.rootkit.i, ELF/DDoS.BD!tr,
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Xorddos.Linux.34).

In Table 3 we report the total number of syscalls and
execution paths collected to train and test our LSTM models.
For model training, we report the number syscalls and the sum
of their corresponding execution paths lengths used to train
and validate our model alongside the lookup table size built
from the training data. For inference, we report the amount
of data collected from normal benign VM activity and attack
events.

TABLE 5. Parameter for model configuration and hyperparameters for
training.

System call  Execution path

Name of parameter

model model
the number of LSTM cell 8 64
embedding vector size 8 64
maximum lookup table size 283 4096
minimum occurrence to be added in lookup table 0 10
dropout probability 0.5 0.5
learning rate 0.001 0.001
batch size 512 512

Table 4 comprehensively shows the detection accuracy of
HIDS-SBGen with SBGen-lite against the privilege escala-
tion attacks and rootkits. As mention in subsection IV-C,
HIDS-SBGen embeds two LSTM models, i.e., system call
model and execution path model, whose relevant parame-
ters are listed in Table 5. Therefore, we experimented on
the following cases according to the types of the activated
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models: system call model (SC-LSTM) only, execution path
model (EP-LSTM) only, and both models. The case of using
both models together is divided again into two sub-cases
depending on which model’s predefined threshold is fixed.
Apart from the system call model only, we ran the exper-
iments while varying the number of the initial packets to
be examined of execution paths by tuning SBGen-lite: “Top
10/30/50 TIPs’ examine only the initial 10/30/50 TIPs and
“Top 10/30/50 packets’ examine the initial 10/30/50 packets
regardless of TIP or TNT. Note that one TNT packet may
contain from one to six conditional branch outcomes while
one TIP contains a single target address of an indirect branch.

As can be seen in Table 4, though all cases show adequate
accuracy, the AUC of using both models is typically the great-
est, which indicates that it best differentiates attack events
from normal behavior. This high accuracy is contributed by
the clear difference between the perplexity values of normal
() and attack behavior (u,). Obviously, it can be seen that
SBGen-lite, a relaxed SBGen in a way of extracting only
the initial packets of an execution path, provides enough
accuracy when being used with the learning-based HIDS. The
optimal number of initial packets for the best accuracy varies
on attacks. Generally, HIDS-SBGen gains a higher detection
accuracy when examining a bigger number of initial packets.
However, the more monitoring packets, the more run-time
overheads. Therefore, to achieve online inference, examining
only top 30 initial packets seems adequate for HIDS-SBGen.

In the above experiments, we tested HIDS-SBGen mainly
with privilege escalation attacks and rootkits. We deem that
our experiments are practical because these attacks are con-
sidered the most critical threats from malicious applica-
tions within VMs. In addition, since these attacks exploit
various common security vulnerabilities, such as race con-
dition, improper arithmetic/sign-extension, buffer overflow,
and code injection, HIDS-SBGen would be effective as well
against other types of attacks based on these vulnerabilities.

Mimicry Attacks: As discussed in subsection II-D, system
call mimicry attacks are types of attacks that evade SCI by
exploiting security vulnerabilities while invoking a system
call sequence that appears to be in a normal pattern. Fortu-
nately, system call mimicry attacks can be thwarted by moni-
toring execution paths regarding system calls. This is because
no matter how carefully crafted system call sequences are,
the detailed execution paths must be revealed as abnor-
mal when exploiting vulnerabilities. Therefore, we tested
HIDS-SBGen against a syscall mimicry attack to evaluate
the usefulness of employing execution paths as another input
feature along with syscall traces. The mimicry attack is a
modified version of the privilege escalation attack against
MySQL which mimics normal MySQL syscall invocation
behavior. As can be seen in Table 6, the perplexity of
syscalls in mimicry attacks becomes close to that of nor-
mal syscall behavior. On the other hand, the perplexity of
execution paths stays high which indicates that execution
paths can reveal the malicious behavior hidden with mimicry
attacks.
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TABLE 6. The usefulness of input features.

syscall perplexity  exe-path perplexity
Normal 9.0703 25.2631
Attack 18.3883 41749115
Mimicry 11.4239 4581.2765

VII. CONCLUSION

In this paper, we presented SBGen that can improve
learning-based HIDSs that detect any abnormal activities
against guest VM kernels in a virtualized system, by extract-
ing the two types of rich information reflecting execution
context in which system calls are invoked and processed:
(1) system call traces and (2) execution paths of the guest
VM kernel taken to serve each system call. To obtain such rich
information efficiently and accurately, SBGen is designed to
leverage both Intel PT, a hardware-supported low-overhead
execution tracing feature, and several software techniques
devised for elaborately decoding and purifying the traced PT
packets. As a result, SBGen can perform with reasonable
performance, and cooperate with learning-based HIDSs to
improve their detection accuracy.
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