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ABSTRACT Motion synthesis benefits from the use of motion capture data and a dynamic model because
the motion data can provide a reference to naturalness, and the dynamic model can support environmental
constraints such as footskate prevention or perturbation response. However, a combination of a dynamic
model and captured motion usually demands professional insights, experience, and additional efforts such
as preprocessing or off-line optimization. To address this issue, we propose a modularized predictive
coding-based motion synthesis framework that synthesizes natural motion while maintaining the constraints.
Modularized predictive coding provides intuitive online mediation of multiple information sources, which
can then be applied to motion synthesis. To validate the proposed framework, we applied different types
of motion data and character models to synthesize human walking, kickboxing, and backflipping motions,
a dog walking motion, and a hand object-grasping motion.

INDEX TERMS Combination of linear models, hybrid-based character animation, neuroscience-inspired,
online motion synthesis.

I. INTRODUCTION
Natural character animation in a virtual world is an impor-
tant component in various applications: moviemaking, build-
ing video game environments, and a number of other
virtual-reality services that have emerged recently. In these
fields, motion-capture (mocap) data have been utilized as
sources of natural motions [1], [2]. In many real-time appli-
cations, however, character motions need to be adapted to
fit various environmental constraints in the virtual world,
which vary according to user commands and changes in the
environment.

Preserving these constraints reduces motion artifacts when
changing the environment or situation [3], [4]. Such kine-
matic approaches, nevertheless, can occasionally generate
unrealistic motions due to the lack of recoverable reference
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motions in every situation. The hybrid approach uses both
mocap data and dynamic models to generate smooth motions
that adapt to changing virtual environments. This approach
outperforms when a mocap data source is limited because
applications with a rich environment often require motions of
infinite varieties, and the dynamic model is expected to cover
the shortage. Dynamic models, however, require compli-
cated parameter tuning and often generate character motions
that are not sufficiently natural to represent human or ani-
mal motion [5]. Some researchers have used dynamic mod-
els to implicitly apply motion-specific constraints [6], [7].
This type of setup has two advantages. The first is the
computational efficiency needed to predict paths and to gen-
erate motion along a path [6], [7]. The second is consid-
eration of the environmental constraints on locomotion [8],
[9]. However, because the motion pattern of the dynamic
model differs from human motion (e.g., mocap), the gener-
ated motion may lead to an unnatural character posture that

202274
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2518-063X
https://orcid.org/0000-0003-0993-9658


J. Hwang et al.: Modularized Predictive Coding-Based Online Motion Synthesis Combining Environmental Constraints and mocap Data

exceeds the physical limits. On the other hand, when only
focusing on environmental constraints, the generated motion
can be unnatural and jerky. A tracking controller reduces the
difference between the motion from the model and the cap-
tured motion, while satisfying the constraints of the dynamic
model [10]. However, the mapping correspondence between
the dynamic model and the mocap data must be specified,
and preprocessing such as offline optimization and learning
stages [10] are required.

To overcome this difficulty, we propose an online charac-
ter motion synthesis framework that intuitively utilizes the
dynamic model and the mocap data. The predictive cod-
ing model (PCM) is well investigated in neuroscience [11].
It assumes that a set of neurons in our brain constructs
an internal model that has a hidden state. The internal
model receives an observation or perception, updates its state
according to the observation, and predicts future observa-
tions. The brain then revises its internal state online to mini-
mize the prediction error. We expect this reimbursement to
improve the performance of previous optimal control sys-
tems, such as a linear–quadratic regulator (LQR), and to filter
out the implausible synthesized motion.

As with PCM, we developed a new motion synthesis pro-
cedure, ‘‘modularized predictive coding-based online motion
synthesis,’’ by applying the concept of PCM to motion syn-
thesis. First, we regard the mocap data as a part of the per-
ception of naturalness, referred to as a ‘‘provider.’’ Second,
we use multiple linear dynamic models that correspond to
the degrees of freedom (DOFs; joints or sets of joints) of the
character model. We regard the state variables of the dynamic
model as internal states. We refer to the state and its dynamic
model for each DOF of the character as a ‘‘bundle.’’ Third,
we construct a predictive mapping from the internal state to
the perception. The prediction error is calculated for each
perception, and provides feedback to update the state. We call
thismodule a ‘‘matcher,’’ which links a provider and a bundle.
Fourth, we generate a virtual control signal to minimize the
error between the desired and predicted future state. This
is calculated in each bundle. The relationships between the
provider, bundle, and matcher are illustrated in Figure 1.
Overall, our procedure updates the current posture of the char-
acter as in the (extended) Kalman filter, with the simultaneous
calculation of the control signal as in the LQR controller,
in an online manner. More importantly, our framework is
easily extended to include multiple providers, bundles, and
matchers to handle complex-structured characters in a com-
plex environment.

The main contributions of this paper can be briefly sum-
marized as follows:
• We develop a modularized predictive coding model
(MPCM) as a modular extension of a PCM that handles
high-dimensional data by grouping them as subsystems.

• We apply the MPCM to a motion synthesis framework
that introduces an intuitive solution combining a linear
dynamic model with mocap data, so as to synthesize var-
ious motions of three different character models while

FIGURE 1. Graphic representation of the proposed framework. The basic
structure is composed of two bundles and one matcher connecting them.

improving the performance of both the controller and
the physically implausible reference motion (e.g., hand
penetration of the ground during a backflip motion).

To validate the proposed framework, we depict various
synthesized motions with a linear dynamic model and a small
amount of mocap data of walking, kickboxing, backflip-
ping, obstacle clearing, and grasping motions. In Section II,
the closest related works proposed by other researchers are
introduced for comparison with our work. In Section III,
the construction of the modular-structured PCM is described.
In Section IV, the online motion synthesis framework used
to achieve motion imitation and synthesis tasks is explained.
In Section V, the implementation details are explained.
In Section VI, the experimental results used to evaluate
the applicability of the proposed framework are described.
In Section VII, the limitations of this study and scope for
future work are discussed.

II. RELATED WORKS
In this section, we introduce the methods of previous works
most similar to the method using dynamic models that con-
sider environmental constraints and a composite of con-
trollers that combines multiple existing controllers.

A. ENVIRONMENTAL CONSTRAINTS
To consider environmental constraints in motion synthe-
sis, many online retargeting methods have been proposed.
New motion representations have been introduced to syn-
thesize natural interaction motions that preserve the origi-
nal relationship while varying the environment [3]. A linear
dynamic model has been used to guarantee natural motion
against the environmental constraints that lead the syn-
thesized motion different from various stylized example
motions [12], [13]. Other researchers have used dynamic
models based on simplified physics. An inverted pendulum
model, in conjunction with mocap, has been widely used to
represent human motion, especially for pelvis balancing [14],
locomotion [15], running [16], interaction [17], and athletic
motions [10]. Similarly, a point mass model was designed to
generate a center-of-mass trajectory [8] while guaranteeing
collision-free motion [9] in a multi-contact scenario. When
utilizing such a dynamic model, our proposed framework can
be beneficial in that the correspondence from the dynamic
model to the mocap data is intuitively connected to apply var-
ious character models and represent various types of motion.

Environmental constraints have also been considered by
aligning, blending, and sequencing motions according to the
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change in user control or the environment. Motion graphs
generate a novel sequence of motions according to the con-
straints related to a user-specified path [1] or sketch [18].
Alignment and blending of example motions generate param-
eterized motions related to the target parameterization [19],
[20]. Statistical models such as principal component
analysis [21] or Gaussian process latent variable models [22]
have been used to generate motion according to environmen-
tal constraints. The trajectory optimization method connects
the mocap data to the simulated character to generate agile
locomotion [23]. The recurrent neural network performs
well in handling sequential data (or time-series data) and
satisfies spatiotemporal constraints [2], [24]. We believe that
the proposed framework enhances the performance of these
previous works by compensating for the error online without
any preprocessing or parameter tuning.

B. COMPOSITE OF CONTROLLERS
A composite of controllers was studied to combine exist-
ing controllers to improve their performance and achieve
various tasks. Some methods used the linear interpolation
of parameters to combine multiple controllers [25], [26].
However, a simple linear combination of controllers did not
work well on the tracking controller without [27] or with a
hand-crafted metric for blending [28], [29]. Subsequently,
a low-dimensional dynamic model related to step length
allowed the synthesis of locomotion that adapts to terrain
variation [30]. Muico et al. proposed composite controllers
to animate stylized interactive characters [31]. A composite
controller generates multiple trajectories that provide more
choices of adaptation to various interactive situations, but it
requires assembly of the appropriate trajectories by hand and
specification of blending weights. Similarly to a composite
controller, the sequential composition of different skills was
introduced to provide stylistic motions [32]. As in some
previous works, our proposed framework also combines mul-
tiple tracking controllers. Moreover, our framework can work
online while maintaining its environmental constraints.

III. MODULAR PREDICTIVE CODING FRAMEWORK
In contrast to a conventional PCM [11], we develop a
modular-structured framework that efficiently models a
high-dimensional state space of complex dynamic systems.
The proposed framework enables the identification and con-
trol of a complex system by hierarchical combination of mul-
tiple modules, each of which manages a lower-dimensional
dynamical system. It is particularly suitable when the objec-
tive dynamic environment consists of multiple modalities; for
example, computer graphic characters with high DOFs and
constraints (see Section IV). These advantages are derived
from the compositions of multiple bundles connected online
by matchers.

The proposed framework is generally composed of a
provider and a bundle connected by matchers, as depicted
in Figure 1. The construction of the proposed framework
was inspired by the PCM in neuroscience, in which a brain

tends to minimize the free-energy functional of its internal
states based on observation [11]. In contrast to the original
principle, we designed three components in a modular struc-
ture: a provider that detects the current observation and to
which the current state should converge, a bundle that updates
the internal states to predict the future state, and a matcher
that evaluates the prediction error to complement an arbitrary
provider-bundle pair.

Overall, the proposed framework updates the internal state
of multiple bundles in a distributedmanner. First, we consider
a locally linear internal dynamic model

ẋt = Axt . (1)

Here, the current state variable xt is written as xt =
[x1, · · ·, xS ]T , where T denotes its transpose. The system
matrix A can be described as

A =

 A11 · · · AS1
...

. . .
...

A1 S · · · ASS

 ,
where S denotes the number of subsystems. xs,t and Aij,
such that i, j ∈ {1, · · · , S}, denote the current internal state
variable of the sth subsystem and the system matrix that
links the states of the ith and jth subsystems, respectively. ẋ
denotes the derivative of x. The sth subsystem corresponds
to the sth bundle, the state of which is a vector of arbitrary
dimensionality (in our experiment, the internal state is a
three-dimensional vector: a one-dimensional position and its
first and second time derivatives). Note that this linearized
formulation is shown for simplicity of explanation; extension
to arbitrary non-linear and/or stochastic features is straight-
forward. Second, we consider the following block-diagonal
approximation of the system matrix:

A =

A11 · · · 0
...

. . .
...

0 · · · ASS

 .
This approximation is based on the assumption of indepen-
dence between the subsystems and helps to achieve numer-
ically efficient solutions of the differential equation and/or
control problem. However, this approximation is in many
cases too strong an assumption that causes loss of important
information. Third, we define an extended internal dynamic
model to recover information without losing computational
efficiency,

ẋ′t = A′x′t , (2)

where the extended state variable vector is represented by
x′ =

[
x1, · · · , xS , x+1 , · · · , x

+

S

]T
, and the corresponding

system matrix is defined as follows:

A′ =

A11 · · · 0 A+1
...

. . .
...

...

0 · · · ASS A+S

 .
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Themodel of the sth subsystem includes the additional hidden
variable vector x+s with the corresponding linear dynamic
system:

ẋ+s,t = A+s x
+
s,t . (3)

The state-space equation of the sth subsystem is then extracted
as

ẋs,t = Assxs,t + A+s x
+
s,t . (4)

Thus, the sth subsystem’s hidden variable x+s,t is equivalent
to the control signal that controls the corresponding subsys-
tem. The hidden variable is updated by integrating an offset
parameter:

x+s,t = x+s,t−1 +1x̂+s,t , (5)

where1x̂+s,t is the offset parameter that determines the current
update of the hidden variable.

To compute the offset parameter, we devise a matcher to
estimate the parameter with respect to the observation. Here,
the observation is acquired by a provider for a more accurate
estimation. The matcher searches an optimal offset parameter
1x̂+s,t byminimizing the error between the state vector and the
observation,

1x̂+s,t = argmin1x+s,t
‖f (1x+s,t )− ys,t‖2, (6)

where 1x̂+s,t is the current optimal offset parameter, and ys,t
is the sth subsystem’s current observation acquired from a
provider. The function f outputs a prediction of the current
observation based on the bundle, which is derived by sub-
stituting 1x+s,t into 1x̂+s,t in Equation (5) and then applying
this to Equation (4), f (1x+s,t ) = (xs,t−1 + A+)/(I − A1t),
such that ẋs,t = (xs,t − xs,t−1)/1t , where 1t is the time
step and xs,t−1 is the previous state of the sth subsystem. The
function f (.) can be designed arbitrarily for a good prediction.
At every time step, the offset parameters of every matcher are
first updated based on Equation (6), and then the state vec-
tors of every bundle are updated according to Equation (4).
Algorithm 1 describes the procedure of the proposed frame-
work. In Algorithm 1, Pull(Ms) pulls the current optimal
offset parameter from the sth matcher, and Pull(Bs,Ps) pulls
the current observation and current state from the sth provider
and sth bundle, respectively. To show the reproducibility of
our framework in cooperation with multiple bundles, we built
a framework for motion analysis and synthesis.

IV. PREDICTIVE CODING-BASED ONLINE MOTION
SYNTHESIS
We apply the proposed framework to generate character ani-
mation for computer graphics. In the application, we regard
the state variables as the set of dynamic states of the charac-
ters, objects, etc. In contrast, the observation corresponds to
the set of reference data (e.g., mocap). Figure 2 describes the
conceptual diagram of the proposed framework for character
motion synthesis. A provider extracts observations from the
mocap data. A bundle includes a dynamic model and its

Algorithm 1Modular Predictive Coding Framework
Require: the initial state xs,0 and ys,0, and the system matri-

ces As and A+s are given.
1: function Bundle
2: 1x̂+s,t ← Pull(Ms)
3: x+s,t ← x+s,t−1 +1x̂+s,t
4: ẋs,t ← Asxs,t + A+s x

+
s,t

5: xs,t+1← xs,t + ẋs,t1t F 1t indicates a time step
6: return xs,t+1
7: end function
8: functionMatcher
9: xs,t , ys,t ← Pull(Bs,Ps)
10: 1x̂+s,t ← argmin1x+s,t

‖f (1x+s,t )− ys,t‖2

11: return 1x̂+s,t
12: end function

FIGURE 2. System diagram of the proposed framework. The proposed
framework mainly consists of the provider (green), bundle (blue), and
matcher (red). The user command is specified by the user, who controls
the character’s facing direction and speed.

controller to predict the future state by simulating the model
according to the controller. A matcher minimizes the error
between the observation and the predicted (simulated) state.

A. PROVIDER
The provider utilizes mocap data to extract a virtually
observed state, called an observation, as shown in Figure 2.
The observation is updated by modifying a time stamp ξi,t .

yi,t = (Yξi,t )ξt=1:N , (7)

where yi,t indicates the state of the ith provider at time t ,
Y denotes the repository of the mocap data, and N is the
length of the mocap data. Because the update rule is con-
trolled by the time stamp ξt , the provider emits a reference
motion identical to the mocap data by incrementing the time
stamp at each frame, thus achieving a motion imitation task.
Varying the time stamp changes the speed of the synthesized
motion.

To synthesize a new motion, such as an unlimited walking
motion based on limited walking motion data, we use a
motion graph technique [1] to rearrange the captured motion.
Briefly, we segment the mocap data into motion fragments.
The fragments are then rearranged and stitched according
to the situation (e.g., character posture and user control).
Figure 3 describes the sequence of time stamps in the tasks
of motion imitation and motion synthesis.
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FIGURE 3. Provider: For a motion imitation task, a provider selects the
reference motion based on its original sequence. For a motion synthesis
task (unlimited walking), the provider generates cyclic motion by
rewinding the time stamp.

B. BUNDLE
We devise a bundle that contains an internal dynamic model
and the corresponding optimal controller, and provides a
synthesized motion as the output of the overall framework.
To make a system invariant against the DOF, we defined the
sth bundle to represent the sth DOFs of a character. Thus,
the character motion can be reconstructed by concatenat-
ing the corresponding set of the bundle states, as shown
in Figure 4. For an internal dynamic model that updates the
state, we use a 1D mass–spring–damper model to represent
each bundle that corresponds to a DOF. This model enforces
the C1 continuity of the output motion, and the smoothness
of the motion can be adjusted by the weight of the bundle.
The dynamics of the model for the sth DOF are described in
the following state-space equation:

ẋs,t = Csxs,t + Dsus,t , (8)

FIGURE 4. Motion representation. The green, blue, and red circles
indicate providers, bundles, and matchers, respectively. Each provider and
bundle corresponds to a character model’s DOF to present their state.

where xs,t ∈ Rm and ẋs,t ∈ Rm are the current model state
and its derivative, respectively, that determine the position of
the sth DOF, which directly corresponds to the sth subsystem

in Section III. Here, we define the state that includes at most
the mth order of derivatives. In motion synthesis, m = 3.
The model state is defined as x = [θ , θ̇ , θ̈ ], where θ is the
joint angle, and θ̇ and θ̈ are the first and second derivatives,
respectively. Cs ∈ Rm×m and Ds ∈ Rm×n are the constant
system matrices, determined by the spring coefficient, damp-
ing coefficient, and weight of each body joint (see details
in [33]), and us,t ∈ Rn is the sth subsystem’s current control
signal. To allow the dynamic model to track the mocap data,
an LQR was used as the optimal controller, modified with
the additional parameterization of the desired state [10]. The
LQR tracking control law is described as follows:

us,t = −Ks,t (xs,t − xdesireds,t ), (9)

where Ks,t is the current LQR solution matrix, computed
based on the energy minimization of the current state and
control, and xdesireds,t is the current desired state. Based on the
LQR tracking control law in Equation (9), the dynamics of
the model are rewritten by substituting the control us,t into
the law

ẋs,t = Csxs,t − DsKs,t (xs,t − xdesireds,t ). (10)

Rearranging the above equation according to each variable
clarifies the dynamic equation of the bundle.

ẋt = C′sxs,t + D′sx
desired
s,t , (11)

where C′s = (Cs − DsKs,t ) and D′s = −DsKs,t are given
by the system matrices and LQR control law that minimizes
the quadratic cost (see details in Section V). The form of
this state-space equation corresponds to the original bundle
dynamics, described in Equation (4). The system matrices
C′s and D′s correspond to the subsystem matrices Ass and
A+s , respectively, and xdesireds,t is related to the subsystem’s
hidden variable. Here, xdesireds,t indicates the current desired
state, which is updated by integrating the offset parameter as
follows:

xdesireds,t = xdesireds,t−1 +1x̂desireds,t , (12)

where xdesireds,t−1 is the previous desired state. 1x̂desireds,t is the
offset parameter. The update rule in Equation (12) uses the
previous parameter value, which is beneficial when the bun-
dle represents time-series or sequential data.

C. MATCHER
In our general framework, a matcher defines a measure
of prediction error as a function of state variables of a
provider-bundle pair, and then provides the offset parameter
to update the hidden variable.

For application to motion synthesis, we specifically devise
a matcher for the pair of sth provider and the sth bundle,
both corresponding to the sth joint of the character xs. The
prediction error is defined by

Es = ||f (1xdesireds,t )− ys,t ||2. (13)
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where f (1xdesireds,t ) is a prediction of the current observation
based on the bundle dynamics using the current offset param-
eter 1xdesireds,t . The offset parameter 1xs,t updates the bundle
state xs,t to minimize the prediction error:

1x̂desireds,t = arg min
1xdesireds,t

Es. (14)

The optimal offset parameter 1x̂desireds,t is fed back to the sth

bundle. The prediction error Es is described in Equation 13.
Based on the matcher, a higher-level one-frame optimization
module, the proposed framework recovers the details of the
motion online.

D. ENVIRONMENTAL CONSTRAINTS
Our proposed framework provides a reliable motion con-
troller that synthesizes a natural motion, similar to that in the
mocap data. However, the resultant motion can be unnatural
when the environment changes because of user control or
environmental effects. To maintain environmental constraints
under such changes, we add an external force to the dynamics
of the model. We first explain how each bundle indepen-
dently handles its own portion of the external force, and then
explain how the external force is distributed to many related
bundles. Initially, the environmental constraints redefine the
state-space equations of the dynamic model. When force
acts on the character, the model reacts to the force while
also satisfying the constraints based on its own dynamics.
Based on the dynamic model, an external force term can
be added to the model dynamics. Hence, we redefined the
differential equation of the bundle in Equation (11) to include
the environmental effect (external force) as follows:

ẋs,t = C′sxs,t + D′sx̂
desired
s,t + fenv/$s, (15)

where fenv indicates the environmental force, and$s denotes
the weight of the sth bundle. Here, the additional force is
determined by various constraints that occur owing to forces
from the environment: external force, collision with an obsta-
cle, and ground friction. The environmental force can be
described as follows:

fenv = fext + fcol + ffootskate, (16)

where fext is the external force, fcol is the force from collision
with an obstacle, and ffootskate is the force incurred by changes
owing to user control (e.g., a situation in which only a straight
walking motion is used when synthesizing a turning motion).
Below, we explain how each force is computed to satisfy the
environmental constraints.

1) EXTERNAL PERTURBATION
Figure 5 depicts a synthesized reaction to an external
force specified by the user. To synthesize a smooth and
natural-looking reaction, the external force needs to affect the
corresponding body part as well as its neighboring body parts.
To distribute the force in Cartesian space to the space of joint
angles, we use a weighted Jacobi method. For example, when
applying an external force on a character’s chest, the force

FIGURE 5. Environmental constraints. Three different types of constraint
related to the type of motion are considered: ground contact (a), virtual
force (b), and object collision (c).

affects the bundles corresponding to the chest, abdomen, and
pelvis along with the hierarchy of joints of the character
model. Each weight is decided based on the skeleton struc-
ture; a joint closer to the root joint is less affected by the
external force, which is tuned based on the angle bound of
each joint. Figure 5 depicts a recovery motion when applying
an external force to the chest. In the figure, the magnitude of
the external force (depicted by the red arrow) is specified by
the user. Note that this force-distribution scheme is empirical
and lacks accurate physical meaning. Nevertheless, the result-
ing motion appears physically plausible, and the virtual force
directly affects the angular acceleration of the joints.

When the motion is constrained by the environment,
the time stamp is instructed to wait until the recovery motion
ends (when the current posture has returned to the original
posture from before the force was applied). This is because
when an external force is applied to a specific bundle (one of
the character model DOFs), the state of the dynamic model
becomes distant from the observation. The speed of the time
stamp increment then decreases until the difference between
themodel state of the bundle and the observation is lower than
a threshold.

2) COLLISION RESPONSE
As shown in Figure 5, the collision response can be achieved
by considering the reaction force acting on the character. The
reaction force is computed by the collision normal and the
penetration depth between the obstacle and the character. The
reaction direction and penetration depth determine the direc-
tion and magnitude of the reaction force, respectively. The
reaction force is applied to the dynamic system in the same
manner as the external force in Equation (15). Figure 5(c)
depicts the result of the collision response.

3) FOOTSKATE CLEARING
To clear footskate, we apply the force derived from foot
location changes. Computing the force starts with the vector
of the previous foot location and the current foot location
when the foot makes contact with the ground. Note that the
foot contact information is given with the mocap data.

vfootskate = wJ(xfoot,t−1 − xfoot,t ), (17)
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where vfootskate is the footskate vector, J is a Jacobian matrix
computed based on the human model in Figure 6, w is an
equally distributed weight parameter (e.g., w = [0.25, 0.25,
0.25, 0.25] and

∑
w = 1), and xfoot,t and xfoot,t−1 are the

current and previous foot location, respectively. The external
force related to the footskate is computed based on the foot-
skate vector, as with the collision response.

FIGURE 6. Character models. In our experiment, we use three different
character models: a human, a hand, and a dog.

V. IMPLEMENTATION
In this section, we explain how the predictive coding-based
online motion synthesis was implemented. In our exper-
iments, a human character model has 19 DOFs repre-
sented by 19 bundles, consisting of 19 dynamic models and
19 controllers.

Initially, all states in all bundles are initialized; the state of
the dynamic model is initially set with values corresponding
to an initial character posture in the mocap data. At each
time step, every matcher is updated, and then every bundle
is updated in parallel so that the framework allows parallel
processing. In the case of our mass–spring–damper model,
the spring coefficient and damping coefficient are set to
1 and 0.3, respectively. The weight of each bundle is set
to 4.0. The overall smoothness and tracking latency can be
adjusted simply by adjusting the bundle weight while fixing
the coefficients. The weight setting is further discussed in
Section VI-C. While updating the bundle, the LQR con-
troller computes the optimal gain matrix Ks (described in
Equation (9)), acquired by minimizing the objective function
Ls(xs,us) = xsTQxs + uTs Rus, where us is the control signal
and xs is the current state of the sth bundle. The parametric
matricesQ and R are set toQ = diag(10000, 0.01) and R = 1
(see details in [34]). The character’s posture is represented as
a vector φ = [θ r , θq, θ1, · · · , θS ]. where θ r and θq are the root
position and orientation, respectively. θ1, · · · , θS denotes the
local joint angles relative to the root.

To test the performance of the matcher, we compared two
optimization algorithms: gradient descent (GD) and conju-
gate gradient (CG). Figure 7 depicts the results of using
GD and CG (refer to the supplementary video clip). From
comparison of CG and GD, CG clearly outperformed GD

FIGURE 7. Comparison of optimizers: conjugate gradient (CG) and
gradient descent (GD). In walking motion, GD occurs in foot-slip (a),
shown in the red square, and collision while clearing an obstacle (b),
shown in the blue square.

in highly dynamic motion, such as human walking motions
or dog jumping motions. However, the CG costs twice the
computation time. We obtained similar performances in the
object-grasping motion (not shown for simplicity).

The hardware used for the implementation was an Intel
Core i7-8700K CPU and GeForce GTX 1080 Ti. Compu-
tation time differed according to the optimization method
used. Table 1 describes the computation time of the proposed
framework formotion synthesis per frame. Here, we specified
the time at which all of the bundles and matchers were
computed.

TABLE 1. Time complexity of the optimizers (ms: milliseconds).

VI. EXPERIMENTAL RESULTS
The proposed framework improves system performance for
motion synthesis and utilizes a dynamic model and a small
amount of motion data. We performed three experiments to
validate the proposed framework and compare the perfor-
mance with previous frameworks.

For comparison, we included similar frameworks that also
use a dynamic model and mocap data. The compared frame-
works are described in Figure 8. As shown in Figure 8(b),
the previous work was devised for a tracking controller that
tracks the mocap data [35]. In that case, footskate occurred
owing to the tracking delay (shown in Figure 8(e)). Even
when we included a constraint module at the end of the
framework (shown in Figure 8(c)), the constraint and delay
enlarged the unnaturalness of the resulting motion, as shown
in Figure 8(f). As described in Figure 8(f), the proposed
method reduced the tracking delay to guarantee more natural
motion. We further compared the proposed method with
the state-of-the-art synthesis method used in [7], [36]. The
previous synthesis method learns various locomotion styles
to estimate the future trajectory of the footstep by adapt-
ing to the current situation. However, the generated motion
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FIGURE 8. Comparison with previous frameworks: the proposed
framework leads to reduced motion delay that allows natural constraint
adaptation. The proposed framework (d) generates natural motion when
applying additional constraints (a). In addition, the previous framework
(e) and the constrained one (f) show footskate (b) and unnatural swing
foot motion (c), respectively.

may be unnatural, especially when the desired motion is
separated from the motion represented by the mocap data.
In Figure 9(a), we can see that the footskate occurred
when the user control was set to walking slowly. In con-
trast, the proposed method can filter out the unnatural
footskate by considering the physical constraints as shown
in Figure 9(b).

FIGURE 9. Comparison with the previous synthesis method: the red
circles in (a) depict the footskate that the previous method generates
when synthesizing locomotion at low speed. (b) The proposed method
suppresses the anomalies of physical realism.

For detailed verification, we performed two different tasks:
motion imitation with three different characters, and motion

synthesis for locomotion and force reaction. The motion
imitation task was to track the example motion, and the
motion synthesis task was to track the motion generated
by rearranging the motion fragments based on the motion
graph, as proposed by Kovar et al. [1]. In these experi-
ments, we used a limited amount of mocap data, as described
in Table 2.

TABLE 2. Mocap data (fr.: frame, s: second).

A. MOTION IMITATION WITH VARIOUS CHARACTER
MODELS
In this section, we report the results of a motion imitation task
performed using three different character models: a human,
a dog, and a hand (as depicted in Figure 6). In Figure 6, each
joint of the human model is composed of a three-dimensional
rotational joint, except for one-dimensional joints at the
elbows, knees, and toes. The dog model consists of 22 three-
dimensional rotational joints, and the hand model has five
two-dimensional rotational joints and ten one-dimensional
finger joints. Each model has an additional root joint that
defines a global coordinate frame using six DOFs for the root
position and orientation.

We conducted motion imitation that allows the bundles to
track the mocap data. This is achieved by having the provider
select the reference motion at each time sequence based on
the original mocap sequence. As the state of the provider
varies, the bundles start tracking the observed state. Figure 10
shows that the proposed framework successfully mimicked
the mocap data relative to the previous work. The systems of
the baseline and proposed methods are described in Figure 8.
Analyzing the figure, we compared the motion imitation task
based on the proposed and the baseline framework, using the
LQR tracking controller that was used in several previous
works [27], [35].

Figure 11 depicts the tracking trajectory for the walk-
ing motion described in Figure 10(a). The figure shows
three trajectories acquired from the mocap data, the base-
line method, and the proposed method. Comparing the tra-
jectories, the baseline method generated a delayed trajec-
tory compared to that from the proposed method, as shown
in Figure 11. However, this result may vary according to
parameter settings, such as the weight of the dynamic model.
In Section VI-C, further analysis is conducted considering the
parameter settings.
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FIGURE 10. Motion imitation task. Compared to the baseline described
in Figure 8, the proposed framework outperforms others when imitating
the example motion. The red-colored character represents the mocap
data. Walking (a) and kickboxing (b) motions by the human model,
nozzle-clearing motion (c) by the dog model, and object-grasping motion
(d) by the hand model were used.

B. MOTION SYNTHESIS
Motion synthesis is achieved by using the motion graph
segment to stitch a small amount of straight walking motion
and then generate a walking motion for an unlimited time.
As shown in Figures 12 (a) and (d), unlimited walking and
backflip motions can be generated by sequencing the mocap
data of a single cycle of walking motion and one backflip
motion.1 Editing the offset of the root position and facing
direction depicted by the red arrow in Figures 12(b) and (c)
moves the character in a user-specified direction and at
a user-specified speed. Speed control is made possible by

1The generated motions are also available at https://drive.google.
com/file/d/1AzYSxovZqxuFsJysukZsLWBUYMjZSZI9/view?usp=sharing.

FIGURE 11. Comparison with the baseline method: gray, blue, and red
lines denote mocap data, a baseline LQR result, and the proposed result,
respectively, subject to the right leg joint angle trajectories.

FIGURE 12. Motion synthesis. The proposed framework synthesizes the
unlimited walking (a) and backflip motions (d). The character can also be
controlled by a user (b and c).

controlled warping of the timing of the provider to integrate
the time stamp more quickly or slowly. (In our experiment,
0.5-2.0 was suitable.) Figure 13 shows the synthesized results
that animate both human and dogwalkingmotions at different
speeds. In the same manner as above, the grasping speed can
be controlled, which is an important factor in real-time object-
manipulation tasks [35].

The motion graph utilizes the mocap data to allow adap-
tation to changes. However, when there is no close transition
between frames, the synthesized motion becomes unnatural.
Referring to the mocap data for a dog in Table 2, there is no
walking motion. Thus, the transition gap when constructing
a walking cycle is large. The proposed framework found the
appropriate control signal to generate a motion similar to the
mocap data while satisfying the environmental constraints
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FIGURE 13. Speed variation: changing the time stamp in the provider
changes the walking speed of the human (a) and dog (b). The speed of
the grasping motion determines the timing when the hand grasps the
object (c).

that the character should maintain. Figure 14 describes the
comparison between the motion-graph-based method and the
proposed motion synthesis method. The motion-graph-based
method searches for transitions in mocap data to synthesize
a motion. However, the method exhibited visual artifacts
while synthesizing a dog’s straight walking motion because
no straight walking motion was included in the given pool of
mocap data. Our proposed framework recovered such small
artifacts and could construct more transition paths owing to
loosening of the threshold of the transition metric.

FIGURE 14. Comparison between a motion-graph-based method and the
proposed framework. The motion-graph-based method depicts
unrealistic motions such as penetration of the ground and jerky motions
(a). The proposed framework satisfies the environmental constraints that
guarantee a more realistic motion (b).

C. PARAMETERIZATION
In this section, we show the robustness of our framework
against small changes in the parameter setting of the proposed
framework. Setting the appropriate model parameter is diffi-
cult because some parameters may have a tradeoff. For exam-
ple, if the weight of the bundle is too heavy, the synthesized
motion becomes very smooth, but a tracking delay appears.
Our proposed framework handles this issue by including a
higher-level one-frame optimization mechanism that com-
pensates the error based on the observation.

To analyze the robustness in detail, different weight param-
eters were tested. Table 3 presents the discontinuity and delay
levels according to the total weight. Similarly to the works
in [37], we evaluate the discontinuity of the motion as
follows:

vdiscon = (1/T )6T
t=1‖xt−1 − 2xt + xt+1‖2, (18)

TABLE 3. Time complexity of our framework (disc.: discontinuity).

where vdiscon is the discontinuity level. t and T indicate the
frame number and the total number of frames in the motion,
respectively, that are used to measure the discontinuity. x
denotes the model state. The delay level is measured by the
Euclidean distance from the reference motion:

vdelay = (1/T )6T
t=1‖xt − yt‖2, (19)

where vdelay indicates the delay level of the motion that can
also be interpreted to be similar to the mocap data.

In Table 3, the baseline with low weight bundles depicts a
similar tracking performance in the delay and discontinuity
levels for the motion imitation task. In addition, as shown
in Figure 15(b), using low-weight bundles (total weight 2.7)
results in less recovery time. However, as shown in the upper
picture of Figure 15(a), such a low weight causes a jerky
recovery motion against the external force. When the total
weight is set to 72.0, a smooth recovery appears, as described
in the lower picture of Figure 15(a). To clarify the compar-
ison, we draw motion trajectories for the character’s chest
in Figure 15(b). The proposed framework improves the track-
ing performance to increase its robustness and generate a
smooth reaction against the external force.

D. EXPERIMENTAL FULL-BODY SIMULATION
As a preliminary experiment, we fed the synthesized motion
to a forward dynamics simulator to determine whether our
framework could be applied to difficult problems such as
full-body simulation. We simulated a walking motion by
designing the provider with the unlimitedmotion graph. Here,
the motion synthesis step was implemented at 120 Hz and
the forward dynamics simulation was performed at 3000 Hz.
The torques for all the joints, excluding the unactuated root
joint, were computed using a proportional derivative servo as
follows:

τ = kp(φd − φ)− kd (φ̇d − φ̇), (20)

where φ and φ̇ denote the current character posture and the
derivative of the current posture, respectively. kp and kd were
set to 3000 and 30. φd and φ̇d indicate the desired character
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FIGURE 15. External perturbation. The red arrow indicates the external
force. A discontinuous reaction occurs when the total weight of the
bundles is 2.7, as depicted in the upper picture of (a). When the total
weight is set to 72.0, a smooth recovery is generated, as depicted in the
lower picture of (a). Motion trajectories for the chest are drawn to
distinguish the difference between the recovery motions (b). The orange
line is the case of total weight 2.7, and the blue line is the case of total
weight 72.

FIGURE 16. Full-body simulation for a motion imitation task. The red
spheres represent contact forces from the ground. These figures are
captured in 1.5 s while simulating an unlimited walking motion based on
mocap (a), the baseline framework (b), and the proposed framework (c).

posture and its derivative, respectively. The desired character
posture and its derivatives for the i+ 1th motion synthesis
step were computed by first updating the bundle states using
the simulated state corresponding to the ith motion frame, and
then single-stepping all the bundles. τ indicates the torque
acting on the joints of the character model, which becomes
the input of the forward dynamics. Interestingly, this simple
scheme outperformed two other methods: mocap tracking
and baseline framework. In the mocap tracking experiment,
φd and φ̇d are directly from the capturedmotions. In the base-
line framework, φd and φ̇d are from the baseline framework.
Without any balancing mechanism, the character eventually

falls down after 92 frames (3.07 s) using our framework,
compared to 61 frames (mocap) and 35 frames (baseline),
as shown in Figure 16. Regarding the result of the baseline,
a bad prediction from the baseline system can cause even
worse tracking performance than that of the system without
a prediction module. However, this type of tracking perfor-
mance is unexpectedly good for a method that uses such
simple dynamics of the bundles, and thus we plan to explore
new balancing controllers in further work.

VII. CONCLUSION AND DISCUSSION
Herein, we proposed an online motion synthesis framework
motivated by a PCM. Specifically, we devised an architec-
ture consisting of multiple triplets of bundles, providers, and
matchers, which increases themotion prediction performance
of the system. Hierarchical modeling compensated for the
difference between the mocap data and the dynamic model
so that the system generates the motion, similarly to the
motion data, while satisfying the constraints of the model.
In addition, the combination of the bundle and the provider
utilized a small amount of mocap data to reduce unnatural
effects such as discontinuity, ground penetration, and foot-
skate, as described in the experimental results. By defining
bundles andmatchers independently, the motions for multiple
character models were represented and synthesized while
reducing their tracking delay online.

The proposed framework has some limitations that we
expect to address in future work. The motion quality depends
on the design of each bundle. Considering a bundle, we used
a bundle dynamic model, LQR optimal controller, and con-
jugate gradient optimizer. The physical model guarantees
smooth motion and successfully reflects the joint recov-
ery adaptation to an external force or collision. However,
independence between bundles can occasionally produce a
physically implausible recovery motion in response to large
external forces (refer to the supplementary video clip).

In future work, utilizing more complex physical mod-
els, such as the inverted pendulum model [10] and the
abstract model [6], would enable us to consider more com-
plicated environmental constraints to provide better physical
realism.

To expand the types of synthesized motions, different
models such as deep-learning networks, statistical models,
and other non-linear interpolation schemes may estimate the
proper motion according to the current situation while cover-
ing a wider variety of motion styles (e.g., agile motion) [7],
[38]. However, in this study, we focused on the generality of
the proposed framework and evaluated it based on its natural-
ness, tracking delay, and smoothness for various examples of
motion synthesis.
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