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Abstract: Many studies have been conducted on multi-output systems that transfer power to multiple
receivers in conventional planar-type wireless power transfer (WPT) systems; however, few studies
and analyses have taken into account the mutual inductance between receivers in multi-output
omnidirectional WPT systems. In this paper, the correlation between the mutual inductance between
receivers and the power transfer efficiency (PTE) in a multi-output omnidirectional WPT system
is analyzed, and a limitation in terms of a reduction in the PTE with an increase in the influence
of the mutual inductance between the receivers is presented. To solve this problem, a resonant
network design method is proposed to reduce the influence of mutual inductance between receivers,
and appropriate canceling capacitor values are selected using the weighted sum method among
multi-objective optimization methods. The proposed method is through simulations and experiments,
and it presents the potential for improvement in the problems that occur when transferring power to
multiple receivers.

Keywords: wireless power transfer (WPT) system; omnidirectional WPT system; multi–output;
mutual inductance; resonant network

1. Introduction

Studies on wireless power transfer (WPT) systems, which have many advantages over wired power
transmission in terms of safety and convenience, are increasing rapidly. As a result, WPT technology
has been applied to a variety of applications such as home appliances, electric cars, medical devices,
portable devices, and military equipment.

WPT systems can be largely distinguished based on the method of wireless power transmission,
which may be directional (using planar-type coils) or omnidirectional (using a coil structure that allows
power transmission in any direction). Initial studies on WPT systems were mainly conducted using
planar-type transmitter coils and single-receiver situations. To further enhance the practicality of the
WPT system, various multi-output studies have been proposed to transfer power to multiple receivers
as well as to a single receiver [1–11].

To increase the power transfer efficiency (PTE), a structure of the transmitter that improved the
coupling coefficient between the transmitter and receiver was proposed in [1–3], and an efficient
variable frequency control method was studied in [4–6]. In addition, in [7,8], the results of the study
were proposed to ensure stable power transmission even with load fluctuations.

As mentioned in [9], the PTE can be affected by the mutual inductance between receivers, and
several research results have been presented to solve this problem [10,11]. Reference [10] proposed
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changes in the capacitors that compensate for changes in the location of the receiver to alleviate the
problem of reduction in PTE as the mutual inductance between the receivers increases. However,
this approach has disadvantages because it lacks practicality. To overcome this, a method was studied
in [11] to select an appropriate pair of compensation capacitors to ensure that the average value of PTE
is maximized within the range of specific coupling coefficients between receivers.

Furthermore, an omnidirectional WPT system that can generate magnetic fields in all directions to
overcome the shortcomings of the limited positional freedom of the receiver in the existing planar-type
WPT system was presented in [12]. Traditional omnidirectional WPT system studies are mainly aimed
at transferring power to a single receiver [13–19].

To increase space utilization and reduce system costs, multi-output omnidirectional WPT systems
with multiple receivers were studied [20–27]. Reference [20] proposed a transmitter structure that
would cause the density of the magnetic field to be uniform in reliably transferring power to multiple
receivers. Various control methods have been proposed, such as a modulation method of the current
magnitude or phase angle [21–23], a method of physically rotating the transmitter [24], and the use of
resonance frequency modulation [25]. In addition, in [26,27], a study of compensation circuits was
conducted that reliably transferred power to multiple receivers despite load fluctuations.

However, the existing studies on multi-output omnidirectional WPT systems overlook the mutual
inductance between receivers or merely present analytical models containing mutual inductance
between receivers; hence, efficient power transfer remains a challenge.

In this study, the correlation between the mutual inductance between receivers and PTE is
analyzed to improve the phenomenon of a reduction in PTE owing to an increase in the mutual
inductance between receivers in a multi-output omnidirectional WPT system. Based on this theoretical
analysis, a resonant network design method is proposed to reduce the influence of mutual inductance
between receivers, and appropriate canceling capacitors are selected using the weighted sum method
among multi-objective optimization methods. Through the results of simulations and experiments, the
performance and validity of the proposed method are verified to present the potential for improvement
in the problems occurring in power transmission to multiple receivers in a multi-output omnidirectional
WPT system.

2. Multi-Output Omnidirectional Wireless Power Transfer System

2.1. System Configuration

Figure 1 illustrates the configuration of a multi-output omnidirectional WPT system. Figure 1
presents the configuration and coordinate system of multi-output omnidirectional WPT systems. Coil 1
and coil 2 are coils on the transmitter side. Coil 3 and coil 4 are coils on the receiver side, and the
center points of the two receivers are placed over the XY plane. M12 is the mutual inductance between
transmitters. M13, M23, M14, and M24 are the mutual inductances between the transmitter and receiver.
M34 is the mutual inductance between receivers. Coil 1 and coil 2 are configured to be orthogonal to
each other; hence, the mutual inductance between the transmitters M12 is zero and can be ignored.
Inside the transmitter, a ferrite core is inserted to increase the power-transfer distance [19]. The position
of each coil is represented by a coordinate system, and each component is defined as follows: the
distance from point P to the origin is D, the angle with the Z-axis in the positive direction at point P is
θ, and the angle with the positive X-axis concerning to the Z-axis at point P is φ.

Figure 2 illustrates the system circuit and the equivalent circuit of a multi-output omnidirectional
WPT system. Figure 2a presents a system circuit in a multi-output omnidirectional WPT system. Vin is
the input voltage, Iin is the input current, Io1 and Io2 are the output currents at each receiver, Vo1 and
Vo2 are the output voltages at each receiver, U1 and U2 are the full-bridge output voltages, I1 and
I2 are the transmitter currents, and I3 and I4 are the receiver currents. The transmitter consists of a
full-bridge converter circuit using switches Qa1,a2,a3,a4 and Qb1,b2,b3,b4, and compensation capacitors C1

and C2 in the series resonant network. The receiver consists of a bridge rectifier circuit using diodes
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Da1,a2,a3,a4 and Db1,b2,b3,b4, and compensation capacitors C3 and C4 in the series resonant network.
L1,2,3,4 is the self-inductance at each coil, R is the parasitic resistance, RL is the load resistor, and Co is
the output capacitor.Energies 2020, 13, x FOR PEER REVIEW 3 of 15 
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Figure 1. System configuration of multi-output omnidirectional wireless power transfer system.
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Figure 2. Multi-output omnidirectional wireless power transfer system: (a) system circuit; (b) equivalent
circuit in a situation where mutual inductance between receivers is considered.
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Figure 2b presents a conversion of Figure 2a into an equivalent circuit of an omnidirectional WPT
system taking into account the mutual inductance between multiple receivers. If KVL (Kirchhoff’s
Voltage Law) is applied to each circuit, then the following matrix is obtained:

U1
U2
0
0

 =


R + jX1 0 jwM13 jwM14
0 R + jX2 jwM23 jwM24

jwM13 jwM23 R + Rac + jX3 jwM34
jwM14 jwM24 jwM34 R + Rac + jX4




I1
I2
I3
I4

 (1)

where Rac = (8/π2)RL is the AC equivalent resistance, X1 = wL1−1/wC1, X2 = wL2−1/wC2, X3 = wL3−1/wC3,
and X4 = wL4−1/wC4 are the reactance components of each coil, and w is defined as the operating
angular frequency.

Equation (1) shows that the receiver current changes owing to changes in the mutual inductance,
which can be inferred to affect the PTE. Therefore, to improve the PTE, the relationship between the
mutual inductance and PTE must be analyzed.

2.2. Relationship between Mutual Inductance between Receivers and Power Transfer Efficiency

To theoretically analyze the relationship between the mutual inductance and PTE in a multi-output
omnidirectional WPT system, the following equations are introduced using Figure 2.

Pout = Pload1 + Pload2 =
(
|I3|

2 + |I4|
2
)
Rac (2)

Pin = Ploss1 +Ploss2 +Ploss3 +Ploss4 +Pload1 +Pload2 =
(
|I1|

2 + |I2|
2 + |I3|

2 + |I4|
2
)
R+

(
|I3|

2 + |I4|
2
)
Rac (3)

η =
Pout

Pin
=

(
|I3|

2 + |I4|
2
)
Rac(

|I1|
2 + |I2|

2 + |I3|
2 + |I4|

2
)
R +

(
|I3|

2 + |I4|
2
)
Rac

(4)

where the sum of power consumed at each AC equivalent resistance is expressed in Equation (2)
as output power Pout, the sum of power consumed at each coil’s parasitic resistance and output is
expressed as input power Pin, and the relation between the input power and output power is expressed
in Equation (4) as PTE η.

In [21], the phase angle control method, in which the magnitude of the transmitter current is equal
to I and the phase angle is controlled at 90◦, was introduced to create a rotating magnetic field on the
XY plane. In this study, the phase angle control method of the transmitter current is applied to transfer
power to multiple receivers simultaneously.

Assuming that the system operates at the resonant frequency, the PTE equation is transformed
as follows:

η =
Pout

Pin
=

wo
2Rac

2
{
(R+Rac)

2+wo2M34
2
}
R

(M13
2+M23

2)+(M14
2+M24

2)
+ wo2(R + Rac)

(5)

where Equation (5) shows that the mutual inductance component, which varies with changes in
the receiver position, affects the PTE. For a detailed analysis, the system model shown in Figure 3
was created.

Figure 3a depicts a system consisting of an omnidirectional WPT transmitter and a single receiver.
To induce mutual inductance between coil 1 and coil 3, the system was simplified as shown in Figure 3b.
The distance between the origin and the center of coil 3 is defined as D, the radius of each coil is r,
the number of turns for each coil is N, the permeability of free space is µo, and the precondition for
inducing mutual inductance is defined as D� r and θ = 90◦.



Energies 2020, 13, 5556 5 of 15
Energies 2020, 13, x FOR PEER REVIEW 5 of 15 

 

(a) (b) (c) 

Figure 3. System model for deriving mutual inductance between transmitter and receiver: (a) System 
configuration; (b) deriving mutual inductance between coil 1 and coil 3; (c) deriving mutual 
inductance between coil 2 and coil 3. 

Figure 3a depicts a system consisting of an omnidirectional WPT transmitter and a single 
receiver. To induce mutual inductance between coil 1 and coil 3, the system was simplified as shown 
in Figure 3b. The distance between the origin and the center of coil 3 is defined as D, the radius of 
each coil is r, the number of turns for each coil is N, the permeability of free space is μo, and the 
precondition for inducing mutual inductance is defined as D ≫ r and θ = 90°. 

The magnetic flux density B from coil 1 to coil 3 is defined as follows [28]: 

( )φ

μ
φ φ= +

2
0 1

13 D3

NI r
B a 2cos a 2cos

4D
 (6)

where I1 is the current of coil 1, аD is a unit vector of distance D, and аф is a unit vector of ф.  
The magnetic flux Ф13 from coil 1 to coil 3 is defined as follows: 

πμ φ
Φ = ⋅ =

3

4
0 1

13 13 3surface _S

2 NI r cos
B ds

4D
. (7)

The proportional coefficient of the flux linkage and current is the mutual inductance, where the 
mutual inductance M13 between coil 1 and coil 3 is given by 

πμ φ
=

4
0

13 3

2 Nr cos
M

4D
. (8)

Figure 3c shows that coil 1 physically rotated by 90° is equal to coil 2. In view of this, by replacing 
ф with 90° −ф in Equation (8), the mutual inductance M23 between coil 2 and coil 3 can be defined as 
follows: 

πμ φ
=

4
0

23 3

2 Nr sin
M

4D
. (9)

Equations (8) and (9) indicate that the term M132 + M232 in Equation (5) is consistent with changes 
in the location of the receiver if the distance D is constant. The term M142 + M242 in Equation (5) is also 
constant if the same condition applies. Thus, when distance D is constant, the only parameter that 
changes in Equation (5) as the distance between receivers decreases is the mutual inductance M34 
between the receivers, and it can be seen that increasing the corresponding term decreases the PTE. 
According to these results, the theoretical analysis has shown that as the distance between receivers 
decreases, the mutual inductance between the receivers increases, thereby decreasing the PTE. This 
presents a need to reduce the influence of the mutual inductance between receivers. 

Figure 3. System model for deriving mutual inductance between transmitter and receiver: (a) System
configuration; (b) deriving mutual inductance between coil 1 and coil 3; (c) deriving mutual inductance
between coil 2 and coil 3.

The magnetic flux density B from coil 1 to coil 3 is defined as follows [28]:

B13 =
µ0NI1r2

4D3

(
aD2 cosφ+ aφ2 cosφ

)
(6)

where I1 is the current of coil 1, aD is a unit vector of distance D, and aφ is a unit vector of φ.
The magnetic flux Φ13 from coil 1 to coil 3 is defined as follows:

Φ13 =

∫
sur f ace_S3

B13 · ds =
2πµ0NI1r4 cosφ

4D3
. (7)

The proportional coefficient of the flux linkage and current is the mutual inductance, where the
mutual inductance M13 between coil 1 and coil 3 is given by

M13 =
2πµ0Nr4 cosφ

4D3
. (8)

Figure 3c shows that coil 1 physically rotated by 90◦ is equal to coil 2. In view of this, by replacing
φ with 90◦ −φ in Equation (8), the mutual inductance M23 between coil 2 and coil 3 can be defined as
follows:

M23 =
2πµ0Nr4sinφ

4D3
. (9)

Equations (8) and (9) indicate that the term M13
2 + M23

2 in Equation (5) is consistent with changes
in the location of the receiver if the distance D is constant. The term M14

2 + M24
2 in Equation (5) is

also constant if the same condition applies. Thus, when distance D is constant, the only parameter
that changes in Equation (5) as the distance between receivers decreases is the mutual inductance
M34 between the receivers, and it can be seen that increasing the corresponding term decreases the
PTE. According to these results, the theoretical analysis has shown that as the distance between
receivers decreases, the mutual inductance between the receivers increases, thereby decreasing the
PTE. This presents a need to reduce the influence of the mutual inductance between receivers.



Energies 2020, 13, 5556 6 of 15

3. Resonant Network Design Method to Reduce Influence of Mutual Inductance
between Receivers

3.1. Proposed Design Method

To design a resonance network that reduces the influence of mutual inductance between receivers,
an analytical model where the mutual inductance between receivers is ignored is derived as follows.

Figure 4 shows an equivalent circuit in which the mutual inductance between the receivers is
ignored. U1

# and U2
# are full-bridge output voltages, and I3

# and I4
# are receiver currents when the

mutual inductance between receivers is ignored.
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Assuming that the system operates at a resonant frequency and that KVL is applied to each circuit,
the following equation is derived:

U1
#

U2
#

0
0

 =


R 0 jwM13 jwM14
0 R jwM23 jwM24

jwM13 jwM23 R + Rac 0
jwM14 jwM24 0 R + Rac




I1
I2
I3

#

I4
#

 (10)

The PTE when ignoring the mutual inductance between receivers is induced in the same manner
as in Equation (4):

η# =

(∣∣∣I3
#
∣∣∣2 + ∣∣∣I4

#
∣∣∣2)Rac(

|I1|
2 + |I2|

2 +
∣∣∣I3

#
∣∣∣2 + ∣∣∣I4

#
∣∣∣2)R +

(∣∣∣I3
#
∣∣∣2 + ∣∣∣I4

#
∣∣∣2)Rac

. (11)

Equation (5) shows that the PTE is maximized when the mutual inductance between the receivers
nears zero. Thus, Equation (11) represents the maximum PTE. Through this, the PTE can be expected
to improve by reducing the influence of the mutual inductance between receivers if Equations (10) and
(11) are derived by minimizing the influence of the mutual inductance between receivers.

To improve the PTE, an analytical model of adding canceling capacitors in series is presented
below. Figure 5 depicts a model with a resonant network that reduces the influence of the mutual
inductance between receivers.
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If KVL is applied to each circuit by applying the same operating conditions as when deriving
Equation (10), then the following equation is derived:

U1
∗

U2
∗

0
0

 =


R 0 jwM13 jwM14
0 R jwM23 jwM24

jwM13 jwM23 R + Rac − j 1
wCC1

jwM34

jwM14 jwM24 jwM34 R + Rac − j 1
wCC2




I1
I2
I3
∗

I4
∗

 (12)

where U1* and U2* are full-bridge output voltages, and I3* and I4* are receiver currents when adding
canceling capacitors CC1 and CC2.

To obtain values of the canceling capacitors that reduce the influence of the mutual inductance
between the receivers, two voltage equations are derived from Equation (12) as follows:{(

R + Rac − j
1

wCC1

)}
I3
∗ + jwM34I4

∗ = − jwM13I1 − jwM23I2 (13)

jwM34I3
∗ +

{(
R + Rac − j

1
wCC2

)}
I4
∗ = − jwM14I1 − jwM24I2. (14)

To solve Equations (13) and (14), the receiver currents I3
# and I4

# of the analytical model in which
the mutual inductance between the receivers is neglected are substituted for the receiver currents I3*
and I4* of the analytical model in which the canceling capacitor is added. However, the values of the
canceling capacitors CC1 and CC2 are derived in the form of a complex number, making it impossible
to implement. Therefore, Equations (13) and (14) are used to induce canceling capacitors that satisfy
the functions of Equations (15) and (16), as follows:

fmin 1(CC1) =

√{
w2M34M24 −wM23

(
1

wCC1

)}2

+

{
w2M34M14 −wM13

(
1

wCC1

)}2

(15)

fmin 2(CC2) =

√{
w2M34M23 −wM24

(
1

wCC2

)}2

+

{
w2M34M13 −wM14

(
1

wCC2

)}2

. (16)
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As a result, canceling capacitors satisfying Equations (15) and (16) are defined as follows:

CC1 =
M23

w2M34M24
,

M13

w2M34M14
(17)

CC2 =
M24

ω2M34M23
,

M14

ω2M34M13
(18)

Equations (17) and (18) show that the values of canceling capacitors depend on the characteristics
of the application or the user’s design criteria.

3.2. Selection of Canceling Capacitors Using Multi-Objective Optimization Method

Specific criteria are required to select appropriate values of the canceling capacitors. Before
establishing the criteria, simulations were conducted on two cases to examine the tendency of the
selection of canceling capacitors, and the system parameters used are listed in Table 1.

Table 1. System parameters.

Parameter Value (Unit)

Input Voltage (Vin) 100 (V)
Resonant Frequency (fo) 200 (kHz)
Operating Frequency (f ) 202 (kHz)

Self-Inductance of Transmitters (L1, L2) 93.3 (µH)
Self-Inductance of Receivers (L3, L4) 56.6 (µH)

Resonant Capacitor of Transmitters (C1, C2) 6.8 (nF)
Resonant Capacitor of Receivers (C3, C4) 11.2 (nF)

Radius of Coil (r) 75 (mm)
Number of Turns (N) 16 (Turns)
Output Capacitor (Co) 100 (µF)

Load Resister (RL) 5.8 (Ω)

Figure 6 depicts the simulated situation in which receiver 1 of coil 3 is located at D = 150 mm,
θ = 90◦, φ = 0◦, and receiver 2 of coil 4 moves from D = 200 mm, θ = 90◦, φ = 180◦ to D = 200 mm,
θ = 90◦, φ = 0◦, thus increasing the mutual inductance between receivers in a multi-output WPT system.
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Figure 6. Situations where mutual inductance between receivers increases: (a) Position of coil 3 is
(D = 150 mm, θ = 90◦, φ = 0◦), and position of coil 4 is (D = 200 mm, θ = 90◦, φ = 180◦); (b) position of
coil 3 is (D = 150 mm, θ = 90◦, φ = 0◦), and position of coil 4 is (D = 200 mm, θ = 90◦, φ = 0◦).
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The reference parameter used to select the canceling capacitor is the coupling coefficient between
receivers, which is defined as follows:

k34 =
M34
√

L3L4
(19)

Figure 7a shows the PTE when a canceling capacitor is selected based on k34 = 0.178. When φ
changes from 180◦ to 30◦, the PTE is reduced by 9.72% on average compared to that before the reduction
of mutual inductance between receivers; however, when φ changes from 25◦ to 0◦, the average
improvement is 21.6%. Figure 7b shows the PTE when a canceling capacitor is selected based on
k34 = 0.04. When φ changes from 180◦ to 40◦, the PTE is reduced by 0.3% on average compared to that
before the reduction of mutual inductance between receivers; however, when φ changes from 35◦ to 0◦,
the average improvement is 7.6%.
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Figure 7. Power transfer efficiency (PTE) according to each coupling coefficient: (a) k34 = 0.178;
(b) k34 = 0.04.

Thus, selecting a pair of canceling capacitors by which the PTE is reduced less than before adding
canceling capacitors when the mutual inductance between receivers is small and the PTE is increased
more than before adding canceling capacitors when the mutual inductance between receivers is large,
can be expected to ensure a uniform and high average PTE despite the change in receiver location.

The weighted sum method among multi-objective optimization methods [29] was used to select
an appropriate pair of canceling capacitors to meet the following conditions:

P(x) =
k∑

i=1

wi · fi(x) (20)

g j(x) > 0; j = 1 ∼ p. (21)

Equation (20) is defined as a function of the product of the weighting factor wi and the objective
function fi, and Equation (21) is a constraint. A solution that satisfies the constraints and simultaneously
minimizes Equation (20) is the optimum solution within the user-selected conditions.

f1(x) = ηstdev =

√√√
1

N − 1

N∑
i=1

(
ηi − ηavg

)2
(22)

f2(x) = ηavg =
1
N

N∑
i=1

ηi (23)
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CC1 > 0, CC2 > 0. (24)

Equation (22) is the first objective function that indicates the standard deviation of the ith PTE
ηi and contributes to the uniform distribution of PTE even with changes in the mutual inductance
between receivers. Equation (23) is the second objective function that indicates the average PTE and
contributes to the creation of a high PTE. Equation (24) defines the constraints of canceling capacitors
as designable positive.

In Figure 8, f 1
norm(x) and f 2

norm(x) are functions that normalize Equations (22) and (23).
The schematization of f 1

norm(x) and f 2
norm(x) that meets the constraints is expressed in Figure 8.

The weighting factors w1 and w2 are equally set at 0.5. This indicates that the weight of the normalized
objective functions f 1

norm(x) and f 2
norm(x) is equally considered and the point meeting this condition is

the optimal solution. As a result, the canceling capacitors are selected as CC1 = 146 nF and CC2 = 23.8 nF.
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4. Simulated and Experimental Results

4.1. Simulated Results

The simulated situation is the same as in Figure 6. The canceling capacitors CC1 and CC2 are
added in series to the circuit of the receiver, as shown in Figure 9. The canceling capacitor values were
derived as CC1 = 146 nF and CC2 = 23.8 nF in the preceding process, and the simulation was carried
out using PSIM.

Figure 10 shows the simulated waveform of the transmitter currents. It can be confirmed that
the magnitude of the transmitter currents is controlled at 4 A and the phase angle of the transmitter
currents is controlled at 90◦ for simultaneously transferring power to multiple receivers.

Figure 11 shows simulated comparison of the PTE before and after the reduction of the mutual
inductance influence between the receivers following the φ change in receiver 2. As φ decreases from
180◦ to 0◦, the distance between receivers becomes shorter, which means that the mutual inductance
between the receivers increases. The average PTE before the reduction was 91.8% in the section where
φ changes from 180◦ to 40◦, and the average PTE after the reduction was 89.3%, which is about 2.5%
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less than before the reduction. The average PTE before the reduction in the section where φ changes
from 35◦ to 0◦, where the mutual inductance between receivers was rapidly increasing, was 71.5%,
and the average PTE after reduction was 89.3%, showing an increase of about 17.8% compared to that
before reduction. Based on the simulated results, the proposed resonant network design method is
confirmed to decrease in the influence of the mutual inductance between receivers and improve PTE.Energies 2020, 13, x FOR PEER REVIEW 11 of 15 
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Figure 9. Multi-output omnidirectional wireless power transfer system circuit when adding
canceling capacitors.
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4.2. Experimental Results

Figure 12 presents the experimental configuration of a multi-output omnidirectional WPT system
by adding canceling capacitors that reduce the influence of the mutual inductance between receivers.
To implement a multi-output omnidirectional WPT, two full-bridge inverters are used to drive an
omnidirectional transmitter, and the two receivers are wired to a full-bridge rectifier. For each
transmitter and receiver coil, the compensation capacitors are added in series, and the canceling
capacitors are added to the receiver sides to reduce the influence of the mutual inductance between the
receivers. The situation, parameters, and operating conditions of the experiment are the same as those
in the simulation.

Energies 2020, 13, x FOR PEER REVIEW 12 of 15 

 

 
Figure 11. Simulated result: power transfer efficiency (PTE). 

4.2. Experimental Results 

Figure 12 presents the experimental configuration of a multi-output omnidirectional WPT 
system by adding canceling capacitors that reduce the influence of the mutual inductance between 
receivers. To implement a multi-output omnidirectional WPT, two full-bridge inverters are used to 
drive an omnidirectional transmitter, and the two receivers are wired to a full-bridge rectifier. For 
each transmitter and receiver coil, the compensation capacitors are added in series, and the canceling 
capacitors are added to the receiver sides to reduce the influence of the mutual inductance between 
the receivers. The situation, parameters, and operating conditions of the experiment are the same as 
those in the simulation. 

 
Figure 12. Experimental configuration. 

Figure 13 shows the experimental waveform of the transmitter currents. It can be seen that the 
transmitter currents follow the same reference currents as the simulated waveform. 

Figure 12. Experimental configuration.
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Figure 14 shows an experimental comparison of the PTE before and after the reduction of the
mutual inductance influence between the receivers following the φ change in receiver 2. As φ
decreases from 180◦ to 0◦, the distance between receivers becomes shorter, which means that the
mutual inductance between the receivers increases. The average PTE before the reduction was 75.6%
in the section where φ changes from 180◦ to 40◦, and the average PTE after the reduction was 72.2%,



Energies 2020, 13, 5556 13 of 15

which is about 3.4% less than that before the reduction. The average PTE before the reduction in the
section where φ changes from 35◦ to 0◦, where the mutual inductance between receivers is rapidly
increasing, was 45%, and the average PTE after the reduction was 66.9%, showing an increase of about
21.9% compared to that before the reduction. Not only simulated results, but also the experimental
results demonstrate that the proposed resonant network design method is confirmed to decrease in the
influence of the mutual inductance between receivers and improve PTE.
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5. Conclusions

In this study, the correlation between the mutual inductance between receivers and PTE was
analyzed to improve the phenomenon of reduction in PTE owing to an increase in the mutual
inductance between receivers in a multi-output omnidirectional WPT system. A resonant network
design method was proposed to reduce the influence of mutual inductance between receivers, and
appropriate canceling capacitors were selected using the weighted sum method among multi-objective
optimization methods. Through the results of simulations and experiments, the performance and
validity of the proposed method were verified to present the potential for improvement in the problems
that occur in power transmission to multiple receivers in a multi-output omnidirectional WPT system.
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