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Abstract: We explore conformally coupled scalar theory in AdS6 extensively and their
classical solutions by employing power expansion order by order in its self-interaction cou-
pling λ. We describe how we get the classical solutions by diagrammatic ways which show
general rules constructing the classical solutions. We study holographic correlation func-
tions of scalar operator deformations to a certain 5-dimensional conformal field theory
where the operators share the same scaling dimension ∆ = 3, from the classical solutions.
We do not assume any specific form of the micro Lagrangian density of the 5-dimensional
conformal field theory. For our solutions, we choose a scheme where we remove co-linear
divergences of momenta along the AdS boundary directions which frequently appear in the
classical solutions. This shows clearly that the holographic correlation functions are free
from the co-linear divergences. It turns out that this theory provides correct conformal 2-
and 3- point functions of the ∆ = 3 scalar operators as expected in previous literature.
It makes sense since 2- and 3- point functions are determined by global conformal sym-
metry not being dependent on the details of the conformal theory. We also get 4-point
function from this holographic model. In fact, it turns out that the 4-point correlation
function is not conformal because it does not satisfy the special conformal Ward identity
although it does dilation Ward identity and respect SO(5) rotation symmetry. However,
in the co-linear limit that all the external momenta are in a same direction, the 4-point
function is conformal which means that it satisfy the special conformal Ward identity. We
inspect holographic n-point functions of this theory which can be obtained by employing
a certain Feynman-like rule. This rule is a construction of n-point function by connecting
l-point functions each other where l < n. In the co-linear limit, these n-point functions
reproduce the conformal n-point functions of ∆ = 3 scalar operators in d = 5 Euclidean
space addressed in arXiv:2001.05379.
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1 Introduction

AdS/CFT correspondence has shed light on strongly coupled field theories such as quark
gluon plasma, conformal fluid dynamics, condensed matter theories and so on. Together
with these issues, holography itself is suggested as a wide field to study on, especially to look
at its UV-IR structure(relation), by employing for example, sliding membrane, holographic
renormalization group. One of the interesting branches of studies on holography is to
develop holographic conformal n-point functions in momentum space. To get conformal
n-point functions (in momentum space), one needs to solve conformal Ward identities,
among them the special conformal Ward identity is a second order differential equation
with respect to their external momenta ~pis. Somehow, it is rather difficult to get its
solution, and so they usually take a specific limit to solve the equation.

The reasons why we look at the conformal correlation functions in momentum space
are maybe the followings. One of them is that when one develop the correlation functions in
momentum space, it is very clear how the momentum flows in the interaction vertices. One
may construct or say analyze the correlation functions by a Feynman-like diagrammatic
language. One may also develop a bootstrap or conformal block techniques in momentum
space. The second reason could be holography. To understand conformal correlation
functions, rather than directly solving the conformal Wanrd identites, maybe it would
better emplying holography. It is hard to specify which conformal field theory corresponds
to which gravity model in general though.
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In this respect, there has been several attempts to study conformally coupled scalar
theory in AdS space and its field theory dual [1–5] in the holographic framework. In [1–3],
the authors obtain the dual field theory correlation functions of certain composite operators
in it by employing conformally coupled scalar theories in AdSd+1. In [1, 2], they concentrate
on the 2-point correlation functions of a composite-single trace operator, O∆ with its
conformal dimension ∆ = d+1

2 in d-dimensional conformal field theory. In these researches,
they do not consider any interactions higher than 2-point. The conformally coupled scalar
theory contains its self-interaction term in it, which has a form of Lint = λ

4φ
2(d+1)

d−1 , where
the φ is the scalar field and the λ is the self-interaction coupling. When d = 3 it becomes
φ4 interaction and if d = 5, it is φ3 interaction. In the other cases, the exponent of the
self-interaction term becomes fractional.

Holography of conformally coupled scalar model taking into account the interaction
is considered and it turns out that the results are matched with some of the results in
conformal field theory computations [6–9]. In the field theory computations, the conformal
correlation functions are obtained by directly solving conformal Ward identities [6–9]. In [7],
the authors get 2- and 3- point functions of operators with arbitrary scaling dimension
sitting in arbitrary (Euclidean)spactial dimension. They compute correlation functions
of mixtures of scalar, vector and (rank-2) tensoral operators. The form of the 2-point
correlation functions are manifest. The 3-point function is a form of integration, which is
so called triple-K integral meaning that its integrand contains a product of three Bessel-K
functions. In [8], the authors suggest n-point conformal correlation function and it is a
complex integral form. They mostly concentrate on 4-point function and introduce cross-
ratios in momentum space. If the cross ratio is a specific form, then one may interpret the
integration as 3-loop integral with certain propagators.

In [6], the authors propose a fractional form of conformal n-point of scalar operators
sharing the same scaling dimension ∆ = d+1

2 in d-dimensional Euclidean space. The exact
form of the n-point function is 〈O1O2 . . . On−1On〉 ∼ (

∑n
i=1 |pi|)

−α, where the |pi| =
√
~pi · ~pi

is the absolute value of the i-th momentum coming into the vertex and pn = −
∑n−1
i=1 pi

due to momentum conservation. The α is a certain real number to be fixed by conformal
Ward identities.

The conformally coupled scalar theory defined in AdSd+1 space provides non-
normalizable excitations which correspond to source terms of dual operators whose scaling
dimension ∆ = d+1

2 . The holographic 2-point, 3-point and 4-point functions computed by
employing this model in AdSd+1, AdS6 and AdS4 respectively present exactly the same
forms of the conformal correlation functions suggested in [6]. In [3], the authors consider
the self-interaction terms in d = 3 case, and they compute 2-, 4- and 6- point functions of
an operator O∆=2 deforming the dual field theory. It turns out that the 2- and 4- point
functions of the operator satisfy conformal Ward identities [6].

Now the frontier in this research field is getting multi-point functions beyond these.
In this note, we explore the conformally coupled scalar theory in AdS6 and compute holo-
graphic multi-point functions. In section 2, we explore conformally coupled scalar theory
in AdS6 and the solution of its equation of motion. We study this model in a new field
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frame where we use a field redefinition φ(x) = r
d−1

2 f(x), where φ(x) is the original confor-
mally coupled scalar field and the f(x) is the field in the new field frame. The new field is
effectively defined in flat Euclidean space whereas the φ(x) is defined in AdS space.

In section 2, we solve the equation of motion by power expansion order by order in
its coupling λ and we get the explicit solutions upto order of λ3. We also propose a
diagrammatic way to get solution of order n in λ for the generic n. It shows a certain
pattern, by which one can construct n-th order solution in λ graphically.

In section 3, we list the holographic 2-,3- and 4-point functions explicitly from the given
solutions in section 2. In this section, we discuss the details for computing the boundary
on-shell action as regularity and boundary conditions at the poincare horizon and AdS
boundary respectively and the counter terms for the holographic calcualtions.

In section 4, we develop the holographic Wilsonian renormalization group equations
and find thier fixed points. The fixed points address the holographic correlation functions
when their boundary condition is Dirichlet.

In section 5, we examine the holographic 4-point function if it is really conformal.
The form of the holographic n-point correlation functions are a function of absolute values
of the external momenta pis or their linear combinations. Therefore, they are manifestly
SO(5) invariant, which is the rotation group in 5-dimensional Euclidean space. The rests
to test are if they satisfy dilatation and special conformal Ward identities. The holographic
4-point function satisfies the dilatation Ward identity but it does not the special conformal
Ward identity.

The special conformal Ward identity has a form of Dκ
(
pi,

∂
∂pi

)
Ψ(pj) = 0, where the

Dκ is a second order differential operator with respect to the momenta pis, κ is a spatial
index and Ψ is conformal n-point correlation function. For the holographic 4-point function
that we get from the conformally coupled scalar theory in AdS6, an application of Dκ on it
gives Dκ

(
pi,

∂
∂pi

)
Φ(pj) = fκ(pj). The fκ(pj) is a function of momenta pi and it vanishes

when all of the external momenta pi are co-linear, which means that
∑
j |pj | = |

∑
j pj |.

This co-linear limit is interesting if we compare the holographic correlation functions of
the conformally coupled scalar theory in AdS space(especially AdS6 and AdS4) with the
conformal correlation functions given in [6]. We remark that the co-linear limit of these
two correlation functions coincide. We finally examine n-point holographic correlation
functions, and it turns out that in the colinear limit, the conformal correlation functions
given in [6] coincide them. Therefore, we conclude that the conformally coupled scalar
theory reproduces conformal n-point functions in the co-linear limit but in general they
are not conformal.

2 Solutions of a conformal scalar field action

We start with the conformally scalar field theory defined in (Euclidean)AdS spacetime,
given by

S =
∫
r>ε

drddx
√
gL(φ, ∂φ) + SB, (2.1)

where the spacetime is descrived by d+ 1-dimensional Euclidean AdS metric as follows:

ds2 = gMNdx
MdxN = 1

r2

(
dr2 +

d∑
i=1

dxidxi
)

(2.2)
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The SB is a collection of boundary terms which is designed for a well defined variational
problem of the theory as we will see. The conformally coupled scalar field Lagrangian
denstiy is given by

L(φ, ∂φ) = 1
2g

MN∂Mφ∂Nφ+ 1
2m

2φ2 + λ

4φ
2(d+1)

d−1 , (2.3)

where the Latin(capital) indices M , N . . . run from 1 to d + 1, where the coordinate xd+1

denotes the AdS radial variable r. The mass of the conformally coupled scalar is not
arbitrary, which should be

m2 = −d
2 − 1

4 , (2.4)

where the mass term is originated from the background curvature scalar of the AdS space.
Such a value of the scalar field mass implies two different properties of the theory. One is the
alternative quantization scheme in holography. In AdS/CFT context, a non-normalizable
excitations in dual gravity corresponds to a source term couples to a composite operator,
O in the dual field theory defined on the AdS boundary and the O is proportional to the
coefficient of a normalizable mode of excitations. One of the conditions that the operator
O satisfies is that its correlation functions are unitary. It turns out that it does in its mass
range of

− d2

4 ≤ m
2 ≤ −d

2

4 + 1, (2.5)

so does the conformally coupled scalar theory. Moreover, if the scalar field mass is in that
range, the role of normalizable and non-normalizable excitations can be switched and the
boundary field theory is a still unitary theory: alternative quantization.

Another property is that by employing a scale transformation of the scalar field as

φ(xM ) ≡ Ω(r)f(xM ), where Ω(r) = r
d−1

2 , (2.6)

the conformally coupled scalar field action is effectively defined in a flat background as
follows:

S =
∫
r>ε

drddx

(1
2δ

MN∂Mf(x)∂Nf(x) + λ

4 f
2(d+1)

d−1 (x)
)

(2.7)

+d− 1
2

∫
ddx

f2(x)
2r

∣∣∣∣∣
∞

ε

+ SB

The action with a new field f is a massless scalar field theory with a peculiar self interaction
∼ f

2(d+1)
d−1 . The power of the self interaction becomes an integral number when d = 3

or d = 5, corresponding to f4 and f3 self interaction respectively. We may study f3

case extensively.

2.1 Small coupling expansion

In this subsection, we will obtain the equation of motion of the conformally coupled scalar.
The equation of motion is given by

δMN∂M∂Nf(x)− λ(d+ 1)
2(d− 1) f

d+3
d−1 (x) = 0, (2.8)
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where we get the equation of motion in the new field frame. Since we are interested in the
case of the self-interaction with an integral power, we choose d = 5, namely f3-interaction
case in this note.1 In this case, the scalar field φ is defined in AdS6 space time. The
equation of motion becomes(

∂2
r +

5∑
i=1

∂2
i

)
f(x)− 3λ

4 f2(x) = 0. (2.9)

Since the boundary directions described by the coordinates {xi} are flat and non-compact,
we expect that the solution is a superpositon of plane waves along the boundary directions.
Then, we try a solution as

f(r, xi) =
∫

d5k

(2π)
5
2
e−ik·xfk(r), (2.10)

which is an effectively Fourier transform to the momentum space along the boundary
directions. The equation of motion in the momentum space is given by

(∂2
r − |q|

2)fq(r)−
3λ
4

∫
d5k

(2π)
5
2
fk(r)fq−k(r) = 0, (2.11)

and we solve this equation by using power expansion order by order in the small coupling
λ as

fq(r) =
∞∑
i=0

f (i)(r), (2.12)

where f (i)(r) is i-th order solution in the small coupling, λ expansion. In each order in λ,
the equation of motion is given by

(∂2
r − |q|

2)f (n)
q (r)− 3λ

4

∫
d5k

(2π)
5
2

n−1∑
i=0

f
(i)
k (r)f (n−i)

q−k (r) = 0, (2.13)

where we call the last terms in the equation source terms of the equation. The inhomoge-
neous part of solution comes from the source terms

The zeroth order equation of motion and its solution in the expansion are given by

(∂2
r − q2)f (0)

q (r) = 0 −→ f (0)
q (r) = (Fqe−|q|r + gqe

|q|r), (2.14)

where Fq and gq are arbitrary boundary momentum dependent functions. Since the solution
being proportional to e|q|r is divergent as r → ∞, which may cause infinite energy and
momentum density and so it cause huge backreaction to the background space time. To
avoid this(regularity condition), we set gq to zero. To get the higher order solution, we
take the following form of the trial solution:

fq(r) = f (0)
q (r) + f (1)

q (r) +O(λ2) (2.15)

1The f4(x) case is also extensively studied in [3].
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The equation of motion up to the first order in λ is given by

(∂2
r − q2)f (1)

q (r) = 3λ
4

∫
d5k

(2π)
5
2
f

(0)
k (r)f (0)

q−k(r) (2.16)

= 3λ
4

∫
d5k

(2π)
5
2
FkFq−ke

−(|k|+|q−k|)r,

and its solution is

f (1)
q (r) = 3λ

4(2π)
5
2

∫
d5kd5p δ(5)(k + p− q)∆(k, p)FkFpe−(|k|+|p|)r + F1(q)e−|q|r, (2.17)

where
∆(p1, p2, . . . , pn) ≡ 1

(
∑n
i=1 |pi|)2 − (

∑n
i=1 pi)2 . (2.18)

The F1(q)e−|q|r is homogeneous solution of the first order equation of motion, namely it
satisfies (∂2

r −q2)f (1)
q (r) = 0. The coefficient F1(q) is an arbitrary function of the boundary

momentum q, but there are several ways to determine it.

• One can simply choose it to vanish. The generic form of the solution in n-th order
in λ is given by

f (n)
q (r) = f

(n)
q,inhomogeneous(r) + Fn(q)e−|q|r, (2.19)

it means that all the Fn(q) = 0 for n > 0. We name such solutions Prime solutions
(diagrams) for later use.

• Another choice is that we choose it in such a way that it removes co-linear divergences
in the solution.

The factor ∆(p1, p2, . . . , pn) diverges when∣∣∣∣∣
n∑
i=1

pi

∣∣∣∣∣ =
n∑
i=1
|pi|, (2.20)

namely, it diverges when the directions of the boundary momenta are all the same. One
can remove this divergence by a smart choice of the coefficient F1(q) as

F1(q) = − 3λ
4(2π)

5
2

∫
d5kd5p δ(5)(k + p− q)∆(k, p)FkFp (2.21)

Now, the first order solution becomes

= λ5

( 2∏
i=1

∫
d5piFpi

)
∆2(p1, p2; q)

{
e−
∑2

i=1 |pi|r − e−
∣∣∑2

i=1 pi

∣∣r)} (2.22)

where

∆n(p1, p2, . . . , pn; q) ≡ δ(5)(
∑n
i=1 pi − q)

(
∑n
i=1 |pi|)2 − q2 . (2.23)
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- 1

Figure 1. The zeroth and the first order solutions in λ.

𝑝2

𝐹𝑝2
(0)

𝑝1

Δ(𝑝1, 𝑝2; 𝑞)

𝐹𝑝1
(0)

1 𝐸𝑅
1,2

R

Figure 2. The regularized diagram for the first order solution in λ.

This first order solution is expressed in a diagram in figure 1-(b). One may define a new
symbolic variable E1,2

R as

E1,2
R = e1,2 − e12 ≡

{
e−
∑2

i=1 |pi|r − e−
∣∣∑2

i=1 pi

∣∣r)} , (2.24)

where the subscript ‘R’ denotes “regularized”. For the future usage, we define

E12...m,m+1m+2...n,...,q+1...s
R = e12...m,m+1m+2...n,...,q+1...s − e123...s (2.25)

≡ exp
{
−
(∣∣∣∣∣

m∑
i=1

pi

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=m+1

pj

∣∣∣∣∣+ . . .+
∣∣∣∣∣

s∑
k=q+1

pk

∣∣∣∣∣
)
r

}

− exp
{
−
∣∣∣∣∣
s∑
i=1

pi

∣∣∣∣∣ r
}

(2.26)

We express the regularized diagram in figure 2.
We keep performing such a process and get higher order solutions in the small cou-

pling λ. The second order equation and solution in λ are more complex. By using the
following ansatz:

fq(r) = f (0)
q (r) + f (1)

q (r) + f (2)
q (r) +O(λ3), (2.27)
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we get the second order equation as

(∂2
r − q2)f (2)

q (r) = 3λ
4

∫
d5k

(2π)
5
2

[
f

(1)
k (r)f (0)

q−k(r) + f
(0)
k f

(1)
q−k(r)

]
= 2 · 3λ

4

∫
d5k

(2π)
5
2

[
f

(1)
k (r)f (0)

q−k(r)
]

(2.28)

= 2 ·
(3λ

4

)2 ∫ d5kd5p

(2π)5
FpFk−pFq−k

(|p|+ |k − p|)2 − |k|2

×{e−(|p|+|k−p|)·r − e−|k|·r}e−|q−k|r

One may realize that the first and the second terms are the same once one redefines the
momenta in the second term as k ≡ q−k′ and p ≡ p′ in the first line in (2.28). The solution
of the second order equation is given by

f (2)
q (r) = 2 ·

(3λ
4

)2 ∫ d5k

(2π)5

( 2∏
i=1

∫
d5piFpi

)
∆2(p1, p2; k)Fq−k

×
{

e−(|p1|+|p2|+|q−k|)r − e−|q|r

[(|p1|+ |p2|+ |q − k|)2 − |q|2]
− e−(|k|+|q−k|)r − e−|q|r

[(|k|+ |q − k|)2 − |q|2]

}
, (2.29)

= 2 ·
( 3∏
i=1

∫
d5piFpi

)
(λ5)2 · δ(5)

( 3∑
i=1

pi − q
)

∆(p1, p2)

×{∆(p1, p2, p3)E1,2,3
R −∆(p1 + p2, p3)E12,3

R },

= 2 ·
( 3∏
i=1

∫
d5piFpi

)
(λ5)2 ·

∫
d5k1∆2(p1, p2; k1)

×{∆3(p1, p2, p3; q)E1,2,3
R −∆2(p1 + p2, p3; q)E12,3

R }

As the last explicit example, we discuss the third order equation of motion and the
solution of it. To get this, we let

fq(r) = f (0)
q (r) + f (1)

q (r) + f (2)
q (r) + f (3)

q (r) +O(λ4). (2.30)

The third order equation of motion is

(∂2
r − q2)f (3)

q (r) = 3λ
4

∫
d5k

(2π)
5
2

[
2 · f (2)

k (r)f (0)
q−k(r) + f

(1)
k (r)f (1)

q−k(r)
]
, (2.31)

and the third order solution is

f (3)
q (r) = (λ5)3

( 4∏
i=1

∫
d5piFpi

)
·

 2∏
j=1

∫
d5kj


×
[
∆2(p1, p2; k1)∆2(p3, p4; k2){∆4(p1, p2, p3, p4; q)E1,2,3,4

R (2.32)

−2∆3(p1, p2, p3 + p4)E1,2,34
R + ∆2(p1 + p2, p3 + p4)E12,34

R }
+22∆2(p1, p2; k1)∆3(p1, p2, p3; k2)

×{∆4(p1, p2, p3, p4; q)E1,2,3,4
R −∆2(p1 + p2 + p3, p4)E123,4

R }
−22∆2(p1, p2; k1)∆2(p1 + p2, p3; k2)

×{∆3(p1 + p2, p3, p4; q)E12,3,4
R −∆2(p1 + p2 + p3, p4)E123,4

R }
]
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Figure 3. The prime diagrams for the zeroth(a) and the first9b) order solutions in λ.

Δ(𝑝1, 𝑝2)

𝑝3

𝑓𝑝3
(0)

𝑒−|𝑝3|𝑟

Δ(𝑝1, 𝑝2, 𝑝3)
2

1

𝑓𝑝2
(0)

𝑒−|𝑝2|𝑟

𝑓𝑝1
(0)

𝑒−|𝑝1|𝑟

𝑝1

𝑝2

Figure 4. The prime diagram for the second order solution in λ.

A pictorial way to express the solution in the small coupling expansion. Even
if perturbative solutions become more complex as they become higher order, the solutions
that we obtain show a certain pattern. Once we observe the solutions in detail, we realize
that we can express the solutions with a collection of certain diagrammatic elements.

To formulate each pictorial element, let us concentrate on the prime diagrams the
we defined previously. Again, the prime diagrams are the solutions of the equation of
motion (2.13) with all the F (n)

i (p) = 0 except n = 0 case, which are the coefficients of the
homogeneous solutions in each order in power expansion in λ.

Let us look at the zeroth order solution (2.14). The solution is f (0)
q (r) = F

(0)
q e−|q|r,

and its near AdS boundary expansion is

f (0)
q (r) = F (0)

q − r|q|F (0)
q +O(r2) as r → 0, (2.33)

where the F (0)
q is the boundary value of the solution and it corresponds to a coefficient

of the non-normalizable mode of the excitation(solutions). In the context of AdS/CFT
correspondence, this coefficient corresponds to a boundary source coupled to a composite
operator in the dual conformal field theory.

The factor e−|q|r is an evolution of the boundary value F (0)
q to the interior of AdS

space along the its radial direction. Namely, it is the radial propagation of the solution.
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H
E
P
1
1
(
2
0
2
0
)
1
0
0

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

1

1

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝1

𝑝2

𝑝3

𝑝4

Δ(𝑝3, 𝑝4)

Δ(𝑝1, 𝑝2)

Δ(𝑝1, … , 𝑝4)

𝑝4

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

Δ(𝑝1, … , 𝑝4)
2

Δ(𝑝1, 𝑝2, 𝑝3)

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝3

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2
2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

(a)                                                         (b)

Figure 5. The prime diagram for the third order solutions in λ.

𝑝5

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

1

2

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

𝑝3

𝑝4

Δ(𝑝4, 𝑝5)

Δ(𝑝1, 𝑝2, 𝑝3)

Δ(𝑝1, … , 𝑝5)

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

1

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝1

𝑝2

𝑝3

𝑝4

Δ(𝑝3, 𝑝4)

Δ(𝑝1, 𝑝2)

𝑝5

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

Δ(𝑝1, … , 𝑝5)
2

Δ(𝑝1, … , 𝑝4)
1

𝑝4

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

Δ(𝑝1, 𝑝2, 𝑝3)

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝3

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2
2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

𝑝5

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

Δ(𝑝1, … , 𝑝5)
2

Δ(𝑝1, … 𝑝4)

2

(a)                                                                      (b)                                                 (c)           

Figure 6. The prime diagram for the fourth order solutions in λ.

We express the boundary source F (0)
q by small cross and the radial propagator by dotted

lines. The zeroth order solution is expressed at (a) in figure 1.
The first order solution in λ, f (1)

q given in (2.17), is a little more complex than the
zeroth order one. From the two different boundary source terms, F (0)

p1 and F (0)
p2 , the fields

propagate into the interior of AdS space and so its amplitude contains the factor of e−|p1|r

and e−|p2|r in it. These are expressed by crosses and dotted lines as we do for the zeroth
order solution. One more thing that we need to stress is that since the momenta p1 and p2
can be arbitrary,

∫
d5p1d

5p2 factor should be inserted in the amplitude.
After the radial propagation, these two fields interact each other with a coupling,

λ5 ≡ 3λ
4(2π)

5
2
and create another (scalar) field with momentum q. It is a 3-point interaction

vertex. The newly created field does not propagate in the radial direction but only along
the boundary directions. The boundary propagator, ∆2(p1, p2; q) is given in (2.23) and the
boundary propagator contains δ-function for the momentum conservation. We express the
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1
1
(
2
0
2
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)
1
0
0

𝑝4

Δ(𝑝1, … , 𝑝6)

𝑝4

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

Δ(𝑝1, 𝑝2, 𝑝3)

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝3

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2
2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

𝑝5

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

Δ(𝑝1, … 𝑝4)

2

𝑝6

𝑓𝑝6
(0)
𝑒−|𝑝5|𝑟

2

Δ(𝑝1, … 𝑝5)

2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

1

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝1

𝑝2

𝑝3

Δ(𝑝3, 𝑝4)

Δ(𝑝1, 𝑝2)

𝑝5

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

Δ(𝑝1, … , 𝑝4)

1

2

2

Δ(𝑝1, … , 𝑝5)

Δ(𝑝1, … , 𝑝6)

𝑝6

𝑓𝑝6
(0)
𝑒−|𝑝6|𝑟

𝑝6

Δ(𝑝1, 𝑝2)

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝3

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2
2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

1

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

𝑝3

𝑝4

𝑝5

Δ(𝑝1, 𝑝2, 𝑝3)

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

2

2

Δ(𝑝1, … , 𝑝5)

Δ(𝑝1, … , 𝑝6)

𝑓𝑝6
(0)
𝑒−|𝑝6|𝑟

2

𝑓𝑝6
(0)
𝑒−|𝑝6|𝑟

1

2

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

𝑝4

𝑝5

𝑝6

Δ(𝑝5, 𝑝6)

Δ(𝑝1, … , 𝑝4)

Δ(𝑝1, … , 𝑝6)

2

Δ(𝑝1, 𝑝2, 𝑝3)

(a)                                                                             (b)       

(c)                                                                             (d)       

𝑓𝑝5
(0)
𝑒−|𝑝5|𝑟

𝑓𝑝6
(0)
𝑒−|𝑝6|𝑟

1

𝑓𝑝5
(0)
𝑒−|𝑝4|𝑟

𝑝5

Δ(𝑝5, 𝑝6)

𝑓𝑝6
(0)
𝑒−|𝑝6|𝑟

1

2

𝑝5

𝑝6

Δ(𝑝5, 𝑝6)

Δ(𝑝1, … , 𝑝6)

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

1

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑝1

𝑝2

𝑝3

𝑝4

Δ(𝑝1, 𝑝2)

1

Δ(𝑝3, 𝑝4)
Δ(𝑝1, … , 𝑝4)

2

1

𝑓𝑝3
(0)
𝑒−|𝑝3|𝑟

𝑓𝑝4
(0)
𝑒−|𝑝4|𝑟

𝑝3

𝑝4

Δ(𝑝4, 𝑝5, 𝑝6)

Δ(𝑝1, 𝑝2, 𝑝3)

Δ(𝑝1, … , 𝑝6)

1

𝑓𝑝2
(0)
𝑒−|𝑝2|𝑟

𝑝1

𝑝2

𝑓𝑝1
(0)
𝑒−|𝑝1|𝑟

Δ(𝑝1, 𝑝2)

2

𝑝6

(e)                                                                             (f)       

Figure 7. The prime diagram for the fifth order solutions in λ.
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boundary propagator by solid lines. After all, the first order solution can be demonstrated
as given at (b) in the figure (1) in terms of the diagrammatic elements that we introduced.

The boundary propagator is not a usual two point amplitude since it depends on p1
and p2 as well as q = p1 + p2. Somehow it shows a non-local structure of the amplitude
and the non-locality will be manifest as it goes higher orders.

General rules. By looking at many of the higher order solutions together with the zeroth
and the first order solutions, we find the following rules.

• The n-th order solution in the small coupling λ, f (n)(r) given in figure 9 contains
n + 1 boundary source terms Fpi . All these source terms propagate in the radial
direction therefore the solution contains the factor of

∏n+1
i=1

∫
d5kie

−|ki|rFki
. These

can be expressed in terms of collection of n + 1 copies of the diagramatic element
(but with different momentum for each dotted line) given at (a) in figure 1.

• After the radial propagation of the source terms, certain pairs of the radial propaga-
tors expressed in the dotted lines merge into a point where the propagators interact
each other with a strength of the coupling constant of λ5. This vertex produces
another type of propagator, “boundary propagator” ∆2(p1, p2; q), which is expressed
in a solid line. The solid line will interact with a radial or boundary propagetor to
produce another boundary propagator ∆i(p1, p2, . . . , pi; q).

• There are 4 different types of interaction vertices given in figure 8. (a) in figure 8
demonstrates that two radial propagators,

∏2
i=1

∫
d5piFpie

−|pi|r interact each other
with coupling λ5 to produce a boundary propagator ∆2(p1, p2; q). (b) in figure 8 in-
dicates that a radial propagator,

∫
d5pn+1Fpn+1e

−|pn+1|r and a boundary propagator,
∆n(p1, p2, . . . , pn; k) interact each other to produce another boundary propagator,
∆n+1(p1, p2, . . . , pn+1; q). The factor ‘2’ inside the small circle at the interaction
vertex means that we multiply a factor of “2” to the amplitude.

• (c) and (d) in figure 8 show that the two boundary propagators, ∆n(p1, p2, . . . , pk; k1)
and ∆n(pk+1, pk+2, . . . , pn; k2) interact each other and produce another boundary
propagator. At (c) in figure 8, the two boundary propagators coming into the vertex
have different histories. In such a case, we mulpiply a factor of 2 to the amplitude.
At (d) in figure 8, the two boundary propagators coming in share the same history.
In this case, n is an even number and k = n

2 and we muliply a factor of 1 to the
amplitude.

• The n-th order solution in λ is a collection of all possible connections of the radial
propagators via the 4-different types of the interaction vertices and finally produce a
single boundary propagator as seen in figure 9. For all the internal boundary propa-
gator, ∆n(p1, p2, . . . , pk; k1), there should an integration,

∫
dk1 inside the amplitude.

• Caution: we do not multi-count any amplitudes(or diagrams) which can be obtained
by any permutations of the boundary momenta “pi”s. Namely, from an amplitude,
if one gets another amplitude by an operation of such a permutation on it, then they
are the same diagram and so we do not double count them.
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1
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(
2
0
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1
0
0

Δ(𝑝1, … , 𝑝𝑛)
2

Δ(𝑝1, … , 𝑝𝑘)

Δ(𝑝𝑘+1, … , 𝑝𝑛)

𝑝2

𝑝1

Δ(𝑝1, 𝑝2)
1

𝑝𝑛+1

Δ(𝑝1, … , 𝑝𝑛+1)
2

Δ(𝑝1, … , 𝑝𝑛)

Δ(𝑝1, … , 𝑝2𝑛)
1

Δ(𝑝1, … , 𝑝𝑛)

Δ(𝑝𝑛+1, … , 𝑝2𝑛)

(a) (b)

(c) (d)

Figure 8. Each diagrammatic elements.

.…
 

Δ(𝑝1, 𝑝2, … 𝑝𝑛) 

𝐹𝑝1𝑒
−|𝑝1|𝑟 

𝐹𝑝2𝑒
−|𝑝2|𝑟 

𝐹𝑝𝑛𝑒
−|𝑝𝑛|𝑟  

Figure 9. The general construction of the classical solutions.

Recovering the full solutions. The prime solution that we obtained from the general
rules addressed is given by

fp(r) =
∞∑
l=1

λl−1
5

 l∏
j=1

∫
d5pjFpj )

Al(p1, . . . , pl; p), (2.34)

where

A1(p1; p) = δ(5)(p1 − p)e1, (2.35)
A2(p1, p2; p) = ∆2(p1, p2; p)e1,2,

A3(p1, p2, p3; p) = 2 · P
{∫

d5k1∆2(p1, p2; k1)∆3(p1, p2, p3; p)e1,2,3
}
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A4(p1, p2, p3, p4; p) = P
{( 2∏

j=1

∫
d5kj

)
[∆2(p1, p2; k1)∆2(p3, p4; k2)∆4(p1, p2, p3, p4; q)

+2 · 2 ∆2(p1, p2; k1)∆3(p1, p2, p3; k2)∆4(p1, p2, p3, p4; q)]e1,2,3,4
}
,

and so on . . .

and the symbol P denotes all possible permutations of the momenta pi in the expressions.
How can we recover the full solution? A way is to add all possible terms which cancel the
colinear divergences in the prime diagrams.

• A1 has no divergence in it(the δ-function will be integrated). Then we leave it as it is.

• A2 diverges when the p1 and p2 are colinear. Then, we add a term as

∆2(p1, p2; p)e1,2 → ∆2(p1, p2; p)e1,2 −∆2(p1,p2; p)e12 = ∆2(p1, p2; p)E1,2
R , (2.36)

where the term that we add share the factor ‘∆2(p1, p2; p)’ with a different coefficient
e12. This term simply substract the divergence when 1, 2 = 12, which means that
|p1|+ |p2| = |p1 + p2|.

• A3 has two different types of colinear divergences. When 1, 2 = 12, ∆2(p1, p2; k1)
diverges and when 1, 2, 3 = 123 meaning that |p1| + |p2| + |p3| = |p1 + p2 +
p3|, ∆3(p1, p2, p3; p) is divergent. First, we remove the colinear divergence in
∆2(p1, p2; k1). To do this, we perform

∆2(p1, p2; k1)∆3(p1, p2, p3; p)e1,2,3

→ ∆2(p1, p2; k1)∆3(p1, p2, p3; p)e1,2,3 −∆2(p1,p2; k1)∆2(p1 + p2,p3; p)e12,3

(2.37)

as we do in the A2 case. We compose the second term as follow. We keep the
factor, ∆2(p1, p2; k1) in the prime diagram and change its coefficient. The coefficient
is ∆3(p1, p2, p3; p)e1,2,3 and then we switch the variable |p1| + |p2| by |p1 + p2| in it.
Then, the coefficient becomes ∆2(p1 + p2, p3; p)e12,3.

However, the expression still has the divergence in ∆3(p1, p2, p3; p), when 1, 2, 3 = 123.
To regularize the divergences from each term above, we add the other terms as below

→ ∆2(p1, p2; k1)∆3(p1, p2, p3; p)e1,2,3 −∆2(p1,p2; k1)∆3(p1,p2,p3; p)e123

−∆2(p1, p2; k1)∆2(p1 + p2, p3; p)e12,3 + ∆2(p1,p2; k1)∆2(p1 + p2,p3; p)e123,

(2.38)

where the second term substract the colinear divergence of the first term and the
fourth one does from the third one. The second term is designed by keeping the
factor ∆2(p1, p2; k1)∆3(p1, p2, p3; p) and change its coefficient e1,2,3 in a way that we
switch the variable |p1|+ |p2|+ |p3| by |p1 + p2 + p3|. The third term is designed by
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keeping the factor ∆2(p1, p2; k1)∆2(p1 + p2, p3; p) and change its coefficient e12,3 in a
way that we switch the variable |p1 + p2|+ |p3| by |p1 + p2 + p3| i it.

Finally the full solution is given by

A3 → ∆2(p1, p2; k1)∆3(p1, p2, p3; p)E1,2,3
R −∆2(p1, p2; k1)∆2(p1 + p2, p3; p)E12,3

R

(2.39)

• A4 has two different terms in it. We perform the substraction process to each term
and then we get the full solutions.

3 The boundary on-shell action

3.1 Regularity and boundary conditions

In our setting of the AdS geometry given in (2.2), the AdS boundary is at r = 0 and the
location of r =∞ is for Poincare horizon, which is the deep interior of the AdS space. At
the zeroth order in λ, we have the two independent solutions as

φ1(pi, r) = Fpr
d−1

2 e−|p|r or φ2(pi, r) = gpr
d−1

2 e|p|r, (3.1)

where the coefficients Fp and gp are arbitrary (boundary directional) momentum “pi” de-
pendent functions. The φ1 is regular everywhere but the φ2 does not. It shows divergence
at r =∞, the Poincare horizon unless the absolute value of the momentum |p| vanishes. We
stress that these solutions are entire solution for the conformally coupled scalar in zeroth
order in λ, not being an approximate solutions with their near boundary expansions.

Let us argue this r = ∞ behavior of the solutions by computing the stress-energy
tensor of conformally coupled scalar theory near the Poincare horizon. This stress energy
tensor of the conformally coupled scalar theory is given by

TMN = ∂Mφ∂Nφ− gMNL, (3.2)

where the L is the Lagrangian density of the conformally coupled scalar theory, given
in (2.3). We want to evaluate this in (boundary directional) momentum space, by Fourier
transform given as (2.10) and which gives

TMN (p) =
∫

ddk

(2π)
d
2

{
grMgrN∂rφk∂rφp−k + gµMgνNkµ(p− k)νφkφp−k

−g
MN

2
(
gµνkµ(p− k)νφkφp−k + grr∂rφk∂rφp−k +m2φkφp−k

)}
, (3.3)

where gMN = r2δMN , more precisely grr = r2 and gµM = r2δµM .
Now, to eveluate the stress energy tensor, consider the general solution of φ, which is

given by a linear combination of the φ1 and φ2. Near the Poincare horizon, the φ2 and its
derivatives are more dominant than those of φ1. Therefore, the solution φ becomes φ→ φ1

– 15 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
0

as r →∞. First, let us compute T rr.

T rr(p) =
∫

ddk

(2π)d/2
φ2(k)φ2(p− k)

{
r4

2 (|k||p− k| − k · (p− k))

+(d− 1)
4 r3(|k|+ |p− k|) + d(d− 1)

4 r2
}

(3.4)

We also compute T ττ , which is given by

T ττ (p) =
∫

ddk

(2π)d/2
φ2(k)φ2(p− k)

{
r4

2 ((Ep − Ek)Ek − |k||p− k| − k · (p− k))

+(d− 1)
4 r3(|k|+ |p− k|) + d− 1

4 r2
}
, (3.5)

where Ek is an energy of an excitation in the boundary field theory, which can be defined
in the context of radial quantization, and the τ is the radial variable.

In the stress energy tensor, there is a factor of φ2(p)φ2(p−k) in it, which diverges near
the Poincare horizon as φ2(p)φ2(p− k) ∼ exp {(|k|+ |p− k|)r} as r →∞. Therefore, this
causes an infinite stress energy tensor, which implies a large back reaction to the background
geometry near the Poincare horizon whereas the AdS boundary does not change. The
geometry can change into a black brane(but we do not examine the system for such a case in
detail). If we assume as such, we may have different kinds of states(may be thermal states)
in the dual field theory corresponding to the black brane solution and the holographic
correlation function must not be the same with those from pure AdS space.

In this paper, what we want to do is to compute holographic correlation functions
from a model of conformally coupled scalar theory in the background of pure AdS space.
Therefore, we keep the Poincare horizon as that of AdS space.

Divergences near AdS boundary and the counter terms. To evaluate holographic
correlation functions from gravity models, one need to regularize the boundary on-shell
action near AdS boundary at r = ε where ε � 1, showing divergences as the boundary
approaches ε→ 0 in general.

For this, the holographic renormalization process is needed. Practically, we add counter
terms in the action. In our case, it is

Sct = d− 1
2

∫
ddx
√
γφ2(x), (3.6)

where γ is determinant of the γµν , which is defined as

γµν = ∂xM

∂xµ
∂xN

∂xν
gMN (3.7)

at r = ε. This counter term respects AdS boundary diffeomorphism invariance and precisely
cancels the divergence pieces from the boundary on-shell action that we will compute. One
can see if this counter term works correctly in the new field frame. By employing the field
transformation (2.6), one sees that another boundary term appers, which is the first term
in the second line in (2.7). The counter term precisely cancel this term. Then, in this field
frame, the solutions of the equation of motion and the boundary on-shell action from them
become regular manifestly.
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Boundary conditions on the AdS boundary. Since the mass of conformally coupled
scalar is in a window as −d2

4 ≤ m2 ≤ −d2

4 + 1, various quantization schemes are possi-
ble. Accordingly, in the dual gravity theory, various boundary conditions are suggested
for these, Dirichlet, Neumann and Mixed boundary conditions. In our computation, we
restrict ourselves imposing Dirichlet boundary condition on the AdS boundary. For this,
we demand δFp = 0, where the Fp is the boundary value of the equation of motion of the
conformally coupled scalar. This is for a holographic computations of correlation functions
of an operator, of which conformal dimansion ∆ = d+1

2 coupled with a source J .

3.2 Computation of the boundary on-shell action

The form of the on-shell action is given by

Sos ≡ S(1)
os + S(2)

os = 1
2

∫ [ 2∏
i=1

d5ki

]
fk1(r)∂rfk2(r)δ(5)

( 2∑
i=1

ki

)∣∣∣∣∣
r=∞

r=0
(3.8)

−λ5
6

∫ ∞
0

dr

[ 3∏
i=1

fki
(r)d5ki

]( 3∑
i=1

ki

)
,

where the fk(r) is the solution that we obtaine in the previous section. We note that the
solution fk(r) has no colinear divergences in it and so the on-shell action is finite too except
the infra-red point where all the momenta ki = 0. The process computing the boundary
on-shell action to get n-point function of the composit operator which corresponds this
solution is somewhat long and tedious. We just address a few of them below.

• 〈O∆(k1)O∆(k2)〉 = |k1|
2 δ(5)(k1 + k2),

• 〈O∆(k1)O∆(k2)O∆(k3)〉 = λ5

3 · (
∑3
i=1 |ki|)

δ(5)(k1 + k2 + k3),

• 〈O∆(k1)O∆(k2)O∆(k3)O∆(k4)〉,

= − λ2
5

6 · (
∑4
i=1 |ki|)

( 1
(|k1|+ |k2|+ |k1 + k2|)(|k3|+ |k4|+ |k3 + k4|)

+(k1 ↔ k3) + (k1 ↔ k4)
)
δ(5)(k1 + k2 + k3 + k4),

• And so on.

4 Holographic correlation functions as fixed points of holographic Win-
sonain RG

4.1 Holographic renormalization and Hamilton Jacobi equation

In this section, we would like to compute holographic Wilsonian renormailization group
flows of a certain 5-dimensional conformal field theory when its bulk dual is given by 6-
dimensional conformally coupled scalar theory in AdS6. When the conformally coupled
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scalar theory (2.3) is defiend in the AdS6, its enjoys 3-point self interaction. The action is
given by

S =
∫
r>ε

dr

[
1
2

∫
d5kd5k′δ(5)(k + k′)

(
∂rfk∂rfk′ + k2fkfk′

)

+ λ

4(2π)5/2

∫ 3∏
i=1

d5kifki
δ(5)

( 3∑
j=1

kj

)]
+ S′B(ε), (4.1)

where ki are 5-dimensional boundary directional momenta, S′B is the boundary deforma-
tion, i.e. the boundary generating functional on the r = ε hypersurface. We define this
action in the momentum space of ki by using the fourier transform that we define in the
last section.

The canonical momentum and the equation of motion are given by

Πk ≡ ∂rf−k = δS′B
δfk

, ∂rΠk = k2fk + 3λ
4

∫
d5k′

(2π)5/2 fk′fk−k′ , (4.2)

where the first equation ensures that a variation with respect to the field fk is well posed.
The fact that the total action S does not depend on the radial cut-off ε leads the Hamilton-
Jacobi equation (HJ-equation) [1, 2, 10–14] which is given by

∂εS
′
B(ε) = −1

2

∫
d5k

(
δS′B
δfk(ε)

)(
δS′B

δf−k(ε)

)
+ 1

2

∫
d5kd5k′δ(5)(k + k′)k2fkfk′ (4.3)

+λ

4

∫ 3∏
i=1

d5kifki
δ(5)

 3∑
j=1

kj


To get the solution of the equation, we suggest the following trial soltuion:

S′B(ε) = Λ(ε) +
∫
Jk(ε)f−k(ε)d5k +

[∫ 2∏
i=1

d5kifki
(ε)
]
D

(2)
k1k2

(ε)δ(5)

 2∑
j=1

kj

 (4.4)

+
∞∑
n=1

λn
[∫ n+2∏

i=1
d5kifki

(ε)
]
D

(n+2)
k1,...,kn+2

(ε)δ(5)

n+2∑
j=1

kj

 ,
We plug such ansatz into the HJ-equation and obtain the following series of the equations
by the power expansion in λ. The ansatz is comprised of the series of the fields fk with
arbitrary coefficients, D(n). The HJ-equation is an identical equation for the fields. The
equations are given by

∂εΛ(ε) = −1
2

∫
d5kJk(ε)J−k(ε), (4.5)

∂εJk(ε) = −2Jk(ε)D
(2)
k,−k(ε), (4.6)

∂εD
(2)
(p,−p)(ε) = −1

2(4D(2)
(p,−p)(ε)D

(2)
(−p,p)(ε)− p

2)− 3λ
∫
d5kJ−k(ε)D

(3)
(p,−p+k,−k)(ε)
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∂εD
(3)
(k1,k2,k3)(ε) = 1

4(2π)5/2 − 2
( 3∑
j=1

D
(2)
kj ,−kj

)
(ε)D(3)

k1,k2,k3
(ε) (4.7)

−4λ
∫
d5kJ−k(ε)D

(4)
(k1,k2,−k1−k2+k,−k)(ε)

∂εD
(n)
(k1,...,kn)(ε) = −2

(
n∑
j=1

D
(2)
(kj ,−kj)

)
(ε)D(n)

(k1,...,,kn−1,−
∑n−1

j=1 kj)
(ε) (4.8)

−1
2

n−3∑
n′=1

(n′ + 2)(n− n′)

×P
{
D

(n′+2)
(k1,...,kn′+1,−

∑n′+1
j=1 kj)

(ε)D(n−n′)
(kn′+2,...,kn−1,−

∑n−1
j=1 kj ,

∑n′+1
j=1 kj)

(ε)
}
,

−λ(n+ 1)
∫
d5kJ−k(ε)D

(n+1)
(k1,...,kn−1,k−

∑n−1
j=1 kj ,−k)

for n ≥ 4,

Jk = 0 solution: the simplest solutions are able to obtained when Jk = 0 identically,
which means that there is no single trace deformation at all. In such case, the boundary
cosmological constant, Λ = 0. The other parts of the solutions are given by

D
(2)
p,−p(ε) = 1

2
∂εfp(ε)
fp(ε)

, (4.9)

D
(3)
(k1,k2,k3)(ε) = 1

4(2π)5/2

∫ ε (fk1(ε′)fk2(ε′)fk3(ε′)) dε′ + C
(3)
k1,k2,k3

fk1(ε)fk2(ε)fk3(ε) , (4.10)

D
(n)
(k1,...,kn−1,−

∑n−1
j=1 kj)

(ε) = C(n)∏n
i=1 fki

(ε) (4.11)

−1
2

∫ ε

dε′
(∏n

j=1 fkj
(ε′)∏n

l=1 fkl
(ε)

)
n−3∑
n′=1

(n′ + 2)(n− n′)

×P
{
D

(n′+2)
(k1,...,kn′+1,−

∑n′+1
j=1 kj)

(ε)

×D(n−n′)
(kn′+2,...,kn−1,−

∑n−1
j=1 kj ,

∑n′+1
j=1 kj)

(ε)
}
,

where

fp(ε) = Cp cosh(|p|ε+ θp), fp(ε) = Cp sinh(|p|ε+ θp), or fp(ε) = Cpe
±|p|ε (4.12)

where Cp and θp are arbitrary, momentum p dependent constants.
The explicit form of the solution of the double trace operator D(2)

p,−p is given by

D
(2)
p,−p(ε) = |p|2 tanh(|p|ε+ θp), where |D(2)

p,−p(ε)| ≤
|p|
2 , (4.13)

D
(2)
p,−p(ε) = |p|2 coth(|p|ε+ θp), where |D(2)

p,−p(ε)| ≥
|p|
2 ,

or D
(2)
p,−p(ε) = ±|p|2
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It shows a trivial IR fixed point when ε → ∞ and its IR value is D(2)
p,−p(∞) = |p|

2 . We
note that the double trace operator is the square of the norm of the single trace operator,
O. Therefore, if the double trace deformation is negative, it may spoil the unitarity of the
deformed theory.

The multi-trace operators present diverse behaviors. Let us check the triple trace
operator. Its explicit solution is given by

D
(3)
k1,k2,k3

(ε) = 1
4(2π)5/2∏3

i=1 cosh(|ki|ε+ θi)

 C
(3)
p∏3

i=1Cki

+ 1
4

sinh
(∑3

j=1(|kj |ε+ θkj
)
)

∑3
l=1 |kl|

+ 1
4

3∑
j=1

sinh
(∑3

l=1(|kl|ε+ θkl
)− 2(|kj |ε+ θkj

)
)

∑3
m=1 |km| − 2|kj |


D

(3)
k1,k2,k3

(ε) = 1
4(2π)5/2∏3

i=1 sinh(|ki|ε+ θi)

 C
(3)
p∏3

i=1Cki

+ 1
4

cosh
(∑3

j=1(|kj |ε+ θkj
)
)

∑3
l=1 |kl|

− 1
4

3∑
j=1

cosh
(∑3

l=1(|kl|ε+ θkl
)− 2(|kj |ε+ θkj

)
)

∑3
m=1 |km| − 2|kj |

 ,
The both of the solutions show their fixed point as

D
(3)
k1,k2,k3

(∞) = 1
4(2π)5/2(

∑3
i=1 |ki|)

(4.14)

The multi trace operator solutions can be given by solving the equations that we addressed
previously and its analytic forms are given in appendix.

Fixed points of multi trace operators in Jk = 0 case: the fixed points of the multi
trace operators can be obtained by requesting the equations (4.7), (4.7) and (4.8) at the
fixed points. When the equation (4.7) is examined to find a fixed points under a condition
that its left hand side vanishes i.e. ∂ε?D(2)

p,−p(ε?) = 0, then the fixed points are given by

D
(2)
p,−p(ε?) = ±|p|2 (4.15)

By looking at the given solution of the double trace operator (4.9), D(2)
p,−p(ε?) = |p|

2 is a
fixed point at ε? = ∞(so called IR fixed point) and D

(2)
p,−p(ε?) = − |p|2 is a fixed point at

ε? = −∞(a fixed point in relatively UV region).
The equation (4.10) shows fixed points of the triple trace operator as

D
(3)
k1,k2,k3

(ε?±) = ± 1
4(2π)5/2(

∑3
i=1 |ki|)

, (4.16)

where ε?± = ±∞. In general the fixed points of the n-trace operators are given by the
following condition

D
(n)
(k1,...,kn)(ε

?
±) = ∓ 1

2(
∑n
i=1 |ki|)

n−3∑
n′=1

(n′ + 2)(n− n′) (4.17)

×P
{
D

(n′+2)
(k1,...,kn′+1,−

∑n′+1
j=1 kj)

(ε?±) D(n−n′)
(kn′+2,...,kn−1,−

∑n−1
j=1 kj ,

∑n+1
j=1 kj)

(ε?±)
}
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By utilizing such relation, for example, one can derive the fixed points of the quadraple-
trace operator as

D
(4)
k1,k2,k3,k4

(ε?±) = ∓ 3
25(2π)5(

∑4
i=1 |ki|)

( 1
(|k1|+ |k2|+ |k1 + k2|)(|k3|+ |k4|+ |k3 + k4|)

+(k1 ↔ k3) + (k1 ↔ k4)
)

(4.18)

Jk 6= 0 solutions: in the case that we turn on the single trace operator, Jk 6= 0, it is
not easy to get their solutions since the equations become integral equations as well as
the radial evolution of the n-ple trace operator depends on the n + 1-ple trace operator
through the terms ∼

∫
d5kJkD

(n+1)
k in the equations. One way to solve such equations is

by an assumption that the single trace term Jk is parameterically small. We introduce a
dimensionless small parameter α, and assume that the single trace term is suppressed by
the parameter.

The solutions of the single trace and the boundary cosmological constant are given by

Jk = αBk
fk(ε)

, and Λ(ε) = −α2 1
2

∫
d5k

BkB−k
fk(ε)f−k(ε)

, (4.19)

where Bk is arbitary boundary momentum ki dependent function. To get the n-ple trace
operators, we try the following form of ansatz,

D(n)
k1,...,kn−1,−

∑n−1
j=1 kj

(ε) ≡ D(n)
k1,...,kn−1,−

∑n−1
j=1 kj

(ε)+αC(n)
k1,...,kn−1,−

∑n−1
j=1 kj

(ε)+O(α2) (4.20)

where D(n)(ε) is the full solution which is a form of power expansion order by order in small
parameter α. D(n)(ε) is the n-ple trace operator that we obtained in the previous section
and C(n)(ε) is the first order solution in the α respectively.

It is very unlikely to get analytic solutions of C(n)(ε). However, one certain statement is
that the fixed points of the n-ple trace operator does not change by the first order solutions
in α at r = ε?, as long as the zeroth order solution of the n + 1-ple trace operator’s fixed
points are finite at the given radial velue.

5 Holographic 4-point function and conformal Ward identities

Conformal 2- and 3-point correlation functions are determined due to the global conformal
invariance. In the momentum space as well as in the position space, such correlators are
investigated. In [7], the authors compute the 2- and 3-point functions in momentum space
by imploying Fourier transform from them in position space. The 2-point function the they
obtain is given by

〈O(p1)O(p2)〉 = (2π)dδ(d)(p1 + p2)〈〈O(p1)O(p2)〉〉, (5.1)

where

〈〈O(p1)O(p2)〉〉 =
C2π

d/22d−2∆Γ
(
d−2δ

2

)
Γ(∆) |p|2∆−d., (5.2)
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The C2 is the coefficient of the 2-point function in position space, ∆ is the conformal
dimension of the operator O(x), Γ is the gamma function and the d is the dimensionality
of the spacetime. In the previous researches devoting to conformally coupled scalar in
AdS spacetime and its holographic duals [2, 3], the authors compute the conformal 2-point
correlation functions for the cases that 2∆−d = 1. The 2-point functions have the forms of

〈〈O(p1)O(p2)〉〉 = C|p|, (5.3)

upto a coefficient C.
The form of the 3-point function is an integral form being given by

〈〈O(p1)O(p2)O(p3)〉〉 = C3p
∆1− d

2
1 p

∆2− d
2

2 p
∆3− d

2
3

∫ ∞
0

dx x
d
2−1


3∏
j=1

K∆j− d
2
(pjx)

 , (5.4)

where the coefficient C3 is

C3 = C123π
d24+ 3d

4 −∆t

Γ
(

∆t−d
2

)
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆2+∆3−∆1
2

)
Γ
(

∆3+∆1−∆2
2

) , (5.5)

and the Kν represents the modified Bessel-K function. The form of the 3-point function is
not analytic form yet(except some special cases), which is so called“triple-K integral”[7].

In [2, 3] and this note, the authors suggest the forms of the 3-point functions from
a holographic computations. They study conformally coupled scalar theory in AdS back-
ground again. It turns out the model enjoies a reasonable self-interaction for the cases that
d = 5 and d = 3(which are the boundary spacetime dimensions of the AdS space).2 In
such cases, the conformal dimensions corresponding of the exitations in tis AdS space are
∆ = 3 and ∆ = 2 respectively.

For the case that d = 5, the 3-point function from the model(they perform minimal
substraction and add no other terms on the conformal boundary) is

D
(3)
k1,k2,k3

(ε?±) = ± 1
4(2π)5/2(

∑3
i=1 |ki|)

, (5.6)

as addressed in this note, where absolutely the sum of all the momenta needs to be con-
served. One can show that when ∆1 = ∆2 = ∆3 = 3 and d = 5, the triple-K integral
becomes the same form with this upto the overall coefficient.

In the case that ∆ = 2 and d = 3 [3], they find that the holographic computation of
the 3-point function vanishes(again their prescription is minimal subtraction and adding
no other manipulations on the conformal boundary). The triple-K integral suggest that

〈〈O(p1)O(p2)O(p3)〉〉 ∼
∫ ∞

0

dx

x
exp

{
−
( 3∑
i=1
|pi|
)
x

}
, (5.7)

which has no momentum dependence and so it is a number.
There days, there are some of attampts to compute 4-point correlation function in

momentum space [8].
2In other cases, the self-interaction is not an integral power of the fields.
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Conformal Ward identities. Dilatation Ward identity is D
(
pj ,

∂
∂pj

)
Φ(p1, . . . , pn) =

0, where Φ is the n-point correlation function in momentum space, the momenta are
constrained to accept momentum conservation

∑n
j=1 ~pj = 0. The differential operator D is

given by
D = pa

∂

∂pa
+ ∆′, (5.8)

where the ∆′ = −
∑n
i=1 ∆i + (n− 1)d.

Special conformal Wand identity is Kk
(
pj ,

∂
∂pj

)
Φ(p1, . . . , pn) = 0, where Φ is the n-

point correlation function in momentum space, the momenta are constrained to accept
momentum conservation

∑n
j=1 ~pj = 0. In fact, the operator Kk is an differential operator

with respect to n− 1 independent momenta. More preceisely, Kk ≡
∑n−1
j=1 Kkj and

Kkj = 2(∆j − d) ∂

∂pkj
+ pkj

∂2

∂paj∂p
a
j

− 2paj
∂

∂pkj∂p
a
j

, (5.9)

where the ∆j is the conformal dimension of the j-th operator.
If one applies this operator to a product of a certain two arbitrary functions of mo-

menta, then it must be by chain rule as

Kk[A(pl)B(pm)] =
{
KkA(pl)

}
B(pm) +A(pl)

{
KkB(pm)

}
(5.10)

+
n−1∑
j=1

(
2pkj

∂A

∂paj

∂B

∂paj
− 2paj

∂A

∂pkj

∂B

∂paj
− 2paj

∂A

∂paj

∂B

∂pkj

)

4-point functions from conformally coupled scalar. The holographic 4-point func-
tion is obtained from the conformally coupled scalar theory in AdS space [2, 3]. For d = 3
and ∆ = 2 scalar operators, the 4-point function obtained from the model is

〈O(p1)O(p2)O(p3)O(p4)〉 = u−1(4)δ(4)
(

n∑
j=1

pj

)
, (5.11)

where

u(n) =
n−1∑
j=1
|pj |+

∣∣∣∣∣∣
n−1∑
j=1

pj

∣∣∣∣∣∣ . (5.12)

Namely, the u(4) = |p1|+ |p2|+ |p3|+ |p1 + p2 + p3|.
In fact, the object u−1(n) can be a candidate for n-point conformal scalar correlator

for specific conformal dimensions. When one applies the special conformal Wand identity
on the u−1(n), one gets in the end,

Kku−1(n) = d− 2∆ + 1
u2(n)

n−1∑
j=1

pkj
|pj |

+ 2(d−∆)(n− 1)− d− 3
u2(n)

( ∑n−1
j=1 p

k
j∑n−1

l=1 |pl|

)
(5.13)

For the u−1(n) to become a conformal correlator, the right hand side of the (5.13) should
vanish. Then, we have two algebraic equations. After a little computations, the equa-
tions become

d = 2∆− 1, and ∆ = 2
n− 2 + 1. (5.14)
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Together with this, one needs to consider the dilatation Ward identity too. This gives a
more algebraic constraint, which is

∆ = (n− 1)d− 1
n

. (5.15)

The possible and reasonable(both the spacetime dimension, d and the n are integral)
solutions are listed below:

• d = 2, ∆ = 3
2 and n = 6, so the u−1(6) is a conformal 6-point function for the scalar

operators with conformal dimension ∆ = 3
2 in d = 2.

• d = 3, ∆ = 2 and n = 4, so the u−1(4) is a conformal 4-point function for the
scalar operators with conformal dimension ∆ = 2 in d = 3. This is what we get in
holographic 4-point function from the conformally coupled scalar model.

• d = 5, ∆ = 3 and n = 3, so the u−1(3) is a conformal 3-point function for the
scalar operators with conformal dimension ∆ = 3 in d = 5. This is what we get in
holographic 3-point function from the conformally coupled scalar model in this note.

The 4-point function that we get in this note for the 5-dimensional conformal field
theory( obtained from the conformally coupled scalar model in AdS6) is given by

D
(4)
k1,k2,k3,k4

(ε?±) = ∓ 3
25(2π)5u(4)u(3)v(4, 1) + (k1 ↔ k3) + (k2 ↔ k3), (5.16)

where

v(E,n) =
∣∣∣∣∣
E−1−n∑
i=1

Pi

∣∣∣∣∣+
E−1∑

j=E−n
|pj |+

∣∣∣∣∣
E−1∑
k=1

pk

∣∣∣∣∣ . (5.17)

The first term in (5.16) is s-channel, the second is t- and the last term is u- channel in
order.

When one applies the special conformal Ward identity on the first term of the holo-
graphic 4-point function, which gives

KkD(4)
k1,k2,k3,k4

= 2{u(3)− u(4)}{u(4) + v(4, 1)}
u2(3)u2(4)v2(4, 1)

{
(p1 + p2)k

|p1 + p2|
+ (p1 + p2 + p3)k

|p1 + p2 + p3|

}
(5.18)

Discussion. The result above that the (s-channel)4-point function is not a conformal
correlation function since it does not satisfy the special confromal Ward identity in general.
However, in a certain limit, it does. The right hand side of (5.18) is proportional to the
factor, u(3)− u(4) = |p1 + p2| − |p3| − |p1 + p2 + p3|. Considering momentum conservation,
this becomes |p3 + p4| − |p3| − |p4|, which vanishes when ~p3 and ~p4 are colinear. There is
another factor

{
(p1+p2)k

|p1+p2| + (p1+p2+p3)k

|p1+p2+p3|

}
= n̂12− n̂4, where n̂12 is a unit vector alnog ~p1 +~p2

and n̂4 is a nunit vector along ~p4. If a condition n̂12 = n̂4, then the right hand side of (5.18)
vanishes. This means that ~p1 + ~p2 and ~p4 are colinear.
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If one sum up all posible channels, then the above argument is not hold. The only
possible limit which makes the 4-point function conformal, is that ~pi for i = 1, 2, 3 and 4
are colinear. In this limit, the 4-point function effectively becomes

∼ 1
u3(4) , (5.19)

which is expected in [6]. In [6], it is proved that n-point correlation function among the
scalar operators O∆, where ∆ = d+1

2 is given by

Φ(p1, p2, . . . , pn) = 1(∑n−1
i=1 |pi|+

∣∣∣∑n−1
j=1 pj

∣∣∣)(n−1)d−n
2 (d+1) , (5.20)

and the (5.19) is recovered when n = 4 and d = 5. Again, d is spatial dimensionality that
the theory defined on and the space is Eucliean.

The colinear limit of the 4-point function may be related to the colinear divergences
of the solution of the equation of motion of the conformally coupled scalar theory in AdS
space. To remove the colinear divergences of the soluton, we add the homogeneous solutions
of the equation of motion to regulariz it. In the prevous computation, we choose such a
scheme. In such scheme, it is very clear that the holographic correlation function from the
conformally coupled scalar theory is free from the colinear divergneces. However, we point
out the forms of the boundary correlation functions are scheme-independent.

We also point out that one may recognize that in the colinear limit, the n-point holo-
graphic correlation functions that we get, or the multi-trace deformations in the fixed
points ε = ε?+ of the scalar operators O effectively become the conformal correlation func-
tions given in [6]. More precisely,

〈O(p1)O(p2) . . . O(pn)〉 = D(n)
p1,p2,...,pn

(ε?+) ∼ Cn(∑n−1
i=1 |pi|+ |

∑n−1
i=1 pi|

)2n−5 , (5.21)

where the colinear limit denotes that all the external momenta pis for i = 1, . . . , n are alined
in the same direction and so it is satisfied that

∑n
i=1 |pi| = |

∑n
i=1 pi|. Therefore, in some

sense, one may say that the conformally coupled scalar theory in AdS6 produces conformal
correlation functions of a scalar operator O with ∆ = 3 in 5-dimensinal Euclidean space as
its dual conformal field theory.

We also expect that the conformally coupled scalar theory in AdS4 will produce n-
point conformal correlation functions as a well-posed dual gravity theory of a certain 3-
dimensional CFT deformed with a scalar operator O with its conformal dimension is ∆ = 2
in a colinear limit. It could be an excercise for my students.
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A Application of special conformal Ward identity to the holographic
4-point function

Kk
( 1
u(4)u(3)v(4, 1)

)
= 1
u(3)v(4, 1)K

k
( 1
u(4)

)
+ 1
u(3)u(4)K

k
( 1
v(4, 1)

)
(A.1)

+ A-type terms + B-type terms + C-type terms ,

where

A-type terms = 2
3∑
l=1

pkl
1

u(3)
∂

∂pal

( 1
u(4)

)
∂

∂pal

( 1
v(4, 1)

)
(A.2)

−2
3∑
l=1

pal
1

u(3)
∂

∂pkl

( 1
u(4)

)
∂

∂pal

( 1
v(4, 1)

)

−2
3∑
l=1

pal
1

u(3)
∂

∂pal

( 1
u(4)

)
∂

∂pkl

( 1
v(4, 1)

)
,

B-type terms = 2
3∑
l=1

pkl
1

u(4)
∂

∂pal

( 1
u(3)

)
∂

∂pal

( 1
v(4, 1)

)
(A.3)

−2
3∑
l=1

pal
1

u(4)
∂

∂pkl

( 1
u(3)

)
∂

∂pal

( 1
v(4, 1)

)

−2
3∑
l=1

pal
1

u(4)
∂

∂pal

( 1
u(3)

)
∂

∂pkl

( 1
v(4, 1)

)
,

and

C-type terms = 2
3∑
l=1

pkl
1

v(4, 1)
∂

∂pal

( 1
u(3)

)
∂

∂pal

( 1
u(4)

)
(A.4)

−2
3∑
l=1

pal
1

v(4, 1)
∂

∂pkl

( 1
u(3)

)
∂

∂pal

( 1
u(4)

)

−2
3∑
l=1

pal
1

v(4, 1)
∂

∂pal

( 1
u(3)

)
∂

∂pkl

( 1
u(4)

)
.

Each term is given by

Kk
( 1
u(4)

)
= 4
u2(4)

(p1 + p2 + p3)k

|p1 + p2 + p3|
, (A.5)

which is given in (5.13).

Kk
( 1
v(4, 1)

)
= 4
v2(4, 1)

{
(p1 + p2)k

|p1 + p2|
+ (p1 + p2 + p3)k

|p1 + p2 + p3|

}
(A.6)

A-type terms = 2
u(3)u2(4)v2(4, 1)

{
(p1 + p2)k

|p1 + p2|
(v(4, 1)− u(4))

−(p1 + p2 + p3)k

|p1 + p2 + p3|
(v(4, 1) + u(4))

}
(A.7)
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B-type terms = − 2
u2(3)v2(4, 1)

(
(p1 + p2)k

|p1 + p2|
+ (p1 + p2 + p3)k

|p1 + p2 + p3|

)
(A.8)

C-type terms = − 2
u2(3)u(4)v(4, 1)

(
(p1 + p2)k

|p1 + p2|
+ (p1 + p2 + p3)k

|p1 + p2 + p3|

)
(A.9)
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