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Abstract: As recent heterogeneous systems comprise multi-core CPUs and multiple GPUs, efficient
allocation of multiple data-parallel applications has become a primary goal to achieve both maximum
total performance and efficiency. However, the efficient orchestration of multiple applications is
highly challenging because a detailed runtime status such as expected remaining time and available
memory size of each computing device is hidden. To solve these problems, we propose a dynamic
data-parallel application allocation framework called ADAMS. Evaluations show that our framework
improves the average total execution device time by 1.85× over the round-robin policy in the
non-shared-memory system with small data set.

Keywords: device abstraction; dynamic resource management; GPGPUs; heterogeneous system
architecture; multitasking; OpenCL

1. Introduction

High performance and energy efficiency are critical parameters for emerging applications such as
vision and various machine-learning applications [1–5]. Heterogeneous system architectures (HSAs),
which generally comprise multi-core central processing units (CPUs), graphic processing units (GPUs),
and other accelerators, are the de-facto solutions for the data-parallel applications, and they can be
efficiently used through a single-instruction multiple-thread (SIMT) model (CUDA [6], OpenCL [7]).
Although HSAs comprise numerous computing devices, they often experience substantial performance
degradation when massive data-parallel job requests are received simultaneously. For example,
recent cloud servers are often allocated to multiple users; the users launch their own data-parallel
tasks, as shown in Figure 1. In this situation, load balancing failures among multiple devices result in
resource underuse of some devices, and therefore, the maximum performance of the system cannot
be achieved. Even with proper load balancing, the total system performance can be degraded when
memory problems such as frequent memory allocation failures and paging processes occur owing to the
large total memory requirement from multiple processes concurrently. Therefore, efficient allocation of
multiple workloads onto multiple devices is the most important challenge for maximizing performance.

To meet this requirement, several new techniques (SnuCL [8], VirtCL [9]) have been recently
introduced by focusing mainly on the efficient execution of multiple kernels of a single application
across multiple devices. However, load balancing on HSAs is not limited to the multi-kernel level.
As an HSA is currently used as the main system to support multiple applications, several OpenCL
applications often exist concurrently. Thus, an improved multi-application management approach,
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beyond the simple kernel-level management, is necessary to effectively use all the available OpenCL
devices. To support this, runtime status of all the applications and devices should be monitored.
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Figure 1. An example system where multiple users execute their own data-parallel tasks.

The first well-known challenge for efficient orchestration of multiple applications on multiple
devices is determining the best target device of each running application to maximize total performance
during concurrent execution. To achieve this, newly launched application’s target device should
have a minimum estimated completion time among the multiple available devices by considering
both its expected execution time and the remaining execution time of the currently running
applications on the device. Although the execution time prediction of data-parallel programs seems
impossible, recent studies have shown that execution time of general-purpose GPU (GPGPU) tasks
are fairly predictable [9–11] using simple regression models based on offline profiling. Therefore,
total performance optimization based on the execution time estimation can be realized with
predetermined input applications and prepared profile data.

More critical problem is the potential performance degradation when the device memory is
not well used for executing multiple applications on a single device. When an application’s memory
allocation remains incomplete because other applications are using a substantial amount of the memory,
the application cannot proceed until some amount of memory from the other applications is deallocated.
In a system where memory is shared between CPUs and GPUs, such as the Intel i-series [12–14] and
AMD Fusion [15], although memory allocation failures are rare as memory space is shared between the
host CPUs and OpenCL devices, the impact of the memory insufficiency problem on performance is
still critical. In such systems, severe performance degradation occurs when significantly large memory
spaces are allocated to OpenCL kernels owing to the high memory-swapping overhead and host
program slowdown resulting from memory insufficiency.

Recent GPU evolution trends (NVIDIA Pascal [16] and Volta [17]) improve both the throughput
and latency by allowing concurrent execution of multiple kernels using preemptive [18]/spatial
multitasking [19]. These trends further intensify memory problems. Therefore, efficient memory
management has become crucial for achieving better multitasking performance because concurrent
kernel execution requires more memory to handle all co-running kernels.

To address this issue, we introduce an automatic device allocation management system (ADAMS).
It assigns multiple OpenCL applications onto appropriate devices to maximize device use by avoiding
memory allocation failures. For this, an ADAMS selects a device with minimum estimated completion
time and without any memory limitation problem. ADAMS comprises multiple APIs that can easily
be added to the original OpenCL programs and necessary information in the operating system (OS)
shared memory includes the allocated application list and remaining total execution time per device.
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2. Background and Motivation

2.1. OpenCL Programming Model

OpenCL kernels consist of multiple thread blocks (TBs), and each TB consists of multiple threads.
A thread is the basic unit of execution in a SIMT model. Kernels are executed on accelerators at the
TB level. A typical OpenCL program first selects a target device to execute and then, initializes the
kernels for the selected device as shown in Figure 2a. Furthermore, the program transfers the input
data from the host to the target device prior to kernel execution. Next, it reads the result from the
device. Finally, the program releases the allocated resources for the kernel. These procedures are
almost identical for all the target devices; therefore, the target device can be dynamically selected with
additional application programming interface (API) support.
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Figure 2. (a) A typical OpenCL program flow and (b) examples of execution scenarios with various
allocation methods.

2.2. Target Device-Selection Challenge

The target device of a typical OpenCL program is defined statically. However, in multi-application
domains, target device selection must be dynamic because static selection frequently leads to low
performance, as it does not consider the dynamic status of the target device. The simplest dynamic
target device selection method is the round-robin (RR) policy that functions based on launch order.
However, this can also cause frequent performance degradation and high execution time variation
owing to load balancing failures. Figure 2b shows the performance variation for different allocation
methods. Static is a device allocation example when an experienced programmer only knows that
P1 and P4 are the longest processes for a total of six processes on three target devices, and Oracle is
the optimal configuration. In this example, lack of dynamic information leads to lower performance
(Figure 2b(1)) despite the programmer having deep understanding of the applications. The worst
scenario of the RR policy occurs when P1 and P4 are assigned to the same device, where the
performance is worse than that of Static. Therefore, improved runtime device allocation policy
considering dynamic information is essential.

2.3. Execution Time Prediction of Data-Parallel Applications

To schedule multiple applications on multiple devices, the framework must be aware of each
application’s execution time on each device. Though the execution time estimation is nearly impossible
for general programs, recent studies have shown that the execution time of GPGPU tasks are fairly
predictable [9–11] based on input problem sizes; therefore, we decided to use a problem size-based
regression model for execution time prediction, similar to the approach of MKMD [10] based on offline
profile data.

In this study, as we admit that execution time prediction for random programs is impossible,
the input data range for input applications are assumed to be known with offline profiling,
which are social network service (SNS) analysis or machine-learning applications consisting of matrix
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multiplication and convolution computations. For fair execution time prediction of the applications,
we profiled the execution time of the target applications with various problem sizes from minimum
to maximum and constructed their prediction polynomial models considering both data transfers
and kernel executions. In addition, conservative misprediction error-handling mechanism was also
implemented to tolerate the error situations.

2.4. Memory Limitations

2.4.1. Limitations in Non-Shared-Memory Systems

Memory allocation failure can occur during execution if the total memory requirement for
running multiple applications is larger than the GPU memory size. Therefore, to ensure performance
improvement while executing multiple applications on a device, the total global memory usage of
the device should be managed carefully. Figure 3 shows the average error occurrence of memory
allocation for traditional queue-based (QB) and concurrent multi-application executions. As shown
in the figure, more than three errors, on an average, are detected in both the cases, and the average
error rate for the concurrent case is much higher than that of the QB. Although smart error handling
can be implemented, most existing OpenCL programs are terminated when an error is detected,
and re-execution is required with high performance overhead. Therefore, accurate memory usage
estimation before allocation is essential to avoid memory allocation failures.
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Figure 3. Memory allocation failure occurrence in the Non-Shared-Memory System.

2.4.2. Limitations in Shared-Memory Systems

In a system where multiple computing devices share a single memory, memory allocation to
one device affects the rest. In shared-memory systems, an OpenCL program cannot run on the other
device when the memory capacity of the originally selected device is insufficient because the devices
share the memory space. Figure 4 shows the average total execution time of multiple 2DConvolution
benchmarks [20] when the number of processes increases. The X-axis denotes the number of sets
used. All the processes execute an OpenCL kernel that needs approximately 1 GB of memory objects
on an on-chip Intel HD Graphics GPU, concurrently on a baseline system with a shared 16 GB
memory. As shown in the figure, the performance degrade considerably when more than 12 sets of
2DConvolution are concurrently executed because the total memory usage exceeds 16 GB, and it is
handled by memory swapping with high paging overhead, without memory allocation errors. To solve
this issue, the system needs to control the number of concurrently running processes so that the
memory limit is not exceeded. Therefore, memory usage estimation of the application before actual
memory allocation is necessary to prevent performance degradation.

However, it is complicated as memory allocation related codes are often distributed throughout
the program. Furthermore, the total memory usage cannot always be determined statically because
it sometimes depends on the input data. More important problem is that memory usage estimation
should be more accurate than the execution time estimation due to the misprediction penalty is pretty
high as discussed in this section. Therefore, the programmer needs to analyze the entire code for every
new application. To avoid this, smart API support for just-in-time memory usage estimation before
the execution is essential.
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Figure 4. Average total execution time (log scaled) of multiple benchmark executions as the number of
processes increases in the Shared-Memory System.

3. ADAMS Framework

3.1. Overview

In this section, we introduce an ADAMS framework that automatically allocates multiple
applications to appropriate devices using a periodic device and process information update procedure.
ADAMS comprises a simple API set and does not require any additional runtime program. It can be
easily applied to the target application, as it does not alter the typical program flow of the OpenCL
applications and requires just a simple modification of the original OpenCL APIs into the corresponding
ADAMS APIs, as shown in Figure 5. The ADAMS provides six APIs and an OS timer-based software
interrupt service routine (ISR), as described in Table 1. In this study, we define the total device execution
time for kernel execution and memory transfer between the host and the device, as the device time.
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Figure 5. An overview of ADAMS framework, (a–g) API descriptions, (h) information records.
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Table 1. ADAMS API Descriptions.

Index ADAMS API Description Input Argument Return Value

(a) ADAMS_Alloc
Select the appropriate device platform_id, device_id,

error_codeto run the OpenCL task problem_size, app_id
considering global memory usage.

(b) ADAMS_Start Start of device time estimation. timer_object NULL

(c) ISR_Call Time estimation using OS timer. NULL NULLCheck time-estimation error.

(d) ADAMS_End End of device time estimation. timer_object NULLRelease block status.

(e) ADAMS_Dealloc Release all corresponding NULL NULLinformation in DIR and PIR.

(f) ADAMS_Suspend Suspend device time estimation timer_object NULLwithout any release of information.

(g) ADAMS_Restart Restart device time estimation. timer_object NULL

3.2. ADAMS Execution Model

3.2.1. Information Record

To assign a process to an appropriate device, the ADAMS requires information on the running
processes and existing devices. As ADAMS does not have a specific control daemon, the required
information needs to be shared between the processes. As shown in Figure 5h, the ADAMS uses three
data structures: a device list, process lists, and a prediction model table (PMT). These data structures
are allocated in the OS shared-memory space, and the processes can update them while execution
using the ADAMS APIs. Device information records (DIRs) contain device-specific information and are
managed separately for each device. A DIR has six entries, as shown in Figure 5h. The Remaining Device
Time is the total remaining execution time of the tasks assigned to a device when considering the effects
of a preemption, and is calculated by collecting process information records (PIRs) on the processes
assigned to the corresponding device. The Number of Running Tasks is the total number of tasks that are
currently being executed on the device, and is maintained in both a PIR and a DIR separately. It is used
to consider the effects of a preemption in the execution time-estimation mechanism. The Block Flag
and Block PID are used for the time-estimation error-handling mechanism. When a time-estimation
error occurs, the Block Flag and Block PID of the relevant device are set to not allocate other new tasks
until the error is resolved. In this case, the process in which the error occurred can release Block Flag
when the error is handled properly. The Total Device Memory Size and Remaining Device Memory are the
memory information of the device. The Total Device Memory Size is obtained through the OpenCL API.
The Remaining Device Memory is the currently available memory size of the devices considering both
the total memory size and the memory occupied by currently running tasks. The memory size used
can be calculated by applying the Device Memory Usage of each PIR during all allocation procedures.

A PIR contains both device- and process-specific information and is managed separately for each
process. The Remaining Device Time in a PIR represents the remaining execution time of the tasks.
To calculate this, PIR entries also have the Predicted Device Time and Executed Device Time. The Predicted
Device Time is the predicted execution time of the tasks, which is determined from the device-specific
PMT using the performance prediction model and the target problem size. The Executed Device Time is
the estimated execution time using a concurrent time estimator. The Device Memory Usage is the target
device global memory size required for the tasks.

Each process has its own process information records (PIRs). The ADAMS updates each DIRs
by collecting PIRs of processes running on the device. The PMT contains application-specific device
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time prediction models for different problem sizes. Because the information data can be accessed
simultaneously from multiple processes, write operations are protected using OS semaphore locks.

Before using the framework, the information records must be initialized through a one-time
initialization procedure. This procedure creates information records in the OS shared memory and
updates the device information that can be obtained through the OpenCL API. The global memory
capacity of each device is automatically recognized by an OpenCL API, but it should be carefully set
for shared-memory systems because the OpenCL API returns the total system memory size for every
device. Thus, the device memory information of each device should be set manually to the proper size
for the shared-memory systems.

3.2.2. Allocation Manager

ADAMS can use dynamic information during process allocation using information records.
To achieve maximum system performance for multiple irregularly launched applications, we use
a remaining-time-based allocation policy as shown in Algorithm 1. To allocate a new process,
the algorithm first calculates the global memory size required for the tasks (MUsage) using a global
memory analyzer (GMA) as described in Section 3.2.3. The algorithm then loads the regression model
data of the application for all available devices from the PMT (lines 2–4 of Algorithm 1). The remaining
total execution time (TR) for each device (DIR.TR) can be estimated by gathering the remaining time
of currently executing processes on the device, from the corresponding PIRs (lines 5–10). Based on this,
in lines 11–20, ADAMS determines an optimal device (DIRMin) that has a new minimum remaining
device time (TMin) by adding the current remaining device time (TMin) and predicted time (TP) for
the new process. For this process, when some devices are marked as (DIR.BLOCKED) owing to
the time-estimation error (as discussed in Section 3.2.4), a new process allocation to the devices is
not allowed (line 14). In addition, ADAMS can allocate an appropriate device to avoid a memory
shortage problem using the memory usage estimation. If the remaining global memory size of a
device (MR) is smaller than the memory requirement (MRequired) of the new process, the device is not
considered a candidate device (line 14). Here, dList and ProcList indicate the “device list” and the
“process list”, respectively.

In short, as shown in Figure 6, ADAMS first gathers dynamic information in the beginning,
and then selects the most optimal device to a target application based on the minimum remaining
time without memory failure. In this figure, P6 is first considered to be allocated to DEV3 owing
to the minimal total expected execution time, when five processes are currently running on three
devices. However, it is rejected because of the memory shortage problem, and ADAMS then allocates
P6 to DEV2.

Once a process is allocated to a device with the minimum expected remaining time, ADAMS
re-estimates the remaining global memory size of the device by adding the memory usage of the
newly allocated process. If the global memory of all the devices is insufficient, the allocation manager
returns a memory failure error, and the framework iteratively retries the allocation until a device
with sufficient memory space is available. When the allocation is completed with no errors, ADAMS
updates the information records. When all OpenCL-related tasks are completed (all resources are
released), ADAMS resets the related information through ADAMS_Dealloc().
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Algorithm 1 Process Allocation Algorithm.
Require: DeviceList dList, ProcessList ProcList, Process P
Ensure: process allocation

{Predict execution time and memory usage of P for all devices}
1: MUsage ← GetRequiredMemory(P)
2: for DIR in dList do

3: TP[DIR.Index]← TimePrediction(P.AppID, DIR.Index)
4: end for

{Update remaining time of each device}
5: for DIR in dList do

6: DIR.TR ← 0
7: for PIR in ProcList[DIR.Index] do

8: DIR.TR += PIR.TR
9: end for

10: end for

{Find the target device that has minimum total remaining time}
11: initiate TMin
12: initiate DIRMin
13: for DIR in dList do

14: if not DIR.Blocked and DIR.MR > MRequired then

15: if DIR.TR + TP[DIR.Index] < TMin then

16: TMin ← DIR.TR + TP[DIR.Index]
17: DIRMin ← DIR
18: end if
19: end if
20: end for

{Update information in PIR and DIR}
21: update PIRP and DIRMin
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Figure 6. A simplified ADAMS workflow and a process allocation example. (a) a rejected attempt to
assign P6 to DEV 3, and (b) a final assignment of P6 on DEV2.

3.2.3. Global Memory Analyzer

An important challenge in avoiding memory errors during execution is the determination of the
required memory space prior to device allocation of a target process. The required memory size for
an application can vary dynamically depending on the input data. To address this issue, ADAMS
extracts minimal instructions to calculate the required memory size using def-use chains during
compilation (Figure 7a). By executing these instructions, ADAMS can obtain the required memory size
to be secured.
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Figure 7b shows an example of the extraction of a minimal instruction from 2DConvolution
benchmark [20] to calculate the memory size. ADAMS first identifies the device memory allocation
instructions and their predecessor instructions. Subsequently, it removes instructions that do not affect
the memory allocation. After all procedures are complete, the overhead for executing the extracted
instructions can be minimized.

int main(void)

{

float *A, *B, *B_outputFromGpu;

A = (float*)malloc(NI*NJ*sizeof(float));

B = (float*)malloc(NI*NJ*sizeof(float));

B_outputFromGpu = (float*)malloc(NI*NJ*sizeof(float));

read_cl_file();

cl_initialization();

cl_mem_init(A);

cl_load_prog();

cl_launch_kernel();

��«

return 0;

}

void cl_mem_init( float* A )

{

a_mem_obj = clCreateBuffer( .., sizeof(float)*NI*NJ, .. );

b_mem_obj = clCreateBuffer( .., sizeof(float)*NI*NJ, .. );

errcode = clEnqueueWriteBuffer( .. );

���«

}

int main(void)

{

cl_mem_init(NULL);

return 0;

}

void cl_mem_init( float* A )

{

sizeof(float)*NI*NJ;

sizeof(float)*NI*NJ;

return;

}
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Figure 7. Extracting minimal instructions for memory requirement estimation. (a) Overview and (b) a
translation example.

The GMA can be applied to most OpenCL applications (This cannot be applied to applications
in which the memory usage is changed by non-reproducible elements such as random numbers).
The extraction is automatically performed using code transformation during compilation of the host
code. After the minimal instructions are extracted, the analyzer wraps the extracted code into a custom
API whose return value is the global memory usage of the application.

3.2.4. Concurrent Time Estimator

The time estimator measures the device time by using the OS timer-based software ISR to
update the information records. The ISR is periodically executed on the host during the device time
(Figure 5b,d). As shown in Figure 8, Equation (1) is used to estimate the remaining execution time (TR)
of each target process, considering the impact of concurrent execution on a device, where NTi denotes
the number of tasks running simultaneously on the device on ith period, and Pi denotes the duration
of ith period. During the Pi, the execution of each concurrent task on the same device slows down
owing to the preemptive multitasking of co-running kernels. Therefore, the TR of each task can be
estimated roughly by using Equation (1) with the expected execution time (TP).

TR = TP −
n

∑
i

Pi
NTi

(1)
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In this paper, we define an event as a change in the number of running tasks. Every time an
event occurs, ADAMS updates the event time as the last event time (TEvent) and NT on both the PIR
and DIR. With this information, ADAMS can determine the number of simultaneously running tasks
on the device during the unit interval, Pi, and estimate the time spent on each process to effectively
perform a task using Algorithm 2. Every time a timer ISR occurs, to check if an event has occurred,
the framework compares the NT of the PIR and DIR (line 1 of Algorithm 2). If an event occurs, the base
time (TBase) is updated by adding the difference between the TEvent stored in the PIR and DIR to the
TBase in the PIR. In addition, TEvent and NT in both the PIR and DIR are updated with the new values
(lines 2–4). By doing this, TBase stores the total execution time of a process from the beginning to the
last event occurring on the device. The processes can also check whether an event has occurred in
another process using the difference between such information stored in its PIR and DIR. Here, TNow is
the time stamp when the ISR is called. The difference between TNow and TEvent is the period when the
task was executed without changing the NT . Therefore, by dividing the difference between TNow and
TEvent by NT , we can estimate the effective execution time of the task during that period. The executed
device time (TExecuted) of the task is also calculated by adding TBase and this (line 6).

Algorithm 2 Remaining Time Update Algorithm.
Require: PIR of process, DIR of device that process allocated
Ensure: update of remaining time in PIR

{If event occurs, calculate base time and updates to value of DIR}
1: if PIR.NT != DIR.NT then

2: PIR.TBase += (DIR.TEvent − PIR.TEvent) / PIR.NT
3: PIR.TEvent ← DIR.TEvent
4: PIR.NT ← DIR.NT
5: end if

{Calculate remaining time of process}
6: PIR.TExecuted ← PIR.TBase+(TNow-PIR.TEvent) / PIR.NT
7: PIR.TR ← PIR.TPrediction - PIR.TExecuted

{If error occurs, block device}
8: if PIR.TR < 0 then

9: DIR.Blocked← true
10: DIR.BlockPID← Process.PID
11: end if

Please note that the degree of slowdown on concurrent execution of multiple kernels can vary
depending on target device architectures. Therefore, ADAMS has an error-handling mechanism to
tolerate the time-estimation errors (lines 8–11). If a task is not finished even when its remaining time
becomes zero due to the wrong execution time estimation or severe slowdown on concurrent execution,
ADAMS blocks the additional allocation of new processes to the device (running the error process)
until the process is finished.

ADAMS_Start() and ADAMS_End() define the device time region. ADAMS also provides
ADAMS_Suspend()/Restart() to exclude idle device time for time estimation when multiple kernel
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executions exist within an application, as described in Table 1. They temporarily disable/re-enable the
OS-timer-based PIR updates.

3.2.5. Time Prediction

Estimating the remaining time using the concurrent time estimator described in Section 3.2.4
requires the estimated execution time (TP) of all applications on all devices. The execution time of
GPGPU tasks can be fairly predicted with high accuracy using machine-learning techniques ([9–11]).
Similar to these previous studies, in this study, a regression-based model is used for the execution time
prediction. Because the performance of an application varies considerably depending on the specific
features of the target device, such as the computing power or memory bandwidth, the time prediction
should be applied differently for each device on multi-device systems. Therefore, the prediction model
is set separately according to the application and target device. It is trained using profiled data for
various problem sizes. Because the ADAMS framework has a reasonable prediction error-handling
mechanism, a fair performance gain can be achieved even when some prediction errors occur at
runtime, although higher model accuracy is always preferred.

4. Evaluation and Discussion

We tested our framework on both shared and non-shared-memory systems, as shown in Table 2.
In the shared-memory system, we restrict the available memory space for each device because the CPUs
and the GPU share a single 16 GB DRAM. We use Clang [21] 6.0 and an LLVM [22] 6.0 compilation
framework for the global memory analysis. As shown in Table 3, ADAMS uses an OS shared memory
to share information between processes similar to Heartbeats [23]. We use a set of applications from
the polybench benchmark suite [20] with customized problem sizes for the target applications to have
reasonable execution time ranges (Table 4). The prediction models are trained with the offline profiled
data from the single execution of the target programs, and different data sets are used for training
and evaluation. The framework predicts the device time according to the problem size by using the
information stored in the PMT. The theoretical Oracle (Theo.Oracle) is the statically calculated ideal
performance in the best device-selection configuration, based on the profiled data (used in Figure 9a,c).

The performance of the RR allocation method significantly depends on the execution order of
the application. Among N! number of possible execution order combinations for N applications,
100 randomly selected orders are used to compare the performance of multiple device allocation
policies, including RR and ADAMS with and without a memory consideration.

Table 2. System Configuration

Non-Shared-Memory System

Index Device Number of Global Memory Global Memory PCIe (Lane)Compute Unit Amount Bandwidth

Dev1 GTX 1080 Ti 28 11,178 MB 11 Gbps PCIe 3.0 (x4)
Dev2 GTX 1050 5 2000 MB 7 Gbps PCIe 3.0 (x8)
Dev3 GTX 1050 5 2000 MB 7 Gbps PCIe 3.0 (x4)

Shared-Memory System

Index Device Number of Global Memory Global Memory
Compute Unit Amount Bandwidth

Dev1 Intel i7-7700K 4 4096 MB 35.76 Gbps

Dev2 Intel Gen 9 24 4096 MB 35.76 GbpsHD Graphics 630 [14]
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Table 3. Size of Information Records.

System Type Device List Process List PMT Total

Non-shared 0.84 KB 175.2 KB 48.8 KB 224.84 KB
Shared 0.56 KB 89.6 KB 36 KB 126.16 KB

Table 4. Problem Sizes of Workloads.

Application
Non-Shared-Memory System

Shared Memory System
Small Set Large Set

2dconv 6400 10,400 22,000
2 mm 1600 2400 1061
3 mm 1600 2400 1061
atax 11,200 16,000 30,000
bicg 11,200 16,000 30,000

gemm 2400 3200 1061
gesummv 5600 8000 20,000

gramschmidt 640 1280 1441
mvt 7200 11,200 20,000
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Figure 9. Performance comparisons. (a) Effectiveness of proposed allocation policy and (b) effectiveness
of global memory consideration in the Non-Shared-Memory System. (c) Effectiveness of global memory
consideration in the Shared-Memory System.

4.1. Allocation Policy on Non-Shared-Memory Systems

To evaluate effectiveness of allocation policy, we compare ADAMS to both RR and Theo.Oracle
on the non-shared-memory system. Figure 9a shows execution time of ADAMS and RR, normalized to
the that of Theo.Oracle. As shown in Table 4, to avoid performance changes due to memory allocation
failures, we use a small set of the application with an approximate 2 GB total memory size (similar to
the global memory size of DEV(2/3) in Table 2).

This figure shows that ADAMS improves the performance by 1.85 times on average over the
RR. This is because the RR does not consider the dynamic information of the system discussed in
Section 2.2; however, ADAMS successfully selects appropriate devices that have the minimum expected
execution time. Compared to Theo.Oracle, ADAMS shows almost the same performance. This is
because Theo.Oracle does not consider the possibility that the host-device memory transfer and kernel
execution might overlap between multiple applications. The overlap cannot be predicted statically
and cannot be calculated theoretically, and is determined at runtime. However, this overlap can result
in higher performance. Thus, all experiments that use real machines except Theo.Oracle permit this.
Therefore, all results may achieve better performance than Theo.Oracle, and the result shows that the
allocation policy of ADAMS selects the device that can provide the earliest completion time properly.

Moreover, ADAMS shows more stable performance over the RR because it has a standard
deviation (STD) of only 0.1 over an average normalized execution time of 0.99, whereas the RR had
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a STD of 0.26 over an average normalized execution time of 1.83. This small performance variance
in different execution orders demonstrates that ADAMS can guarantee a stable performance gain on
multi-device systems, regardless of input application orders.

4.2. Memory Consideration on Non-Shared-Memory Systems

Figure 9b shows the results of ADAMS, ADAMS without memory analysis (ADAMSw/o_MA),
and the QB. All results are normalized to an average execution time of QB. We use a large dataset and
increase the number of processes to 18, as shown in Table 4, to have several situations in which processes
cannot run properly owing to insufficient global memory space. In particular, ADAMSw/o_MA is
the ADAMS framework without global memory usage estimation. In case of a memory failure in
ADAMSw/o_MA, the process with the failure restarts immediately. To evaluate ADAMS with the
latest work, we compare the performance with an in-house version of VirtCL [9] (QB), which is a
queue-based multi-OpenCL program-management system (Please note that this is an in-house version
because the original work is not an open source program).

In Figure 9b, the performance of ADAMSw/o_MA improves of only 1.19 times the QB owing
to multiple memory allocation errors. As shown in Figure 3, the average error occurrences of
ADAMSw/o_MA and QB are 6.29 and 3.67, respectively. For 100 execution orders, there is a minimum
of one error occurrences for both cases, and a maximum of 12 and 10 error occurrences, respectively.
Despite more errors, ADAMSw/o_MA shows a slightly better performance than QB because it selects
other devices with available memory when a memory allocation failure occurs, whereas QB waits
for other processes to release memory on the same device. Furthermore, ADAMS shows a high
performance gain of 1.48 times compared to the QB owing to the absence of memory allocation errors.

In terms of performance variance, ADAMS is better than ADAMSw/o_MA and QB because
ADAMS shows a STD of only 0.029 for an average normalized execution time of 0.68. However,
ADAMSw/o_MA and QB show considerably larger STDs of 0.068 and 0.075 for average normalized
execution times of 0.84 and 1, respectively.

4.3. Memory Consideration on Shared-Memory Systems

In shared-memory systems, we limit the maximum memory size of each device to 4 GB as shown
in Table 2; the rest of the framework is identical to that used in non-shared-memory systems. Figure 9c
shows execution time of ADAMS and experimental Oracle (Exp.Oracle), which are normalized to the
Theo.Oracle. The Exp.Oracle is the result of the actual execution of all the applications with the same
device mapping as the Theo.Oracle. We use the data set shown in Table 4, for which the total memory
usage of the processes exceeds the available memory capacity. The total memory size for the OpenCL
memory objects of all the processes is approximately 16.4 GB.

Exp.Oracle shows an average performance that is about 449 times lower than that of the
Theo.Oracle because a high memory-swapping overhead exists when the total memory usage is
larger than the main memory size. However, ADAMS shows an average performance that is lower
by only 0.390 times that of the Theo.Oracle. This is because ADAMS does not use swap memory as
ADAMS limits the memory usage of each device to 4GB. Therefore, processes cannot be executed
until there is at least one device that secures sufficient memory spaces. Consequently, the average
performance of ADAMS is about 175 times higher than that of the Exp.Oracle, which does not consider
memory management.

In addition to the high swap overhead, some processes may be unexpectedly terminated
by the OS or show unintended errors such as segmentation faults due to the memory shortage.
As shown in Figure 9c, ADAMS and Exp.Oracle show STDs of 0.15 and 114 for average normalized
execution times of 2.57 and 449, respectively. Therefore, smart memory management is important to
prevent unexpected performance degradation in shared-memory systems; ADAMS can handle such
problems effectively.
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4.4. Case Study: Multiple IRIS Recognition Applications

To evaluate the effectiveness of ADAMS framework, we tried to execute multiple IRIS recognition
applications concurrently on the shared-memory system. For this, we implemented an in-house
version of IRIS recognition application [24], based on a convolutional neural network (CNN) consisting
of six CNN-layers (2Dconvolution, normalization, and max pooling kernels (OpenCL)) and a fully
connected layer (parameter size: 10.29 MB). The IRIS is pre-trained and performs inference with
a 64 image batch size using a CASIA-Iris-V4 [25] input set. Global memory usage by an IRIS is
approximately 225 MBs. A small dataset launches 16 IRIS detection processes concurrently without
memory problems (approximately 3.5 GB of global memory usage), and a large data set launches
75 IRIS detection processes concurrently with up to 16.5 GB of global memory usage. Differing from
polybench applications, the IRIS application has a uniform execution time according to the input
image. Therefore, the performance of IRIS is not significantly affected by the execution order.

Figure 10 shows performance of RR, ADAMSw/o_MA, and ADAMS. The results are normalized
to RR on each data set. For the small set, as shown in Figure 10a, ADAMS shows 1.68× higher
performance over RR by efficiently allocating IRIS to multiple devices, and shows almost same
performance to ADAMSw/o_MA because the set does not incur performance slowdown, owing
to the small memory usage. For the large set, as shown in Figure 10b, ADAMS shows 3.24×
higher performance over RR by effectively preventing memory-swapping overhead. However,
ADAMSw/o_MA shows 0.39× lower performance over RR because memory-swapping occurs more
frequently in ADAMSw/o_MA owing to the ISR calls for time estimation. As mentioned in Section 4.2,
ADAMSw/o_MA has the same framework as ADAMS, but does not manage memory usage. Thus,
ADAMSw/o_MA shows almost the same performance as ADAMS in a small set because the set does not
have any memory problems. However, in a large set, the performance is worse than that of ADAMS
owing to frequent memory failures. Therefore, both efficient device allocation and memory limitation
techniques are important to maximize system performance, and to keep appropriate memory usage
precisely is critical to avoid huge performance degradation.
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Figure 10. Case study of ADAMS for the IRIS application with (a) small set and (b) large set.

4.5. Overhead

We measured the overhead of a single execution of each application on the DEV2 (Table 2) with a
small data set in the non-shared memory system. The overall overhead of ADAMS without an ISR call
is only 0.025% of whole device time. Global memory analysis shows considerable overhead variance
across target applications because it depends on application characteristics. ISR calls use 13% of the
total execution time but the overhead is usually hidden because it is handled by host. The results show
that only 2.10% performance difference exists between executions with and without ISR calls.
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5. Related Work

There are several previous studies on efficiently running OpenCL programs on multi-GPU
systems. Several prior studies [26–32] have introduced efficient mechanisms to distribute a single
kernel execution to multiple devices properly. FluidiCL [26] dynamically splits kernel tasks into
multiple workgroups based on flattened unique numbers and executes them on both the CPU and GPU.
Maestro [27] introduces an autotuning technique to use the runtime information for determining the
best partitioning ratio of the target task. LBCL [28] implements an OpenCL installable client driver(ICD)
layer to execute an OpenCL program on multiple devices and supports a computing-power-based
load balancing mechanism. Grewe [29] partitions a single kernel statically into a target CPU-GPU
system using a machine-learning-based prediction model. Kaleem [30] presents several profiling-based
scheduling techniques to resolve the load imbalance in integrated CPU-GPU processors. Majeti [31]
introduces a two-level hierarchical data layout framework for heterogeneous architectures. They build
the affinity graph by using a parallel intermediate representation and determine the best data layout
for the program automatically. Taylor [32] proposes compiler-based framework to map and schedule
tasks on embedded heterogeneous systems using only code features. All these approaches enhance
the total performance of the OpenCL programs by using multiple devices; however, these approaches
are restricted to only one OpenCL application, in contrast to ADAMS. In addition, there are several
works on load balancing of tasks on heterogeneous clusters [33–35].

Singh [36], VirtCL [9] and SnuCL [8] are the most closely related approaches to ADAMS in that
they consider a multi-application execution on multi-GPU systems. Singh [36] proposes a runtime
management approach that performs mapping and partitioning for embedded CPU-GPU systems
considering processor’s processing capabilities to improve both performance and energy efficiency.
VirtCL [9] provides a device abstraction layer using the CLDaemon program that manages kernel
mapping to multiple physical devices. It schedules the kernel using a history-based regression model
similar to the ADAMS framework. SnuCL [8] is a framework for the orchestration of multiple OpenCL
programs on heterogeneous clusters. It assigns kernels to appropriate devices for minimizing the
memory transfer overhead using the SnuCL runtime. Although these studies have demonstrated
substantial performance gains in similar domains as ADAMS, they still require a high control overhead
owing to the existence of additional management programs. Furthermore, they use a serial kernel
launch algorithm with a kernel queue structure and do not consider the global memory usage issue;
therefore, they cannot take full advantage of GPU multitasking.

6. Conclusions

We propose a dynamic multiple data-parallel application allocation framework (ADAMS),
to efficiently allocating multiple processes to multiple devices. To find the best target device for
a new process, it first collects the runtime information of several available devices from shared OS
memory and derives the expected execution time of the process on each device. It then selects the
optimal device with no memory insufficiency problems.

In this paper, the evaluation shows that ADAMS achieves a 1.85× higher performance than
the classic round-robin algorithm in the non-shared-memory system with a memory failure-free
condition. The results show the importance of runtime information sharing in assigning GPGPU
tasks to optimal target devices. ADAMS effectively shares static/dynamic information of GPGPU
applications without any additional daemon process, and can achieve more stable performance
improvement. Under conditions where memory failure occurs, ADAMS shows a 1.48× better
performance than the queue-based approach in the non-shared-memory system. In the shared-memory
system, ADAMS achieves almost the same performance as theoretical oracle, and shows 449× higher
performance than the real execution without memory considerations. These results show that smart
device memory management can prevent large performance degradation when executing multiple
GPGPU applications. Therefore, these experimental results demonstrate that the proposed framework
can effectively handle the memory problem to avoid performance degradation.
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