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1. Introduction

The aim of this paper is to study the nonlocal equations:⎧⎪⎨⎪⎩
Asu = up + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where 0 < s < 1, p := n+2s
n−2s , ε > 0 is a small parameter, Ω is a smooth bounded

domain of R
n and As denotes the fractional Laplace operator (−Δ)s in Ω with zero

Dirichlet boundary values on ∂Ω, defined in terms of the spectra of the Dirichlet Lapla-
cian −Δ on Ω. It can be understood as the nonlocal version of the Brezis–Nirenberg
problem [3].

The fractional Laplacian appears in diverse areas including physics, biological model-
ing and mathematical finances and partial differential equations involving the fractional
Laplacian have attracted the attention of many researchers. An important feature of
the fractional Laplacian is its nonlocal property, which makes it difficult to handle.
Recently, Caffarelli and Silvestre [7] developed a local interpretation of the fractional
Laplacian given in R

n by considering a Neumann type operator in the extended domain
R

n+1
+ := {(x, t) ∈ R

n+1: t > 0}. This observation made a significant influence on the
study of related nonlocal problems. A similar extension was devised by Cabré and Tan
[6] and Capella, Dávila, Dupaigne, and Sire [8] (see Brändle, Colorado, de Pablo, and
Sánchez [2] and Tan [40] also) for nonlocal elliptic equations on bounded domains with
the zero Dirichlet boundary condition, and by Kim and Lee [25] for singular nonlocal
parabolic equations.

Based on these extensions, many authors studied nonlinear problems of the form
Asu = f(u), where f : Rn → R is a certain function. Since it is almost impossible to de-
scribe all the works involving them, we explain only some results which are largely related
to our problem. When s = 1

2 , Cabré and Tan [6] established the existence of positive
solutions for equations having nonlinearities with the subcritical growth, their regularity
and the symmetric property. They also proved a priori estimates of the Gidas–Spruck
type by employing a blow-up argument along with a Liouville type result for the square
root of the Laplacian in the half-space. Moreover, Tan [39] studied Brezis–Nirenberg
type problems (see [3]) for the case s = 1

2 , that is, when the nonlinearity is given by
f(u) = u

n+1
n−1 + εu with ε > 0. On the other hand, in [12], the first author of this paper

gave a different proof for the Gidas–Spruck type estimates using the Pohozaev identity
and applied them to the Lane–Emden type system involving A1/2. The work of Tan
[39] is extended to 0 < s < 1 and f(u) = u

n+2s
n−2s + λuq for 0 < q < n+2s

n−2s in [1]. See
also [2] which dealt with a subcritical concave-convex problem. For f(u) = uq with
the critical and supercritical exponents q � n+2s

n−2s , the nonexistence of solutions was
proved in [2,39,40] in which the authors devised and used the Pohozaev type identi-
ties.
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The aim of this paper is to study the problem (1.1) when p = n+2s
n−2s is the critical

Sobolev exponent and ε > 0 is close to zero. During this study we develop some nonlocal
techniques which also have their own interests.

The first part is devoted to study least energy solutions of (1.1). To state the result,
we recall from [13] that the sharp fractional Sobolev inequality for n > 2s and s > 0

( ∫
Rn

∣∣f(x)
∣∣p+1

dx

) 1
p+1

� Sn,s

( ∫
Rn

∣∣A1/2
s f(x)

∣∣2 dx) 1
2

for any f ∈ Hs
(
R

n
)

which holds with the constant

Sn,s = 2−sπ−s/2
[
Γ (n−2s

2 )
Γ (n+2s

2 )

] 1
2
[

Γ (n)
Γ (n/2)

] s
n

. (1.2)

Our first result is the following.

Theorem 1.1. Assume 0 < s < 1 and n > 4s. For ε > 0, let uε be a solution of (1.1) such
that

lim
ε→0

∫
Ω
|A1/2

s uε|2 dx
(
∫
Ω
|uε|p+1 dx)2/(p+1) = Sn,s. (1.3)

Then there exist a point x0 ∈ Ω and a constant bn,s > 0 such that

uε → 0 in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s− 1) if s ∈ (1/2, 1),

and ∥∥uε(x)
∥∥
L∞uε(x) → bn,sG(x, x0)

in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s− 1) if s ∈ (1/2, 1),

as ε goes to 0. The constant bn,s is explicitly computed in Section 3 (see (3.41)).

Here the function G = G(x, y) for x, y ∈ Ω is Green’s function of As with the Dirichlet
boundary condition, which solves the equation

AsG(·, y) = δy in Ω and G(·, y) = 0 on ∂Ω. (1.4)

The regular part of G is given by
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H(x, y) = an,s

|x− y|n−2s −G(x, y) where an,s = 1
|Sn−1| ·

21−2sΓ (n−2s
2 )

Γ (n2 )Γ (s)
. (1.5)

The diagonal part τ of the function H, namely, τ(x) := H(x, x) for x ∈ Ω is called the
Robin function and it plays a crucial role for our problem.

Theorem 1.2. Assume that 0 < s < 1 and n > 4s. Suppose x0 ∈ Ω is a point given by
Theorem 1.1. Then
(1) x0 is a critical point of the function τ(x).
(2) It holds that

lim
ε→0

ε‖uε‖
2n−4s

n−2s
L∞(Ω) = dn,s

∣∣τ(x0)
∣∣

where the constant dn,s is computed in Section 4 (see (4.2)).

These two results are motivated by the work of Han [24] and Rey [35] on the classical
local Brezis–Nirenberg problem, which dates back to Brezis and Peletier [4],⎧⎪⎨⎪⎩

−Δu = u
n+2
n−2 + εu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.6)

On the other hand, in the latter part of his paper, Rey [35] constructed a family
of solutions for (1.6) which asymptotically blow up at a nondegenerate critical point
of the Robin function. Moreover, this result was extended in [31], where Musso and
Pistoia obtained the existence of multi-peak solutions for certain domains. In the second
part of our paper, by employing the Lyapunov–Schmidt reduction method, we prove an
analogous result to it for the nonlocal problem (1.1).

Theorem 1.3. Suppose that 0 < s < 1 and n > 4s. Let Λ1 ⊂ Ω be a stable critical set of
the Robin function τ . Then, for small ε > 0, there exists a family of solutions of (1.1)
which blow up and concentrate at the point x0 ∈ Λ1 as ε → 0.

This result is an immediate consequence of the following result. Given any k ∈ N, set

Υk(λ,σ) = c21

(
k∑

i=1
H(σi, σi)λn−2s

i −
k∑

i,h=1
i�=h

G(σi, σh)(λiλh)
n−2s

2

)
− c2

k∑
i=1

λ2s
i (1.7)

for (λ,σ) = (λ1, . . . , λk, σ1, . . . , σk) ∈ (0,∞)k ×Ωk, where

c1 =
∫
Rn

wp
1,0(x) dx and c2 =

∫
Rn

w2
1,0(x) dx (1.8)

with w1,0 the function defined in (2.5) with (λ, ξ) = (1, 0). Then we have
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Theorem 1.4. Assume 0 < s < 1 and n > 4s. Given k ∈ N, suppose that Υk has a stable
critical set Λk such that

Λk ⊂
{(

(λ1, . . . , λk), (σ1, . . . , σk)
)
∈ (0,∞)k ×Ωk: σi �= σj if i �= j and i, j = 1, . . . , k

}
.

Then there exist a point ((λ0
1, . . . , λ

0
k), (σ0

1 , . . . , σ
0
k)) ∈ Λk and a small number ε0 > 0

such that for 0 < ε < ε0, there is a family of solutions uε of (1.1) which concentrate at
each point σ0

1 , . . . , σ
0
k−1 and σ0

k as ε → 0.

For the precise description of the asymptotic behavior of uε, see the proof of Theo-
rem 1.4 in Subsection 5.3.

Here we borrowed the notion of stable critical sets from [26]. As in the case s = 1 (see
[31,17] for instance), we can prove that if the domain Ω is a dumbbell-shaped domain
which consists of disjoint k-open sets and sufficiently narrow channels connecting them,
then Υk has a stable critical point for each k ∈ N, thereby obtaining the following result.

Theorem 1.5. There exist contractible domains Ω such that, for ε > 0 small enough,
(1.1) possesses a family of solutions which blow up at exactly k different points of each
domain Ω as ε converges to 0.

For the detailed explanation, see Section 5.
In order to study the asymptotic behavior, we will use the fundamental observation

of Caffarelli and Silvestre [7] and Cabré and Tan [6] (see also [38,8,2,40]). In particular,
we study the local problem on a half-cylinder C := Ω × [0,∞),⎧⎪⎪⎪⎨⎪⎪⎪⎩

div
(
t1−2s∇U

)
= 0 in C = Ω × (0,∞),

U > 0 in C,
U = 0 on ∂LC := ∂Ω × (0,∞),
∂s
νU = f(U) on Ω × {0},

(1.9)

where ν is the outward unit normal vector to C on Ω × {0} and

∂s
νU(x, 0) := −C−1

s

(
lim

t→0+
t1−2s ∂U

∂t
(x, t)

)
for x ∈ Ω (1.10)

where

Cs := 21−2sΓ (1 − s)
Γ (s) (1.11)

Under appropriate regularity assumptions, the trace of a solution U of (1.9) on Ω ×{0}
solves the nonlinear problem (1.1).

A key step of the proof for Theorem 1.1 is to get a sort of the uniform bound af-
ter rescaling the solutions {uε: ε > 0}. For this purpose, we will establish a priori
L∞-estimates by using the Moser iteration argument. Recently, such type of estimates



6536 W. Choi et al. / Journal of Functional Analysis 266 (2014) 6531–6598
have been established in [23,41,42]. However, they cannot be applied to our case directly,
so we will derive a result which is adequate in our setting (refer to Lemmas 3.5 and 3.8).
We remark that a similar argument to our proof appeared in [23]. One more thing which
has to be stressed is that we need a bound of ‖uε‖L∞ in terms of a certain negative power
of ε > 0 (Lemma 3.11) to apply the elliptic estimates (Lemma 3.8). For this, we will use
an inequality which comes from a local version of Pohozaev identity on the extended
domain (see Proposition 3.10). We refer to Section 3 for the details.

We also study problems having nonlinearities of slightly subcritical growth⎧⎪⎨⎪⎩
Asu = up−ε in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.12)

In particular, the following two theorems will be obtained.

Theorem 1.6. Assume that 0 < s < 1 and n > 2s. For ε > 0, let uε be a solution of (1.12)
satisfying (1.3). Then, there exist a point x0 ∈ Ω and a constant bn,s > 0 such that

uε → 0 in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s− 1) if s ∈ (1/2, 1),

and ∥∥uε(x)
∥∥
L∞uε(x) → bn,sG(x, x0)

in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s− 1) if s ∈ (1/2, 1),

as ε → 0. Moreover,
(1) x0 is a critical point of the function τ(x).
(2) We have

lim
ε→0

ε‖uε‖2
L∞(Ω) = gn,s

∣∣τ(x0)
∣∣.

Here bn,s is the same constant to one given in Theorem 1.1 and gn,s is computed in
Section 6 (see (6.7)).

Like (1.7), we define

Υ̃k(λ,σ) = c21

(
k∑

i=1
H(σi, σi)λn−2s

i −
k∑

i,h=1
i�=h

G(σi, σh)(λiλh)
n−2s

2

)

− c1(n− 2s)2 log(λ1 · · ·λk) (1.13)
4n
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for (λ,σ) = (λ1, . . . , λk, σ1, . . . , σk) ∈ (0,∞)k × Ωk, where c1 > 0 is defined in (1.8).
Then we have

Theorem 1.7. Assume 0 < s < 1 and n > 2s. Given k ∈ N, suppose that Υ̃k has a stable
critical set Λk such that

Λk ⊂
{(

(λ1, . . . , λk), (σ1, . . . , σk)
)
∈ (0,∞)k ×Ωk: σi �= σj if i �= j and i, j = 1, . . . , k

}
.

Then there exist a point ((λ0
1, . . . , λ

0
k), (σ0

1 , . . . , σ
0
k)) ∈ Λk and a small number ε0 > 0

such that for 0 < ε < ε0, there is a family of solutions uε of (1.12) which concentrate at
each point σ0

1 , . . . , σ
0
k−1 and σ0

k as ε → 0.

Most of the steps in the proof for Theorem 1.1 and Theorem 1.2 can be adapted in
proving Theorem 1.6. However the order of the proof for Theorem 1.6 is different from
that of previous theorems and some new observations have to be made. We refer to
Section 6 for the details.

Regarding Theorem 1.6, it would be interesting to consider whether we can obtain a
further description on the asymptotic behavior of a least energy solution of (1.12) (i.e.
a solution satisfying (1.3)) as in [19], where Flucher and Wei found that a least energy
solution concentrates at a minimum of the Robin function in the local case (s = 1).

Moreover, we believe that even in the nonlocal case (s ∈ (0, 1)) there exist solutions
of (1.12) (with the nonlinearity changed into |u|p−1−εu) which can be characterized
as sign-changing towers of bubbles. See the papers e.g. [16,33,32,22] which studied the
existence of bubble-towers for the related local problems.

Before concluding this introduction, we would like to mention some related results to
our problem. In [15], the authors took into account the singularly perturbed nonlinear
Schrödinger equations ⎧⎨⎩

ε2sAsu + V u− up = 0 in R
n,

u > 0 in R
n,

u ∈ H2s(
R

n
) (1.14)

where ε > 0 is sufficiently small, 0 < s < 1, p ∈ (1, n+2s
n−2s ) and V is a positive bounded

C1,α function whose value is away from 0. In particular, employing the nondegeneracy
result of [20], they deduced the existence of various types of spike solutions, like mul-
tiple spikes and clusters, such that each of the local maxima concentrates on a critical
point of V . See also the result of [11] in which a single peak solution is found under
stronger assumptions on (1.14) than those of [15] (in particular, it is assumed that
s ∈ (max{1

2 ,
n
4 }, 1) in [11]). As far as we know, these works are the first results to inves-

tigate concentration phenomena for singularly perturbed equations with the fractional
operator As by utilizing the Lyapunov–Schmidt reduction method.

On the other hand, in [37] and [36], the Brezis–Nirenberg problem is also considered
when the fractional Laplace operator is defined as in a different way:
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(−Δ)su(x) = cn,s P.V.

∫
Rn

u(x) − u(y)
|x− y|n+2s dy for x ∈ Ω

where Ω is bounded and cn,s is a normalization constant. (Here, we refer to an interesting
paper [30] which compares two different notions of the fractional Laplacians.) It turns
out that a similar result can be deduced to one in [39] and [1], the papers aforementioned
in this introduction. In this point of view, it would be interesting to obtain results for
this operator corresponding to ours. As a matter of fact, we suspect that concentration
points of solutions for (1.1) and (1.12) are governed by Green’s function of the operator
in this case too.

This paper is organized as follows. In Section 2, we review certain notions related
to the fractional Laplacian and study the regularity of Green’s function of As. Sec-
tion 3 is devoted to prove Theorem 1.1. In Section 4, we show Theorem 1.2 by finding
some estimates for Green’s function. In Section 5, multi-peak solutions is constructed
by the Lyapunov–Schmidt reduction method, giving the proof of Theorem 1.4 and The-
orem 1.5. On the other hand, the Lane–Emden equation (1.12) whose nonlinearity has
slightly subcritical growth is considered in Section 6, and the proof of Theorem 1.6 and
Theorem 1.7 is presented there. In Appendix A and Appendix B, we give the proof of
Proposition 3.10 and (4.1), respectively, while we exhibit some necessary computations
for the construction of concentrating solutions in Appendix C.

Notations. Here we list some notations which will be used throughout the paper.

– The letter z represents a variable in the R
n+1. Also, it is written as z = (x, t) with

x ∈ R
n and t ∈ R.

– Suppose that a domain D is given and T ⊂ ∂D. If f is a function on D, then the
trace of f on T is denoted by tr|T f whenever it is well-defined.

– For a domain D ⊂ R
n, the map ν = (ν1, . . . , νn) : ∂D → R

n denotes the outward
pointing unit normal vector on ∂D.

– dS stands for the surface measure. Also, a subscript attached to dS (such as dSx

or dSz) denotes the variable of the surface.
– |Sn−1| = 2πn/2/Γ (n/2) denotes the Lebesgue measure of (n − 1)-dimensional unit

sphere Sn−1.
– For a function f , we set f+ = max{f, 0} and f− = max{−f, 0}.
– Given a function f = f(x), ∇xf means the gradient of f with respect to the vari-

able x.
– We will use big O and small o notations to describe the limit behavior of a certain

quantity as ε → 0.
– C > 0 is a generic constant that may vary from line to line.
– For k ∈ N, we denote by Bk(x0, r) the ball {x ∈ R

k: |x− x0| < r} for each x0 ∈ R
k

and r > 0.
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2. Preliminaries

In this section we first recall the backgrounds of the fractional Laplacian. We refer
to [2,6–8,40,25] for the details. In particular, the latter part of this section is devoted
to prove a C∞ regularity property of Green’s function for the fractional Laplacian with
zero Dirichlet boundary condition.

2.1. Fractional Sobolev spaces, fractional Laplacians and s-harmonic extensions

Let Ω be a smooth bounded domain of Rn. Let also {λk, φk}∞k=1 be a sequence of the
eigenvalues and corresponding eigenvectors of the Laplacian operator −Δ in Ω with the
zero Dirichlet boundary condition on ∂Ω,

{
−Δφk = λkφk in Ω,

φk = 0 on ∂Ω,

such that ‖φk‖L2(Ω) = 1 and λ1 < λ2 � λ3 � · · · . Then we set the fractional Sobolev
space Hs

0(Ω) (0 < s < 1) by

Hs
0(Ω) =

{
u =

∞∑
k=1

akφk ∈ L2(Ω):
∞∑
k=1

a2
kλ

s
k < ∞

}
, (2.1)

which is a Hilbert space whose inner product is given by

〈 ∞∑
k=1

akφk,

∞∑
k=1

bkφk

〉
Hs

0 (Ω)

=
∞∑
k=1

akbkλ
s
k if

∞∑
k=1

akφk,

∞∑
k=1

bkφk ∈ Hs
0(Ω).

Moreover, for a function in Hs
0(Ω), we define the fractional Laplacian As : Hs

0(Ω) →
Hs

0(Ω) 	 H−s
0 (Ω) as

As

( ∞∑
k=1

akφk

)
=

∞∑
k=1

akλ
s
kφk.

We also consider the square root A1/2
s : Hs

0(Ω) → L2(Ω) of the positive operator As

which is in fact equal to As/2. Note that by the above definitions, we have

〈u, v〉Hs
0 (Ω) =

∫
Ω

A1/2
s u · A1/2

s v =
∫
Ω

Asu · v for u, v ∈ Hs
0(Ω).
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If the domain Ω is the whole space R
n, the space Hs(Rn) (0 < s < 1) is given as

Hs
(
R

n
)

=
{
u ∈ L2(

R
n
)
: ‖u‖Hs(Rn) :=

( ∫
Rn

(
1 + |2πξ|2s

)∣∣û(ξ)
∣∣2 dξ) 1

2

< ∞
}

where û denotes the Fourier transform of u, and the fractional Laplacian As : Hs(Rn) →
H−s(Rn) is defined to be

Âsu(ξ) = |2πξ|2sû(ξ) for any ξ ∈ R
n given u ∈ Hs

(
R

n
)
.

Regarding (1.9) (see also (2.4) below), we need to introduce some more function spaces
on C = Ω × (0,∞) where Ω is either a smooth bounded domain or Rn. If Ω is bounded,
the function space Hs

0,L(C) is defined as the completion of

C∞
c,L(C) :=

{
U ∈ C∞(C): U = 0 on ∂LC = ∂Ω × (0,∞)

}
with respect to the norm

‖U‖C =
(∫

C

t1−2s|∇U |2
) 1

2

. (2.2)

Then it is a Hilbert space endowed with the inner product

(U, V )C =
∫
C

t1−2s∇U · ∇V for U, V ∈ Hs
0,L(C).

In the same manner, we define the space Hs
0,L(Cε) and C∞

c,L(Cε) for the dilated prob-
lem (5.5). Moreover, Ds(Rn+1

+ ) is defined as the completion of C∞
c (Rn+1

+ ) with respect
to the norm ‖U‖

R
n+1
+

(defined by putting C = R
n+1
+ in (2.2) above). Recall that if Ω is

a smooth bounded domain, it is verified that

Hs
0(Ω) =

{
u = tr|Ω×{0}U : U ∈ Hs

0,L(C)
}

(2.3)

in [7, Proposition 2.1] and [8, Proposition 2.1] and [40, Section 2]. Furthermore, it holds
that ∥∥U(·, 0)

∥∥
Hs(Rn) � C‖U‖

R
n+1
+

for some C > 0 independent of U ∈ Ds(Rn+1
+ ).

Now we may consider the fractional harmonic extension of a function u defined in Ω,
where Ω is R

n or a smooth bounded domain. By the celebrated results of Caffarelli and
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Silvestre [7] (for R
n) and Cabré and Tan [6] (for bounded domains, see also [38,8,2,40]),

if we set U ∈ Hs
0,L(C) (or Ds(Rn+1

+ )) as a unique solution of the equation

⎧⎪⎨⎪⎩
div
(
t1−2s∇U

)
= 0 in C,

U = 0 on ∂LC,
U(x, 0) = u(x) for x ∈ Ω,

(2.4)

for some fixed function u ∈ Hs
0(Ω) (or Hs(Rn)), then Asu = ∂s

νU |Ω×{0} where the
operator u �→ ∂s

νU |Ω×{0} is defined in (1.10). (If Ω = R
n, we set ∂LC = ∅.) We call this

U the s-harmonic extension of u. We remark that an explicit description of U is obtained
in [2,40] if Ω is bounded.

2.2. Sharp Sobolev and trace inequalities

Given any λ > 0 and ξ ∈ R
n, let

wλ,ξ(x) = cn,s

(
λ

λ2 + |x− ξ|2
)n−2s

2

for x ∈ R
n, (2.5)

where

cn,s = 2
n−2s

2

(
Γ (n+2s

2 )
Γ (n−2s

2 )

)n−2s
4s

. (2.6)

Then the sharp Sobolev inequality

( ∫
Rn

|u|p+1 dx

) 1
p+1

� Sn,s

( ∫
Rn

∣∣A1/2
s u

∣∣2 dx) 1
2

gets the equality if and only if u(x) = cwλ,ξ(x) for any c > 0, λ > 0 and ξ ∈ R
n, given

Sn,s the value defined in (1.2) (refer to [29,9,21]). Furthermore, it was shown in [10,27,28]
that if a suitable decay assumption is imposed, then {wλ,ξ(x): λ > 0, ξ ∈ R

n} is the set
of all solutions for the problem

Asu = up, u > 0 in R
n and lim

|x|→∞
u(x) = 0. (2.7)

We use Wλ,ξ ∈ Ds(Rn+1
+ ) to denote the (unique) s-harmonic extension of wλ,ξ so that

Wλ,ξ solves {
div
(
t1−2sWλ,ξ(x, t)

)
= 0 in R

n+1
+ ,

Wλ,ξ(x, 0) = wλ,ξ(x) for x ∈ R
n.

(2.8)
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It follows that for the Sobolev trace inequality

( ∫
Rn

∣∣U(x, 0)
∣∣p+1

dx

) 1
p+1

� Sn,s√
Cs

( ∞∫
0

∫
Rn

t1−2s∣∣∇U(x, t)
∣∣2 dx dt) 1

2

, (2.9)

the equality is attained by some function U ∈ Ds(Rn+1
+ ) if and only if U(x, t) =

cWλ,ξ(x, t) for any c > 0, λ > 0 and ξ ∈ R
n, where Cs > 0 is the constant defined

in (1.11) (see [43]). In what follows, we simply denote w1,0 and W1,0 by w1 and W1,
respectively.

2.3. Green’s functions and the Robin function

Let G be Green’s function of the fractional Laplacian As with the zero Dirichlet
boundary condition (see (1.4)). Then it can be regarded as the trace of Green’s function
GC = GC(z, x) (z ∈ C, x ∈ Ω) for the extended Dirichlet–Neumann problem which
satisfies ⎧⎪⎨⎪⎩

div
(
t1−2s∇GC(·, x)

)
= 0 in C,

GC(·, x) = 0 on ∂LC,
∂s
νGC(·, x) = δx on Ω × {0}.

(2.10)

In fact, if a function U in C solves⎧⎪⎨⎪⎩
div
(
t1−2s∇U

)
= 0 in C,

U = 0 on ∂LC,
∂s
νU = g on Ω × {0},

for some function g on Ω × {0}, then we can see that U has the expression

U(z) =
∫
Ω

GC(z, y)g(y) dy =
∫
Ω

GC(z, y)Asu(y) dy, z ∈ C,

where u = tr|Ω×{0}U . Then, by plugging z = (x, 0) in the above equalities, we obtain

u(x) =
∫
Ω

GC
(
(x, 0), y

)
Asu(y) dy,

which implies that GC((x, 0), y) = G(x, y) for any x, y ∈ Ω.
Green’s function GC on the half cylinder C can be partitioned to the singular part and

the regular part. The singular part is given by Green’s function

G
R

n+1
+

(
(x, t), y

)
:= an,s

n−2s (2.11)
|(x− y, t)|
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on the half space R
n+1
+ satisfying{
div
(
t1−2s∇(x,t)GR

n+1
+

(
(x, t), y

))
= 0 in R

n+1
+ ,

∂s
νGR

n+1
+

(
(x, 0), y

)
= δy(x) on Ω × {0},

for each y ∈ R
n. Note that an,s is the constant defined in (1.5). The regular part is given

by the function HC : C → R which satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
div
(
t1−2s∇(x,t)HC

(
(x, t), y

))
= 0 in C,

HC(x, t, y) = an,s

|(x− y, t)|n−2s on ∂LC,

∂s
νHC

(
(x, 0), y

)
= 0 on Ω × {0}.

The existence of such a function HC can be proved using a variational method (see
Lemma 2.2 below). We then have

GC
(
(x, t), y

)
= G

R
n+1
+

(
(x, t), y

)
−HC

(
(x, t), y

)
. (2.12)

Accordingly, the Robin function τ which was defined in the paragraph after Theorem 1.1
can be written as τ(x) := HC((x, 0), x). As we will see, the function τ and the relation
(2.12) turn out to be very important throughout the paper.

2.4. Maximum principle

Here we prove a maximum principle which serves as a valuable tool in studying prop-
erties of Green’s function G of As.

Lemma 2.1. Suppose that V is a weak solution of the following problem⎧⎪⎨⎪⎩
div
(
t1−2s∇V

)
= 0 in C,

V (x, t) = B(x, t) on ∂LC,
∂s
νV (x, 0) = 0 on Ω × {0}

for some function B on ∂LC. Then we have

sup
(x,t)∈C

∣∣V (x, t)
∣∣ � sup

(x,t)∈∂LC

∣∣B(x, t)
∣∣.

Proof. Let S+ = sup(x,t)∈∂LC B(x, t). Consider the function Y (x, t) := S+ − V (x, t),
which satisfies ⎧⎪⎨⎪⎩

div
(
t1−2s∇Y

)
= 0 in C,

Y (x, t) � 0 on ∂LC,
∂sY (x, 0) = 0 on Ω × {0}.
ν
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Note that Y−(x, t) = 0 on ∂LC. Then we get

0 =
∫
C

t1−2s∇Y (x, t) · ∇Y−(x, t) dx dt = −
∫
C

t1−2s∣∣∇Y−(x, t)
∣∣2 dx dt.

It proves that Y− ≡ 0. Thus we have S+ � V (x, t) for all (x, t) ∈ C.
Similarly, if we set S− = inf(x,t)∈∂LC B(x, t) and define the function Z(x, t) =

V (x, t) − S−, we may deduce that V (x, t) � S− for all (x, t) ∈ C. Consequently, we
have

S− � V (x, t) � S+ for all (x, t) ∈ C.

It completes the proof. �
2.5. Properties of the Robin function

We study more on the property of the function HC by using the maximum principle
obtained in the previous subsection. We first prove the existence of the function HC .

Lemma 2.2. For each point y ∈ Ω the function HC((·,·), y) is the minimizer of the problem

min
V ∈S

∫
C

t1−2s∣∣∇V (x, t)
∣∣2 dx dt, (2.13)

where

S =
{
V :

∫
C

t1−2s∣∣∇V (x, t)
∣∣2 dx dt < ∞ and V (x, t) = G

R
n+1
+

(x, t, y) on ∂LC
}
.

Here the derivatives are defined in a weak sense.

Proof. Let η ∈ C∞(Rn+1) be a function such that η(z) = 0 for |z| � 1 and η(z) = 1 for
|z| � 2. Assuming without loss of any generality that Bn+1((y, 0), 2) ∩ R

n+1
+ ⊂ C, let V0

be the function defined in C by

V0(x, t) = G
R

n+1
+

(x, t, y)η(x− y, t).

Then it is easy to check that∫
C

t1−2s∣∣∇V0(x, t)
∣∣2 dx dt < ∞.

Thus S is nonempty and we can find a minimizing function V of the problem (2.13) in S.
Then, for any Φ ∈ C∞(C) such that Φ = 0 on ∂LC, we have
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∫
C

t1−2s∇V (x, t) · ∇Φ(x, t) dx dt = 0.

Hence it holds that ⎧⎪⎨⎪⎩
div
(
t1−2s∇V (x, t)

)
= 0 for (x, t) ∈ C,

V (x, t) = G
R

n+1
+

(x, t, y) for (x, t) ∈ ∂LC,
∂s
νV (x, 0) = 0 for x ∈ Ω

in a weak sense. This completes the proof. �
In the same way, for a fixed point y = (y1, . . . , yn) ∈ Ω and any multi-index I =

(i1, i2, . . . , in) ∈ (N ∪ {0})n, we find the function HI
C((·,·), y) satisfying⎧⎪⎨⎪⎩

div
(
t1−2s∇(x,t)HI

C(x, t, y)
)

= 0 in C,
HI

C(x, t, y) = ∂I
yGR

n+1
+

(x, t, y) on ∂LC,
∂s
νHI

C(·, ·, y) = 0 on Ω × {0},
(2.14)

where ∂I
y = ∂i1

y1 · · · ∂in
yn . In the below we shall show that, for any (x, t) ∈ C, the function

HC(x, t, y) is C∞
loc(Ω) and that ∂I

yHC(x, t, y) = HI
C(x, t, y).

Lemma 2.3. For each (x, t) ∈ C the function HC(x, t, y) is continuous with respect to y.
Moreover, such continuity is uniform on (x, t, y) ∈ C×K for any compact subset K of Ω.

Proof. Take points y1 and y2 in a compact subset K of Ω, sufficiently close to each other.
If we apply Lemma 2.1 to the function HC(x, t, y1) −HC(x, t, y2), then we get

sup
(x,t)∈C

∣∣HC(x, t, y1) −HC(x, t, y2)
∣∣ � sup

(x,t)∈∂LC

∣∣HC(x, t, y1) −HC(x, t, y2)
∣∣

= sup
(x,t)∈∂LC

∣∣∣∣ cn,s

|(x− y1, t)|n−2s − cn,s

|(x− y2, t)|n−2s

∣∣∣∣
� C(K)|y1 − y2|,

where C(K) > 0 is constant relying only on K. It proves the lemma. �
The next lemma provides a regularity property of the function HC . We recall that the

result of Fabes, Kenig, and Serapioni [18] which gives that (x, t, y) �→ HC(x, t, y) is Cα

for some 0 < α < 1.

Lemma 2.4. (1) For each (x, t) ∈ C, the function y → HC(x, t, y) is a C∞ function.
Moreover, for each multi-index I ∈ (N ∪ {0})n, we have

∂I
yHC(x, t, y) = HI

C(x, t, y) (2.15)

and ∂I
yHC(x, t, y) is bounded on (x, t, y) ∈ C × K for any compact set K of Ω.
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(2) For each y ∈ Ω, the function x ∈ Ω �→ HC(x, 0, y) is a C∞ function. Moreover, for
each multi-index I ∈ (N∪{0})n, the derivative ∂I

xHC(x, 0, y) is bounded on (x, y) ∈ K×Ω

for any compact set K of Ω.

Proof. For two points y1 and y2 in a compact subset K of Ω chosen to be close enough
to each other, we apply Lemma 2.1 to the function

HC(x, t, y2) −HC(x, t, y1) − (y2 − y1) ·
(
HI1

C , . . . ,HIn
C
)
(x, t, y1)

where Ij is the multi-index in (N∪{0})n such that the j-th coordinate is 1 and the other
coordinates are 0 for 1 � j � n. Then we obtain

sup
(x,t)∈C

∣∣HC(x, t, y2) −HC(x, t, y1) − (y2 − y1) ·
(
HI1

C , . . . ,HIn
C
)
(x, t, y1)

∣∣
� sup

(x,t)∈∂LC

∣∣∣∣ cn,s

|(x− y2, t)|n−2s − cn,s

|(x− y1, t)|n−2s − (y2 − y1) ·
cn,s(n− 2s)(x− y1)
|(x− y1, t)|n−2s+2

∣∣∣∣
� C(K)|y1 − y2|2

for some C(K) > 0 independent of the choice of y1 and y2. This shows that
∇yHC(x, t, y) = (HI1

C , . . . ,HIn
C )(x, t, y) proving (2.15) for |I| = 1. We can adapt this

argument inductively, which proves the first statement of the lemma.
Since HC(x, 0, y) = HC(y, 0, x) holds for any (x, y) ∈ Ω × Ω, the second statement

follows directly from the first statement. �
Given the above results, we can prove a lemma which is essential when we deduce

certain regularity properties of a sequence uε in the statement of Theorems 1.1 and 1.6.
See Section 3.

Lemma 2.5. Suppose that the functions ũε for ε > 0 defined in Ω are given by

ũε(x) =
∫
Ω

G(x, y)ṽε(y) dy,

where the set of functions {ṽε: ε > 0} satisfies supε>0 supx∈Ω |ṽε(x)| < ∞. Then
{ũε: ε > 0} are equicontinuous on any compact set.

Proof. Suppose that x1 and x2 are contained in a compact set K of Ω. We have

ũε(x) =
∫
Ω

GC(x, 0, y)ṽε(y) dy =
∫
Ω

G
R

n+1
+

(x, 0, y)ṽε(y) dy −
∫
Ω

HC(x, 0, y)ṽε(y) dy

for any x ∈ Ω. Take any number η > 0. It is well-known that the first term of the
right-hand side is Cα for any α < 2s if s ∈ (0, 1/2] and C1,α for any α < 2s − 1 if
s ∈ (1/2, 1). Let us denote the last term by Rε. Then we have
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∣∣Rε(x1) −Rε(x2)
∣∣ � ∫

Ω

∣∣HC(x1, 0, y) −HC(x2, 0, y)
∣∣∣∣ṽε(y)∣∣dy.

By Lemma 2.4 (2), we can find η > 0 such that if |x1 − x2| < η and (x1, x2) ∈ K × K,
then

sup
y∈Ω

∣∣HC(x1, 0, y) −HC(x2, 0, y)
∣∣ � Cη.

From this, we derive that ∣∣Rε(x1) −Rε(x2)
∣∣ � Cη|Ω|.

It proves that {ũε: ε > 0} are equicontinuous on any compact set. �
3. The asymptotic behavior

Here we prove Theorem 1.1 by studying the normalized functions Bε of the s-harmonic
extension Uε of solutions uε for (1.1), given ε > 0 sufficiently small. We first find a
pointwise convergence of the functions Bε. Then we will prove that the functions Bε

are uniformly bounded by a certain function, which is more difficult part to handle. To
obtain this result, we apply the Kelvin transform in the extended problem (1.9), and
then attain L∞-estimates for its solution. In addition we also need an argument to get
a bound of the supremum ‖uε‖L∞(Ω) in terms of ε > 0. It involves a local version of the
Pohozaev identity (see Proposition 3.10).

3.1. Pointwise convergence

Set Uε be the s-harmonic extension of uε to the half cylinder Ω × [0,∞), that is, Uε

satisfies tr|Ω×{0}Uε = uε and it is a solution to the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇Uε

)
= 0 in C = Ω × (0,∞),

Uε > 0 in C,
Uε = 0 on ∂LC = ∂Ω × [0,∞),
∂s
νUε = Up

ε + εUε in Ω × {0}.

(3.1)

First we note the following identity∫
C

t1−2s∣∣∇Uε(x, t)
∣∣2 dx dt = Cs

∫
Ω×{0}

∂s
νUε(x, 0)Uε(x, 0) dx

= Cs

∫
Asuε(x)uε(x) dx = Cs

∫ ∣∣A1/2
s uε(x)

∣∣2 dx.

Ω×{0} Ω×{0}
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Using this with (1.3), we have

(
∫
Ω
|Uε(x, 0)|p+1 dx)1/(p+1)

(
∫
C t

1−2s|∇Uε(x, t)|2 dx dt)1/2
= Sn,s√

Cs

+ o(1) as ε → 0.

Also, by (1.1), it holds that∫
C

t1−2s∣∣∇Uε(x, t)
∣∣2 dx dt = Cs

∫
Ω×{0}

∣∣A1/2
s uε(x)

∣∣2 dx
= Cs

∫
Ω×{0}

Asuε(x)uε(x) dx

= Cs

∫
Ω×{0}

up+1
ε (x) dx + εCs

∫
Ω×{0}

u2
ε(x) dx.

The two equalities above give

(
Sn,s + o(1)

)2(∥∥Uε(·, 0)
∥∥p+1
Lp+1(Ω) + ε

∥∥Uε(·, 0)
∥∥2
L2(Ω)

)
=
∥∥Uε(·, 0)

∥∥2
Lp+1(Ω).

From ‖Uε(·, 0)‖L2(Ω) � C(Ω)‖Uε(·, 0)‖Lp+1(Ω) we obtain

(
Sn,s + o(1)

)2∥∥Uε(·, 0)
∥∥p+1
Lp+1(Ω) =

∥∥Uε(·, 0)
∥∥2
Lp+1(Ω),

which turns to be

lim
ε→0

∫
Ω

Uε(x, 0)p+1 dx = S−n
s

n,s . (3.2)

We set

I(Ω, r) =
{
x ∈ Ω: dist(x, ∂Ω) � r

}
for r > 0 (3.3)

and

O(Ω, r) =
{
x ∈ Ω: dist(x, ∂Ω) < r

}
for r > 0. (3.4)

The following lemma presents a uniform bound of the solutions near the boundary.

Lemma 3.1. Let u be a bounded solution of (1.1) with p > 1 and 0 < ε < λs
1, where λ1 is

the first eigenvalue of −Δ with the zero Dirichlet condition. Then, for any r > 0 there
exists a number C(r,Ω) > 0 such that
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∫
I(Ω,r)

u dx � C(r,Ω). (3.5)

Moreover, there is a constant C > 0 such that

sup
x∈O(Ω,r)

u(x) � C. (3.6)

Proof. Let φ1 be a first eigenfunction of the Dirichlet Laplacian −Δ in Ω such that
φ1 > 0 in Ω. We have

λs
1

∫
Ω

φ1u dx =
∫
Ω

(Asφ1)u dx =
∫
Ω

φ1(Asu) dx =
∫
Ω

φ1u
p dx + ε

∫
Ω

φ1u dx.

Using Jensen’s inequality we get the estimate

C

(∫
Ω

φ1u dx

)p

�
∫
Ω

φ1u
p dx =

(
λs

1 − ε
) ∫
Ω

φ1u dx,

and hence

∫
Ω

φ1u dx �
(
λs

1 − ε

C

) 1
p−1

.

Because φ1 � C on I(Ω, r), we have

C

∫
I(Ω,r)

u dx �
(
λs

1 − ε

C

) 1
p−1

. (3.7)

This completes the derivation of the estimate (3.5).
If Ω is strictly convex, the moving plane argument, which is given in the proof of [6,

Theorem 7.1] for s = 1/2 and can be extended to any s ∈ (0, 1) with [40, Lemma 3.6]
and [5, Corollary 4.12], yields the fact that the solution u increases along an arbitrary
straight line toward inside of Ω emanating from a point on ∂Ω. Then, by borrowing
an averaging argument from [34, Lemma 13.2] or [24], which heavily depends on this
fact, we can bound supx∈O(Ω,r) u(x) by a constant multiple of

∫
I(Ω,r) u(x) dx. In short,

estimate (3.7) gives the uniform bound (3.6) near the boundary. The general cases can
be proved using the Kelvin transformation in the extended domain (see [12]). �
Lemma 3.2. Let

με = c−1
n,s sup uε(x) (3.8)
x∈Ω
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where the definition of cn,s is provided in (2.6). (Its finiteness comes from [1, Proposi-
tion 5.2].) If a point xε ∈ Ω satisfies με = c−1

n,suε(xε), then we have

lim
ε→0

με = ∞,

and xε converges to an interior point x0 of Ω along a subsequence.

Proof. Suppose that uε has a bounded subsequence. As before, we let Uε be the exten-
sion of uε (see (3.1)). By Lemma 2.5, uε are equicontinuous, and thus the Arzela–Ascoli
theorem implies that uε converges to a function v uniformly on any compact set. We de-
note by V the extension of v. Then we see that limε→0 ∇Uε(x, t) = ∇V (x, t) for any
(x, t) ∈ C from the Green’s function representation. Thus we have∫

C

t1−2s|∇V |2 dx dt =
∫
C

t1−2s lim inf
ε→0

|∇Uε|2 dx dt

� lim inf
ε→0

∫
C

t1−2s|∇Uε|2 dx dt

= lim inf
ε→0

Cs

∫
Ω

(
up+1
ε + εu2

ε

)
dx

= Cs

∫
Ω

vp+1 dx.

Meanwhile, using (3.2), we obtain

(∫
C

t1−2s|∇V |2 dx dt
) 1

2

� C
1/2
s

Sn,s

(∫
Ω

V p+1(x, 0) dx
) 1

p+1

.

Hence the function V attains the equality in the sharp Sobolev trace inequality (2.9),
so we can deduce that V = cWλ,ξ for some c, λ > 0 and ξ ∈ R

n (see Subsection 2.2).
However, the support of V is C by its own definition. Consequently, a contradiction arises
and the supremum με = c−1

n,suε(xε) diverges. Since Lemma 3.1 implies uε is uniformly
bounded near the boundary for all small ε > 0, the point xε converges to an interior
point passing to a subsequence. �

Now, we normalize the solutions uε and their extensions Uε, that is, we set

bε(x) := μ−1
ε uε

(
μ
− 2

n−2s
ε x + xε

)
, x ∈ Ωε := μ

2
n−2s
ε (Ω − xε), (3.9)

and
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Bε(z) := μ−1
ε Uε

(
μ
− 2

n−2s
ε z + xε

)
, z ∈ Cε := μ

2
n−2s
ε

(
C − (xε, 0)

)
(3.10)

with the value με defined in (3.8). It satisfies bε(0) = cn,s and 0 � bε � cn,s, and the
domain Ωε converges to R

n as ε goes to zero. The function Bε satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇Bε

)
= 0 in Cε,

Bε > 0 in Cε,
Bε = 0 on ∂LCε,
∂s
νBε = Bp

ε + εμ−p+1
ε Bε in Ωε × {0}.

We have

Lemma 3.3. The function bε converges to the function w1 uniformly on any compact set
in a subsequence.

Proof. Let B be the weak limit of Bε in Hs
0,L(C) and b = tr|Ω×{0}B. Then it satisfies

b(0) = maxx∈Rn b(x) = cn,s and

⎧⎪⎨⎪⎩
div
(
t1−2s∇B

)
= 0 in R

n+1
+ ,

B > 0 in R
n+1
+ ,

∂s
νB = Bp in R

n × {0},

as well as B is an extremal function of the Sobolev trace inequality (2.9) (see Subsec-
tion 2.2). Therefore B(x, t) = W1(x, t). By Lemma 2.5, the family of functions {bε(x):
ε > 0} are equicontinuous on any compact set in R

n, so by the Arzela–Ascoli theorem
bε converges to a function v on any compact set. The function v should be equal to the
weak limit function w1. It proves the lemma. �
3.2. Uniform boundedness

The previous lemma tells that the dilated solution bε converges to the function w1
uniformly on each compact set of Ωε. However it is insufficient for proving our main
theorems and in fact we need a refined uniform boundedness result.

Proposition 3.4. There exists a constant C > 0 independent of ε > 0 such that

bε(x) � Cw1(x). (3.11)

By rescaling, it can be shown that it is equivalent to

uε(x) � Cw
μ
− 2

n−2s
ε ,xε

(x). (3.12)
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The proof of this result follows as a combination of the Kelvin transformation, a
priori L∞-estimates, and an inequality which comes from a local Pohozaev identity for
the solutions of (1.9).

We set the Kelvin transformation

dε(x) = |x|−(n−2s)bε
(
κ(x)

)
for x ∈ Ωε, (3.13)

and

Dε(z) = |z|−(n−2s)Bε

(
κ(z)

)
for z ∈ Cε, (3.14)

where κ(x) = x
|x|2 is the inversion map. Then, inequality (3.11) is equivalent to that

dε(x) � C for all x ∈ κ(Ωε). Because 0 < bε(x) � cn,s for x ∈ Ωε, it is enough to find a
constant C > 0 and a radius r > 0 such that

dε(x) � C for x ∈ Bn(0, r) ∩ κ(Ωε) for all ε > 0. (3.15)

After making elementary but tedious computations, we find that the function Dε satisfies

div
(
t1−2s∇Dε

)
= 0 in κ(Cε).

Also we have

∂s
νDε(x, 0) = lim

t→0
t1−2s ∂

∂ν

[
|z|−(n−2s)Bε

(
z

|z|2
)]

= lim
t→0

t1−2s|z|−(n−2s+2) ∂

∂ν
Bε

(
z

|z|2
)

= lim
t→0

|z|−n−2s lim
t→0

[(
t

|z|2
)1−2s

∂

∂ν
Bε

(
z

|z|2
)]

= |x|−n−2sBp
ε

(
x

|x|2
)

+ εμ−p+1
ε |x|−n−2sBp

ε

(
x

|x|2
)

= Dp
ε (x, 0) + εμ−p+1

ε |x|−4sDε(x, 0) for x ∈ κ(Ωε).

Hence the function Dε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
div
(
t1−2s∇Dε

)
(z) = 0 in κ(Cε),

Dε > 0 in κ(Cε),
Dε = 0 on κ(∂LCε),
∂s
νDε = Dp

ε + εμ−p+1
ε |x|−4sDε on κ

(
Ωε × {0}

)
.

(3.16)

Here we record that
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∥∥μ−p+1
ε |x|−4s∥∥

L
n
2s (Bn(0,1)∩κ(Ωε))

�
(
μ
− 2n

n−2s
ε

∫
{|x|�μ

− p−1
2s

ε }

|x|−2n dx

) 2s
n

= C. (3.17)

In order to show (3.15), we shall prove two regularity results for the problem (3.16) in
Lemma 3.5 and Lemma 3.8 below.

In fact, to make (3.16) satisfy the conditions that Lemma 3.8 can be applicable, we
need a higher order integrability of the term εμ−p+1

ε |x|−4s than that in (3.17). Note that
for δ > 0 we have

cεμ
8s2δ

n+2sδ
ε �

∥∥εμ−p+1
ε |x|−4s∥∥

L
n
2s+δ(Bn(0,1)∩κ(Ωε))

� Cεμ
8s2δ

n+2sδ
ε , (3.18)

for some constants C > 0 and c > 0. Thus it is natural to find a bound of με in terms
of a certain positive power of ε−1. It will be achieved later by using Lemma 3.9 and an
inequality derived from a local version of the Pohozaev identity (see Lemma 3.11).

In what follows, whenever we consider a family of functions whose domains of defini-
tion are a set D ⊂ R

k, we will denote
∫
Bk(0,r) f =

∫
Bk(0,r)∩D

f for any ball Bk(0, r) ⊂ R
k

for each r > 0 and k ∈ N.

Lemma 3.5. Let V be a bounded solution of the equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
div
(
t1−2s∇V

)
(z) = 0 in κ(Cε),

V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV (x, 0) = g(x)V (x, 0) on κ

(
Ωε × {0}

)
.

Fix β ∈ (1,∞). Suppose that there is a constant r > 0 such that

‖g‖
L

n
2s (κ(Ωε×{0})∩Bn(0,2r)) �

β

2S2
n,s(β + 1)2 , (3.19)

and ∫
Bn+1(0,2r)

t1−2sV (x, t)β+1 dx dt � Q.

Then, there exists a constant C = C(β, r,Q) > 0 such that∫
Bn(0,r)

V (x, 0)
(β+1)(p+1)

2 dx � C.

Remark 3.6. Here we imposed the condition that V is bounded for the simplicity of
the proof. This is a suitable assumption for our case, because we will apply it to the



6554 W. Choi et al. / Journal of Functional Analysis 266 (2014) 6531–6598
function Dε which is already known to be bounded for each ε > 0. However, this lemma
holds without the assumption on the boundedness. To prove this, one may use a truncated
function VL := V · 1{|v|�L} with for large L > 0 where the function 1D for any set D

denotes the characteristic function on D. See the proof of Lemma 5.1.

Proof. Choose a smooth function η ∈ C∞
c (Rn+1, [0, 1]) supported on Bn+1(0, 2r) ⊂ R

n+1

satisfying η = 1 on Bn+1(0, r). Multiplying the both sides of

div
(
t1−2s∇V

)
= 0 in κ(Cε)

by η2V β and using that V = 0 on κ(∂LCε), we discover that

Cs

∫
κ(Ωε×{0})

g(x)V β+1(x, 0)η2(x, 0) dx =
∫

κ(Cε)

t1−2s(∇V ) · ∇
(
η2V β

)
dz. (3.20)

Also, we can employ Young’s inequality to get∫
κ(Cε)

t1−2s(∇V ) · ∇
(
η2V β

)
dz

=
∫

κ(Cε)

βt1−2sη2V β−1|∇V |2 + 2t1−2sV βη(∇V ) · (∇η) dz

=
∫

κ(Cε)

t1−2sβ
∣∣V β−1

2 η(∇V )
∣∣2 dz + 2

∫
κ(Cε)

t1−2sV βη(∇V ) · (∇η) dz

� β

2

∫
κ(Cε)

t1−2s∣∣V β−1
2 η(∇V )

∣∣2 dz − 2
β

∫
κ(Cε)

t1−2s∣∣V β+1
2 (∇η)

∣∣2 dz. (3.21)

On the other hand, applying the identity

∇
(
V

β+1
2 η

)
= β + 1

2 V
β−1

2 η(∇V ) + V
β+1
2 (∇η),

we obtain

2
(
β + 1

2

)2∣∣V β−1
2 η(∇V )

∣∣2 + 2
∣∣V β+1

2 (∇η)
∣∣2 �

∣∣∇(V β+1
2 η

)∣∣2.
This gives

∣∣V β−1
2 η(∇V )

∣∣2 � 2
2

{∣∣∇(V β+1
2 η

)∣∣2 − 2
∣∣V β+1

2 (∇η)
∣∣2}.
(β + 1)
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Combining this with (3.20) and (3.21), and using the Sobolev trace inequality, we deduce
that

Cs

∫
κ(Ωε×{0})

g(x)V β+1(x, 0)η2(x, 0) dx

� β

2
2

(β + 1)2

∫
κ(Cε)

t1−2s∣∣∇(V β+1
2 η

)∣∣2 dz
−
(

2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 (∇η)

∣∣2 dz
� Csβ

S2
n,s(β + 1)2

( ∫
κ(Ωε×{0})

(
V

β+1
2 η

)p+1
dx

) 2
p+1

−
(

2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 (∇η)

∣∣2 dz. (3.22)

Moreover, we use the assumption (3.19) to get∫
κ(Ωε×{0})

g(x)V β+1(x, 0)η2(x, 0) dx

�
( ∫
κ(Ωε×{0})

(
ηV

β+1
2
)p+1

dx

) 2
p+1

‖g‖
L

p+1
p−1 (κ(Ωε×{0}∩Bn(0,2r))

� β

2S2
n,s(β + 1)2

( ∫
κ(Ωε×{0})

(
ηV

β+1
2
)p+1

dx

) 2
p+1

. (3.23)

Using this estimate, we can derive from (3.22) that

Csβ

2S2
n,s(β + 1)2

( ∫
κ(Ωε×{0})

(
V β+1η2) p+1

2 dx

) 2
p+1

� Csβ

S2
n,s(β + 1)2

( ∫
κ(Ωε×{0})

(
V

β+1
2 η

)p+1
dx

) 2
p+1

−
(

2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 (∇η)

∣∣2 dz.
We now have
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∫
κ(Ωε)∩Bn(0,r)

(
V

β+1
2
)p+1

dx � C

( ∫
κ(Cε)

t1−2s∣∣V β+1
2 ∇η

∣∣2 dz) p+1
2

� C

( ∫
κ(Cε)∩Bn+1(0,2r)

t1−2s|V |β+1 dz

) p+1
2

� C.

This completes the proof. �
Next, we prove the L∞-estimate by applying the Moser iteration technique. For the

proof of Lemma 3.8, we utilize the Sobolev inequality on weighted spaces which appeared
in Theorem 1.3 of [18] as well as the Sobolev trace inequality (2.9). Such an approach
already appeared in the proof of Theorem 3.4 in [23].

Proposition 3.7. (See [18, Theorem 1.3].) Let Ω be an open bounded set in R
n+1. Then

there exists a constant C = C(n, s,Ω) > 0 such that

(∫
Ω

|t|1−2s∣∣U(x, t)
∣∣ 2(n+1)

n dx dt

) n
2(n+1)

� C

(∫
Ω

|t|1−2s∣∣∇U(x, t)
∣∣2 dx dt) 1

2

(3.24)

holds for any function U whose support is contained in Ω whenever the right-hand side
is well-defined.

Lemma 3.8. Let V be a bounded solution of the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇V

)
= 0 in κ(Cε),

V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV (x, 0) = g(x)V (x, 0) on κ

(
Ωε × {0}

)
.

Fix β0 ∈ (1,∞). Suppose that∫
Bn+1(0,r)

t1−2sV (x, t)β0+1 dx dt +
∫

Bn(0,r)

V (x, 0)β0+1 dx � Q1

and ∫
κ(Ωε×{0})∩Bn(0,r)

∣∣g(x)
∣∣q dx � Q2

for some r > 0 and q > n
2s . Then there exists a constant C = C(β0, r,Q1, Q2) > 0 such

that ∥∥V (·, 0)
∥∥

∞ � C.

L (Bn(0,r/2))
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Proof. Let η ∈ C∞
c (Rn+1). Then the same argument as (3.20)–(3.22) in the proof of the

previous lemma gives

Cs

∫
κ(Ωε×{0})

gη2V β+1 dx � β

2
2

(β + 1)2

∫
κ(Cε)

t1−2s∣∣∇(V β+1
2 η

)∣∣2 dz
−
(

2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 ∇η

∣∣2 dz. (3.25)

First, we use Hölder’s inequality to estimate the left-hand side by

∫
κ(Ωε×{0})

gη2V β+1 dx �
( ∫
κ(Ωε×{0})

(
V β+1η2)q′ dx) 1

q′
( ∫
κ(Ωε×{0})

|g|q dx
) 1

q

� C

( ∫
κ(Ωε×{0})

(
V β+1η2)q′ dx) 1

q′

where q′ denotes the Hölder conjugate of q, i.e., q′ = q
q−1 . Since q > p+1

p−1 , we have
q′ < p+1

2 and so the following interpolation inequality holds.

( ∫
κ(Ωε×{0})

(
V β+1η2)q′ dx) 1

q′

�
( ∫
κ(Ωε×{0})

(
V β+1η2) p+1

2 dx

) 2θ
p+1
( ∫
κ(Ωε×{0})

(
V β+1η2) dx)1−θ

� δ
1
θ θ

( ∫
κ(Ωε×{0})

(
V β+1η2) p+1

2 dx

) 2
p+1

+ δ−
1

1−θ (1 − θ)
∫

κ(Ωε×{0})

(
V β+1η2) dx,

where θ ∈ (0, 1) and δ > 0 satisfy respectively

2θ
p + 1 + (1 − θ) = 1

q′
and δ =

(
1
θC

· β

2(β + 1)2

)θ

for an appropriate number C > 0. Then (3.25) gives

β

2(β + 1)2

∫
κ(Cε)

t1−2s∣∣∇(V β+1
2 η

)∣∣2 dz
� Cβ

θ
1−θ

∫
κ(Ωε×{0})

(
V β+1η2) dx +

(
2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 ∇η

∣∣2 dz.
(3.26)
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Consequently the weighted Sobolev inequality (3.24), the trace inequality (2.9) and (3.26)
yield that

( ∫
κ(Ωε×{0})

∣∣V β+1
2 η

∣∣p+1
dx

) 2
p+1

+
( ∫
κ(Cε)

t1−2s∣∣V β+1
2 η

∣∣ 2(n+1)
n dx dt

) n
n+1

� C

∫
κ(Cε)

t1−2s(∣∣∇(V β+1
2 η

)∣∣2 +
∣∣V β+1η2∣∣) dx dt

� Cβ
1

1−θ

[ ∫
κ(Cε)

t1−2sV β+1(|∇η|2 + η2) dx dt +
∫

κ(Ωε×{0})

∣∣V β+1η2∣∣ dx]. (3.27)

Now, for each 0 < r1 < r2, we take a function η ∈ C∞
c (Rn+1, [0, 1]) supported on

Bn+1(0, r2) such that η = 1 on Bn+1(0, r1). Then the above estimate (3.27) implies

( ∫
Bn(0,r1)

V (β+1) p+1
2 dx

) 2
p+1

+
( ∫
Bn+1(0,r1)

t1−2sV (β+1)n+1
n dz

) n
n+1

� Cβ
1

1−θ

(r2 − r1)2

[( ∫
Bn(0,r2)

V β+1 dx

)
+
( ∫
Bn+1(0,r2)

t1−2sV β+1 dz

)]
. (3.28)

We will use this inequality iteratively. We denote θ0 = min{p+1
2 , n+1

n } > 1 and set
βk + 1 = (β0 + 1)θk0 and Rk = r/2 + r/2k for k ∈ N ∪ {0}. By applying the inequality
aγ + bγ � (a + b)γ for any a, b > 0 and γ ∈ (0, 1] with Hölder’s inequality, and then
taking β = βk in (3.28), we obtain

( ∫
Bn(0,Rk+1)

V βk+1+1 dx +
∫

Bn+1(0,Rk+1)

t1−2sV βk+1+1 dz

) 1
βk+1+1

� C
1

(β0+1)θk0
[
θ

k
1−θ

0 22k] 1
(β0+1)θk0

( ∫
Bn(0,Rk)

V βk+1 dx +
∫

Bn+1(0,Rk)

t1−2sV βk+1 dz

) 1
βk+1

.

Set

Ak(V ) =
( ∫
Bn(0,Rk)

V βk+1 dx +
∫

Bn+1(0,Rk)

t1−2sV βk+1 dz

) 1
βk+1

.

Then, for D := (4θ
1

1−θ

0 )
1

β0+1 , we have

Ak+1 � C
1
θk0 D

k

θk0 Ak.
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Using this we get

Ak � C

∑∞
j=1

1
θ
j
0 D

∑∞
j=1

j

θ
j
0 A0 � CA0,

from which we deduce that

sup
x∈Bn(0,r/2)

V (x, 0) = lim
k→∞

( ∫
Bn+1(0,r/2)

V βk+1(x, 0) dx
) 1

βk+1

� sup
k∈N

Ak � C.

This concludes the proof. �
As we mentioned before, we cannot use the above result to the function Dε directly

because the estimate (3.17) is not enough to employ this result. To overcome this dif-
ficulty, we will seek a refined estimation of the term εμ−p+1

ε |x|−4s than (3.17), and in
particular we will try to bound με by a constant multiple of ε−α having (3.18) in mind
where α > 0 is a sufficiently small number. We deduce the next result, which is a local
invariant of the previous lemma, as the first step for this objective.

Lemma 3.9. Let V be a bounded solution of the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇V

)
= 0 in κ(Cε),

V > 0 in κ(Cε),
V = 0 on κ(∂LCε),
∂s
νV (x, 0) = g(x)V (x, 0) + εϕ(x)V (x, 0) on κ

(
Ωε × {0}

)
.

Fix β ∈ (1,∞). Suppose that ϕ satisfies ‖ϕ‖
L

n
2s (Rn) � Q1,∫

Bn+1(0,r)

t1−2sV (x, t)β+1 dx dt +
∫

Bn(0,r)

V (x, 0)β+1 dx � Q2

and ∫
Bn(0,r)

∣∣g(x)
∣∣q dx � Q3,

for some r > 0 and q > n
2s . Then, for any J > 1, there exist constants ε0 = ε0(Q1, J) > 0

and C = C(r,Q1, Q2, Q3, J) > 0 depending on r, Q1, Q2, Q3 and J such that, if 0 <

ε < ε0, then we have ∥∥V (·, 0)
∥∥
LJ (Bn(0,r/2)) � C.
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Proof. Let η ∈ C∞
c (Rn+1). Then the same argument for (3.22) gives

Cs

∫
κ(Ωε×{0})

g(x)η2V β+1(x, 0) dx + εCs

∫
κ(Ωε×{0})

ϕ(x)η2V β+1(x, 0) dx

� β

2
2

(β + 1)2

∫
κ(Cε)

t1−2s∣∣∇(V
β+1
2 η)

∣∣2 dz − ( 2
β

+ 2β
(β + 1)2

) ∫
κ(Cε)

t1−2s∣∣V β+1
2 ∇η

∣∣2 dz.
(3.29)

Using Hölder’s inequality we get

ε

∫
κ(Ωε×{0})

ϕ(x)η2V β+1(x, 0) dx � ε‖ϕ‖
L

p+1
p−1 (Rn)

∥∥η2V β+1(·, 0)
∥∥
L

p+1
2 (Rn)

.

If ε < β
4(β+1)2S2

n,sQ1
, from the trace inequality, we obtain

ε‖ϕ‖
L

p+1
p−1 (Rn)

∥∥η2V β+1(·, 0)
∥∥
L

p+1
2 (Rn)

� β

4(β + 1)2

∫
κ(Cε)

t1−2s∣∣∇(V
β+1
2 η)

∣∣2 dz.
Now we can follow the steps (3.26)–(3.28) of the previous lemma. Moreover, we can iterate
it with respect to β as long as ε < β

4(β+1)2S2
n,sQ1

holds. Thus, for ε < J
4(J+1)2S2

n,sQ1
, we

can find a constant C = C(r, C1, C2, C3, J) such that∥∥V (·, 0)
∥∥
LJ (Bn(0,r/2)) � C.

It proves the lemma. �
To apply the previous lemma to get a bound of με in terms of ε, we also need to make

the use of the Pohozaev identity of Uε:

1
2Cs

∫
∂LC

t1−2s∣∣∇Uε(z)
∣∣2〈z, ν〉 dS = εs

∫
Ω×{0}

Uε(x, 0)2 dx.

As a matter of fact, we will not use this identity directly, but instead we will utilize its
local version to prove the following result.

Proposition 3.10. Suppose that U ∈ Hs
0,L(C) is a solution of problem (1.9) with f such

that f has the critical growth and f = F ′ for some function F ∈ C1(R). Then, for each
δ > 0 and q > n

s there is a constant C = C(δ, q) > 0 such that

min
r∈[δ,2δ]

∣∣∣∣n ∫
F (U) dx−

(
n− 2s

2

) ∫
Uf(U) dx

∣∣∣∣

I(Ω,r/2)×{0} I(Ω,r/2)×{0}
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� C

[( ∫
O(Ω,2δ)×{0}

∣∣f(U)
∣∣q dx) 2

q

+
∫

O(Ω,2δ)×{0}

∣∣F (U)
∣∣ dx

+
( ∫
I(Ω,δ/2)×{0}

∣∣f(U)
∣∣ dx)2]

(3.30)

where I and O is defined in (3.3) and (3.4).

We defer the proof of the proposition to Appendix A. We remark that this kind of
estimate was used in [12] for s = 1/2.

Now we can prove the following result.

Lemma 3.11. There exist a constant C > 0 and α > 0 such that

με � Cε−α for all ε > 0.

Proof. We denote

f(u) = up + εu and F (u) = 1
p + 1u

p+1 + 1
2εu

2 for u > 0 (3.31)

and fix a small number δ > 0 so that I(Ω, δ) has the same topology as that of Ω. For
r ∈ [δ, 2δ] we see that

ε

∫
I(Ω,r)

uε(x)2 dx = ε

∫
I(Ω,r)

μ2
εbε
(
μ

p−1
2s

ε (x− xε)
)2

dx

= εμ2
εμ

− p−1
2s n

ε

∫
μ

p−1
2s

ε (I(Ω,r)−xε)

bε(x)2 dx

� εμ
− 4s

n−2s
ε

∫
Bn(0,1)

b2ε (x) dx � Cεμ
− 4s

n−2s
ε , (3.32)

where we used the fact that bε converges to w1 uniformly on any compact set (see
Lemma 3.3). Since Uε is a solution of (1.9) with f given in (3.31), we have

min
r∈[δ,2δ]

∣∣∣∣n ∫
I(Ω,r)×{0}

F (Uε) dx−
(
n− 2s

2

) ∫
I(Ω,r)×{0}

Uεf(Uε) dx
∣∣∣∣

= min
r∈[δ,2δ]

∣∣∣∣εs ∫
I(Ω,r)

Uε(x, 0)2 dx
∣∣∣∣ � Cεμ

− 4s
n−2s

ε .

This gives a lower bound of the left-hand side of (3.30).
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Now we shall find an upper bound of the right-hand side of (3.30). By Lemma 3.9,
for any q < ∞, we get ‖dε‖Lq(Bn(0,1)) � C with a constant C = C(q) > 0. Using this we
have

C �
∫

{|x|�1}

dqε(x) dx =
∫

{|x|�1}

|x|−(n−2s)qbqε

(
x

|x|2
)
dx

=
∫

{|x|�1}

|x|(n−2s)qbqε(x)|x|−2n dx

=
∫

{|x|�1}

|x|(n−2s)q−2nμ−q
ε uq

ε

(
μ
− p−1

2s
ε x + xε

)
dx

=
∫

{|x−xε|�μ
− p−1

2s
ε }

μ
p−1
2s [(n−2s)q−2n]

ε μ−q
ε μ

p−1
2s n

ε |x− xε|(n−2s)q−2nuq
ε(x) dx

=
∫

{|x−xε|�μ
− p−1

2s
ε }

μ
q− 2n

n−2s
ε |x− xε|(n−2s)q−2nuq

ε(x) dx. (3.33)

First of all, we find a bound of
∫
Ω
up
ε (x) dx. Using (3.33) and Hölder’s inequality we

deduce that

∫
{|x−xε|�μ

− p−1
2s

ε }

up
ε (x) dx �

( ∫
{|x−xε|�μ

− p−1
2s

ε }

uq
ε(x)|x− xε|(n−2s)q−2n dx

) p
q

×
( ∫
{|x−xε|�μ

− p−1
2s

ε }

|x− xε|−[(n−2s)q−2n] p
q−p dx

) q−p
q

� μ
−(q− n

n−2s ) p
q

ε μ
p−1
2s [((n−2s)q−2n) p

q−p−n] q−p
q

ε .

Note that if q = ∞, then the last term is equal to μ−p
ε μ

p−1
2s [(n+2s)−n]

ε = μ−1
ε . Thus, for

any κ > 0, we can find q = q(κ) sufficiently large so that the last term of the above
estimate is bounded by μ−1+κ

ε . Then it follows that

( ∫
{|x−xε|�μ

− p−1
2s

ε }

up
ε (x) dx

)2

� μ−2+2κ
ε . (3.34)

On the other hand, because uε(x) � Cμε, we have
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( ∫
{|x−xε|�μ

− p−1
2s

ε }

up
ε (x) dx

)2

� Cμ2p
ε μ

− p−1
2s ·2n

ε = Cμ
4s−2n
n−2s
ε = Cμ−2

ε . (3.35)

These two estimates give us the bound of
∫
Ω
up
ε (x) dx.

Now we turn to bound ‖f(Uε)(·, 0)‖Lq(O(Ω,2δ)). For this we again use inequality (3.33)
to have ∫

{|x−xε|�dist(x0,∂Ω)/2}

upq
ε (x) dx � Cμ

−(pq− 2n
n−2s )

ε for any q > 1.

Using this inequality for a sufficiently large q and Hölder’s inequality we can deduce that

( ∫
{|x−xε|�dist(x0,∂Ω)/2}

upq
ε (x) dx

) 2
q

� C
(
μ
−(pq− 2n

n−2s )
ε

) 2
q � Cμ−2p+κ

ε . (3.36)

Similarly we have ∫
O(Ω,2δ)

∣∣F (uε(x)
)∣∣ dx � Cμ−(p+1)+κ

ε .

Combining this estimate with (3.34), (3.35) and (3.36) gives the bound( ∫
O(Ω,2δ)

∣∣f(Uε)(x, 0)
∣∣q dx) 2

q

+
∫

O(Ω,2δ)

∣∣F (Uε(x, 0)
)∣∣ dx +

(∫
Ω

f(Uε)(x, 0) dx
)2

� Cμ−2+2κ
ε .

We put this bound and (3.32) into (3.30) in the statement of Proposition 3.10. Then we
finally get

εμ
− 4s

n−2s
ε � Cμ−2+2κ

ε (3.37)

which is equivalent to

μ
2n−8s
n−2s −2κ
ε � C

ε
.

Choose κ > 0 such that α := 2n−8s
n−2s − 2κ is positive. Then the estimate (3.37) turns out

to be

με � Cε−α,

which is the desired inequality. �
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Proof of Proposition 3.4. We know that

lim
ε→0

∫
Cε

t1−2s∣∣∇(Bε −W1)
∣∣2 dx dt = 0.

By employing the Sobolev trace embedding, we find that

lim
ε→0

[ ∫
Ωε

∣∣bε(x) − w1(x)
∣∣p+1

dx

]
= 0. (3.38)

Since p = n+2s
n−2s , we have the scaling invariance

∫
Rn

∣∣a(x)
∣∣p+1

dx =
∫
Rn

|x|−2n∣∣a(κ(x)
)∣∣p+1

dx,

and

∫
Rn+1

t1−2s∣∣∇A(z)
∣∣2 dz � C

∫
Rn+1

t1−2s∣∣∇[|z|−(n−2s)A
(
κ(z)

)]∣∣2 dz
for arbitrary functions a : Rn → R and A : Rn+1 → R which decay sufficiently fast.
Using these identities, we deduce from (3.38) that

lim
ε→0

[ ∫
κ(Ωε)

∣∣dε(x) − w1(x)
∣∣p+1

dx +
∫

κ(Cε)

t1−2s∣∣∇(Dε −W1)(x, t)
∣∣2 dx dt] = 0.

Using the Sobolev embedding theorem and Hölder’s inequality, for β0 = min{p, n+2
n } > 1,

we get

lim
ε→0

∫
Bn+1(0,1)

t1−2s∣∣Dε(x, t) −W1(x, t)
∣∣β0+1

dx dt = 0. (3.39)

Finally, estimates (3.39) and (3.17) enable us to apply Lemma 3.5 so that we can find
δ > 0 satisfying

∫
κ(Ωε×{0})∩Bn(0,δ)

(
dp−1
ε

) n
2s

β0+1
2 dx � C for any ε > 0. (3.40)



W. Choi et al. / Journal of Functional Analysis 266 (2014) 6531–6598 6565
Next, from Lemma 3.11 we may find α > 0 such that με � ε−α. Then, for ζ > 0 small
enough, we have

∥∥εμ−p+1
ε |x|−4s∥∥

L
n
2s+ζ(κ(Ωε))

� ε

[ ∫
{|x|�μ

− p−1
2s

ε }

μ
−(p−1)( n

2s+ζ)
ε |x|−2n−4sζ dz

] 1
n
2s+ζ

� ε
[
μ
−(p−1)( n

2s+ζ)
ε μ

p−1
2s (n+4sζ)

ε

] 1
n
2s+ζ

= εμ
ζ(p−1)
n
2s+ζ

ε � ε · ε−
αζ(p−1)

n
2s+ζ � 1.

Given this estimate and (3.40), we can apply Lemma 3.8 to get

‖dε‖L∞(Bn(0,δ/2)) � C.

The proof is concluded. �
3.3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By the definition of με in (3.8), we have

As

(
‖uε‖L∞(Ω)uε

)
(x) = cn,s

[
μεu

p
ε (x) + εμεuε(x)

]
, x ∈ Ω.

Note from p = n+2s
n−2s that

∫
Ω

(
μεu

p
ε (x) + εμεuε(x)

)
dx =

∫
Ω

μp+1
ε bpε

(
μ

p−1
2s

ε (x− xε)
)
dx

+ εμ2
ε

∫
Ω

bε
(
μ

p−1
2s

ε (x− xε)
)
dx

=
∫
Ωε

bpε (x) dx + εμ2
εμ

− p−1
2s n

ε

∫
Ωε

bε(x) dx.

Note also that

μ2
εμ

− p−1
2s n

ε

∫
Ωε

bε(x) dx � μ2
εμ

− p−1
2s n

ε

∫
{|x|�μ

p−1
2s

ε }

C

(1 + |x|)n−2s dx

� Cμ
2− p−1

2s n+ p−1
2s 2s

ε � C.
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Given the uniform bound (3.11), we use the Lebesgue dominated convergence theorem
to obtain

lim
ε→0

∫
Ω

cn,sμεu
p
ε (x) =

∫
Rn

cn,sw
p
1(x) dx = bn,s,

where

bn,s := |Sn−1|
2

Γ (s)Γ (n2 )
Γ (n+2s

2 )
cp+1
n,s . (3.41)

For x �= x0, we have limε→0 μεu
p
ε (x) = 0 by (3.12). Therefore we may conclude that

lim
ε→0

As

(
‖uε‖L∞(Ω)uε

)
(x) = bn,sδx0(x) in C(Ω)′.

Set vε := As(‖uε‖L∞(Ω)uε). Then limε→0
∫
Ω
vε dx = bn,s and limε→0 vε(x) = 0 uniformly

on any compact set of Ω \ {x0}. We observe the formula

‖uε‖L∞(Ω)Uε(x, t) =
∫
Ω

[
an,s

|(x− y, t)|n−2s −HC(x, t, y)
]
vε(y) dy. (3.42)

On the other hand we have HC(x, t, ·) is in C∞
loc(Ω) and ‖HC(x, t, ·)‖

L
2n

n−2s (Ω)
� C which

holds uniformly on any compact set of Ω \ {x0}. From this we conclude that

‖uε‖L∞(Ω)Uε(x, t) → bn,sGC(x, t, x0) in C0
loc
(
C \

{
(x0, 0)

})
.

Also, pointwise convergence in C is valid for the derivatives of ‖uε‖L∞(Ω)Uε by elliptic reg-
ularity. Especially, for t = 0, the regularity property of the function x ∈ Ω → HC(x, 0, y)
given in Lemma 2.4 proves that

‖uε‖L∞(Ω)uε(x) → bn,sG(x, x0)

in
{

Cα
loc(Ω \ {x0}) for all α ∈ (0, 2s) if s ∈ (0, 1/2],

C1,α
loc (Ω \ {x0}) for all α ∈ (0, 2s− 1) if s ∈ (1/2, 1).

This completes the proof. �
4. Location of the blowup point

The objective of this section is to prove Theorem 1.2. For this goal, we will derive
several identities related to Green’s function. Throughout this section, we keep using
the notations: X0 = (x0, 0), Br = Bn+1(X0, r) ∩ R

n+1
+ , ∂B+

r = ∂Br ∩ R
n+1
+ and Γr =

Bn(x0, r) for r > 0 small. We also use G(z) (or H(z)) to denote GC(z, x0) (or HC(z, x0))
for brevity.
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The first half of this section is devoted to proving the second statement of Theorem 1.2.

Proof of Theorem 1.2 (2). According to Appendix B, it holds

lim
ε→0

εsCsμ
2(n−4s)
n−2s

ε δ

∫
Rn

w2
1(x) dx

= b2
n,s

2δ∫
δ

[ ∫
∂B+

r

t1−2s
〈(

z −X0,∇G(z)
)
∇G(z) − (z −X0)

|∇G(z)|2
2 , ν

〉
dS

+
(
n− 2s

2

) ∫
∂B+

r

t1−2sG(z, x0)
∂G(z)
∂ν

dS

]
dr (4.1)

for an each δ > 0 small enough. We will now take a limit δ → 0. Putting

G(z) = an,s

|z −X0|n−2s −H(z) and ∇G(z) = −an,s(n− 2s) z −X0

|z −X0|n+2−2s −∇H(z)

into the right-hand side of (4.1) and applying ν = z−X0
r on ∂B+

r , we can derive

2 lim
ε→0

εsCsμ
2(n−4s)
n−2s

ε

∫
Rn

w2
1(x) dx

= (n− 2s)2an,sb2
n,s lim

r→0

(
2
∫

∂B+
2r

t1−2s

(2r)n+1−2sH(z) dS −
∫

∂B+
r

t1−2s

rn+1−2sH(z) dS
)

+ lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2sO

(〈
ν,∇H(z)

〉( 1
rn−2s + H(z)

)
+ r
∣∣∇H(z)

∣∣2) dS dr.

Since ∂iHC(·, x0) has a bounded Hölder norm over a small neighborhood of x0 for each
i = 1, . . . , n (refer to [8, Lemma 2.9]), the second term in the right-hand side tends to 0.
As a result,

2 lim
ε→0

εsCsμ
2(n−4s)
n−2s

ε

∫
Rn

w2
1(x) dx → (n− 2s)2Dn,san,sb

2
n,sτ(x0)

as δ → 0, where

Dn,s := lim
r→0

∫
∂B (0,r)∩R

n+1

t1−2s

rn+1−2s dS =
∫

Bn(0,1)

1
(1 − |x|2)s dx = |Sn−1|

2 B

(
1 − s,

n

2

)
,

n+1 +
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B denoting the beta function. This proves Theorem 1.2 (2). We also know that the
constant dn,s in the statement of the theorem is given by

dn,s = Γ (n− 2s)
πn/sΓ (n2 − 2s)

(n− 2s)2

2sCs
Dn,san,sb

2
n,sc

− 4s
n−2s

n,s . � (4.2)

Next, we prove the first statement of Theorem 1.2, that is, τ ′(x0) = 0.

Proof of Theorem 1.2 (1). If U is a solution to (1.9), for each 1 � k � n, we have∫
∂B+

r

t1−2s|∇U |2νk dS =
∫
Br

t1−2s∂k|∇U |2 dz = 2
∫
Br

t1−2s∇U · ∇∂kU dz

= 2
∫

∂B+
r

t1−2s〈∇U, ν〉∂kU dS + 2Cs

∫
∂Γr

F (U)νk dSx

where F (t) :=
∫ t

0 f(t) dt, νk is the k-th component of ν, ∂k is the partial deriva-
tive with respect to the k-th variable and r > 0 small. For the last equality,
we used

∫
Γr

f(U)∂kU dx =
∫
Γr

(∂kF )(U) dx =
∫
∂Γr

F (U)νk dSx. Therefore putting
‖Uε(·, 0)‖L∞(Ω)Uε (see (3.1)) in the place of U in the above identity, integrating the
result from δ to 2δ in r and taking ε → 0, we obtain

2δ∫
δ

∫
∂B+

r

t1−2s|∇G|2νk dS dr = 2
2δ∫
δ

∫
∂B+

r

t1−2s〈∇G, ν〉∂kGdS dr (4.3)

(cf. Appendix B). On the other hand, a direct calculation shows that

lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2s〈∇G(z), ν(z)
〉
∂kG(z) dS dr

= lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2s
[
an,s(n− 2s)
rn−2s+1 +

〈
z −X0

r
,∇H(z)

〉]

×
[
(xk − x0,k)

an,s(n− 2s)
rn+2−2s + ∂kH(z)

]
dS dr

= lim
r→0

∫
∂B+

r

t1−2s an,s(n− 2s)
rn−2s+1 ∂kH(z) dS

+ lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2s an,s(n− 2s)
rn−2s+3 (xk − x0,k)

〈
z −X0,∇H(z)

〉
dS dr

= (n− 2s + 3)(n− 2s)an,sEn,s∂kτ(x0), (4.4)
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where xk and x0,k mean the k-th component of x and x0, respectively, and

En,s := lim
r→0

∫
∂Bn+1(0,r)∩R

n+1
+

t1−2s

rn−2s+3x
2
k dS = 1

n

∫
Bn(0,1)

|x|2
(1 − |x|2)s dx

= |Sn−1|
2n B

(
1 − s,

n + 2
2

)
.

In particular, Dn,s = (n− 2s + 2)En,s. Moreover we observe

lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2s∣∣∇G(z)
∣∣2νk(z) dS dr

= 2 lim
r→0

∫
∂B+

r

t1−2s an,s(n− 2s)
rn−2s+3 (xk − x0,k)2∂kH(z) dS

+ lim
δ→0

1
δ

2δ∫
δ

∫
∂B+

r

t1−2s∣∣∇H(z)
∣∣2νk(z) dS dr

= 2(n− 2s)an,sEn,s∂kτ(x0). (4.5)

Taking δ → 0 in (4.3) with (4.4) and (4.5) in hand gives our desired result. �
5. Construction of solutions for (1.1) concentrating at multiple points

In this section we prove Theorem 1.4 by applying the Lyapunov–Schmidt reduction
method to the extended problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

div
(
t1−2s∇U

)
= 0 in C = Ω × (0,∞),

U > 0 in C,
U = 0 on ∂LC = ∂Ω × (0,∞),
∂s
νU = Up + εU on Ω × {0},

(5.1)

where 0 < s < 1 and p = n+2s
n−2s . We remind that the functions wλ,ξ and Wλ,ξ are defined

in (2.5) and (2.8). By the result of Dávila, del Pino and Sire [14], it is known that the
space of the bounded solutions for the linearized equation of (2.7) at wλ,ξ, namely,

Asφ = pwp−1
λ,ξ φ in R

n (5.2)

is spanned by

∂wλ,ξ
, . . . ,

∂wλ,ξ and ∂wλ,ξ (5.3)

∂ξ1 ∂ξn ∂λ
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where ξ = (ξ1, . . . , ξn) represents the variable in R
n. From this, it also follows that the

solutions of the extended problem of (5.2){
div
(
t1−2s∇Φ

)
= 0 in R

n+1
+ = R

n × (0,∞),
∂s
νΦ = pwp−1

λ,ξ Φ on R
n × {0},

(5.4)

which are bounded on Ω × {0}, consist of the linear combinations of

∂Wλ,ξ

∂ξ1
, . . . ,

∂Wλ,ξ

∂ξn
and ∂Wλ,ξ

∂λ
.

In the proof of Theorem 1.4, we will often consider the dilated equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇U

)
= 0 in Cε = Ωε × (0,∞),

U > 0 in Cε,
U = 0 on ∂LCε = ∂Ωε × (0,∞),
∂s
νU = Up + ε1+2sα0U on Ωε × {0},

(5.5)

where

Cε = C
εα0

=
{

(x, t)
εα0

: (x, t) ∈ C
}

and

Ωε = Ω

εα0
=
{

x

εα0
: x ∈ Ω

}
for some α0 > 0 to be determined later. If U is a solution of (5.5), then Uε(z) :=
ε−

(n−2s)
2 α0U(ε−α0z) for z ∈ Ω becomes a solution of problem (5.1).

Since we want solutions to be positive, we use a well-known trick that replaces the
nonlinear term Up in (5.1) with its positive part Up

+. Namely, we consider the following
modified equation of (5.5)⎧⎪⎨⎪⎩

div
(
t1−2s∇U

)
= 0 in Cε,

U = 0 on ∂LCε,
∂s
νU = fε(U) := Up

+ + ε1+2sα0U on Ωε × {0}.
(5.6)

5.1. Finite dimensional reduction

In order to construct a k-peak solution of (5.1) (k ∈ N), we define the admissible set

Oδ0 =
{

(λ,σ) :=
(
(λ1, . . . , λk), (σ1, . . . , σk)

)
∈
(
R

+)k ×Ωk: σi =
(
σ1
i , . . . , σ

n
i

)
,
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dist(σi, ∂Ω) > δ0, δ0 < λi <
1
δ0

, |σi − σj | > δ0, i �= j, i, j = 1, . . . , k
}

(5.7)

with some small δ0 > 0 fixed, which recodes the information of the concentration rate
and the locations of points of concentration.

Let the map

i∗ε : L
2n

n+2s (Ωε) → Hs
0,L(Cε)

be the adjoint operator of the Sobolev trace embedding

iε : Hs
0,L(Cε) → L

2n
n−2s (Ωε) defined by iε(U) := tr|Ωε×{0}(U) for U ∈ Hs

0,L(Cε),

which comes from the inequality (2.9) (for the definition of Hs
0,L(Cε), see Subsection 2.1).

From its definition, i∗ε (u) = V for some u ∈ L
2n

n+2s (Ωε) and V ∈ Hs
0,L(Cε) if and only if⎧⎪⎨⎪⎩

div
(
t1−2s∇V

)
= 0 in Cε,

V = 0 on ∂LCε,
∂s
νV = C−1

s u on Ωε × {0}

where Cs > 0 is the constant defined in (1.11). Therefore finding a solution U ∈ Hs
0,L(Cε)

of (5.5) is equivalent to solving the relation

i∗ε
(
fε
(
iε(U)

))
= C−1

s U. (5.8)

It is valuable to note that from (2.3) we have in fact iε : Hs
0,L(Cε) → Hs

0(Ωε) ⊂ L
2n

n−2s (Ωε)
and so As(iε(U)) makes sense. See also Sublemma C.6.

We introduce the functions

Ψ0
λ,ξ = ∂Wλ,ξ

∂λ
, Ψ j

λ,ξ = ∂Wλ,ξ

∂ξj
, ψ0

λ,ξ = ∂wλ,ξ

∂λ
, ψj

λ,ξ = ∂wλ,ξ

∂ξj
(5.9)

where ξ = (ξ1, . . . , ξn) ∈ R
n and j = 1, . . . , n, and

PεWλ,ξ = i∗ε
(
wp

λ,ξ

)
, PεΨ

j
λ,ξ = i∗ε

(
pwp−1

λ,ξ ψj
λ,ξ

)
for j = 0, 1, . . . , n. (5.10)

Furthermore, we let the functions Pεwλ,ξ and Pεψ
j
λ,ξ be

Pεwλ,ξ = iε(PεWλ,ξ) and Pεψ
j
λ,ξ = iε

(
PεΨ

j
λ,ξ

)
for j = 0, . . . , n (5.11)

which vanish on ∂Ωε and solve the equations Asu = wp
λ,ξ and Asu = pwp−1

λ,ξ ψj
λ,ξ in Ωε,

respectively. Also, whenever (λ,σ) ∈ Oδ0 is chosen, we denote
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Wi = Wλi,σiε−α0 , PεWi = PεWλi,σiε−α0 and PεΨ
j
i = PεΨ

j
λi,σiε−α0 (5.12)

and similarly define Pεwi and Pεψ
j
i (i = 1, . . . , k and j = 0, 1, . . . , n) for the sake of

simplicity. Set also

Kε
λ,σ =

{
u ∈ H1

0,L(Cε):
(
u, PεΨ

j
i

)
Cε

= 0, i = 1, 2, . . . , k, j = 0, 1, . . . , n
}

(5.13)

for ε > 0 and (λ,σ) ∈ Oδ0 and define the orthogonal projection operator Πε
λ,σ :

Hs
0,L(Cε) → Kε

λ,σ.
Now, if we set Lε

λ,σ : Kε
λ,σ → Kε

λ,σ by

Lε
λ,σ(Φ) = C−1

s Φ−Πε
λ,σi

∗
ε

[
f ′
ε

(
k∑

i=1
Pεwi

)
· iε(Φ)

]
, (5.14)

then we can obtain the following lemma from the nondegeneracy result of [14].

Lemma 5.1. Suppose that (λ,σ) is contained in Oδ0 . Then there exists a positive constant
C = C(n, δ0) such that∥∥Lε

λ,σ(Φ)
∥∥
Cε

� C‖Φ‖Cε
for all Φ ∈ Kε

λ,σ and sufficiently small ε > 0.

Proof. Assume the contrary. Then there exist sequences εl > 0, Φl ∈ Kεl
λl,σl

, Hl =
Lεl
λl,σl

(Φl) and (λl,σl) = ((λ1l, . . . , λkl), (σ1l, . . . , σkl)) ∈ Oδ0 (l ∈ N) satisfying

lim
l→∞

εl = 0, ‖Φl‖Cεl
= 1, lim

l→∞
‖Hl‖Cεl

= 0, lim
l→∞

(λl,σl) = (λ∞,σ∞) ∈ Oδ0 .

(5.15)

Set Cl = Cεl , Ωl = Ωεl , Plwil = Pεlwλil,σil
and PlΨ

j
il = PεlΨ

j
λil,σil

for i = 1, . . . , k and
j = 1, . . . , n. If we further denote φl = iεl(Φl), then we have

C−1
s Φl − i∗εl

[
f ′
εl

(
k∑

i=1
Plwil

)
φl

]
= Hl + Ql in H1

0,L(Cl) (5.16)

where Ql :=
∑k

i=1
∑n

j=1 c
l
ijPlΨ

j
il for some constants clij ∈ R. By our assumptions above

and the relation

lim
l→∞

(
PlΨ

j1
i1l
, PlΨ

j2
i2l

)
Cl

= p · Cs lim
l→∞

∫
Ωl

Up−1
i1

ψj1
i1l
Plψ

j2
i2l

= cj1δi1i2δj1j2 (5.17)

for some constant cj1 > 0 depending on j1 (i1, i2 = 1, . . . , k and j1, j2 = 0, . . . , n), it
holds that ‖Ql‖Cl

is bounded and so is |clij |.
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First we claim that

lim
l→∞

‖Ql‖Cl
= 0.

Indeed, testing (5.16) with Ql, and employing Lemmas C.3, C.4 and C.5, the definition
of the operator i∗εl , and the relation (Φl, PlΨ

j
il)Cl

= Cs

∫
Ωl

wp−1
il ψj

ilφl = 0 which comes
from Φl ∈ Kεl

λl,σl
and (5.10), we can deduce

‖Ql‖2
Cl

= −
∫
Ωl

f ′
εl

(
k∑

i=1
Plwil

)
φlql − (Hl, Ql)Cl

�
[(

p

∥∥∥∥∥
(

k∑
i=1

Plwil

)p−1

−
k∑

i=1
wp−1

il

∥∥∥∥∥
L

n
2s (Ωl)

+ ε1+2sα0 |Ωl|
2s
n

)

× ‖Φl‖
L

2n
n−2s (Ωl)

+ ‖Hl‖Cl

]
‖Ql‖Cl

+
(

k∑
i=1

∥∥f ′
εl

(wil)
∥∥
L

n
2s (Ωl)

)
‖Φl‖

L
2n

n−2s (Ωl)

(∑
i,j

∣∣clij∣∣∥∥Plψ
j
il − ψj

il

∥∥
L

2n
n−2s (Ωl)

)
= o(1)‖Ql‖Cl

+ o(1) = o(1)

where ql := iεl(Ql).
Choose now a smooth function χ : R → [0, 1] such that χ(x) = 1 if |x| � δ0/2 and

χ(x) = 0 if |x| � δ0 (where δ0 is the small number chosen in (5.7)), and set

χl(x) = χ
(
εα0
l x

)
, Φhl(x, t) = Φl

(
x + ε−α0

l σhl, t
)
χl(x) for (x, t) ∈ Cl

and φhl := iεl(Φhl) for each h = 1, . . . , k. Since ‖Φhl‖Rn+1
+

is bounded for each h, Φhl

converges to Φh∞ weakly in Ds(Rn+1
+ ) up to a subsequence. Using the same arguments

of [31], we can conclude that Φh∞ is a weak solution of (5.4) with (λ, ξ) = (λh∞, 0) and∫
R

n+1
+

t1−2s∇Φh∞ · ∇Ψ j
λh∞,0 = 0 for all j = 0, 1, . . . , n.

In order to use the result of [14] to show Φh∞ = 0, we also need to know that φh∞ is
bounded where φh∞(x) := Φh∞(x, 0) for any x ∈ R

n, and it is the next step we will be
concerned with. Define Φ̃L = min{|Φh∞|, L} and φ̃L = tr|Rn+1Φ̃L for any L > 0, and
select the test function Φ̃β

L ∈ Ds(Rn+1) for (5.16) with any β > 1 to obtain

4β
(β + 1)2

∥∥Φ̃β+1
2

L

∥∥2
R

n+1
+

= Cs

∫
f ′
0(wλh∞)φ̃β+1

L dx.
Rn
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Then by applying the Sobolev trace embedding and taking L → ∞, we can get

∥∥φ β+1
2

h∞
∥∥
L

2n
n−2s (Rn+1

+ )
� Cβ‖φh∞‖

β+1
2

Lβ+1(Rn+1
+ ) (5.18)

with a constant Cβ > 0 which depends only on β. Since we already have that
‖φh∞‖

L
2n

n−2s (Rn+1
+ )

is finite, we may deduce from (5.18) that for any q > 1, there is
a constant Cq > 0 which relies only on the choice of q such that

‖φh∞‖Lq(Rn+1
+ ) � Cq.

Now we note the expression

φh∞(x) =
∫
Rn

an,s

|x− y|n−2s f
′
0(wλh∞)(y)φh∞(y) dy

=
∫

{|x−y|�1}

an,s

|x− y|n−2s f
′
0(wλh∞)(y)φh∞(y) dy

+
∫

{|x−y|>1}

an,s

|x− y|n−2s f
′
0(wλh∞)(y)φh∞(y) dy

:= I1(x) + I2(x) for x ∈ R
n.

As for I1, we take a very large number q so that r := q
q−1 is sufficiently close to 1. Then

we get

I1 � C

( ∫
{|x−y|�1}

1
|x− y|(n−2s)r dy

) 1
r
( ∫
{|x−y|�1}

∣∣f ′
0(wλh∞)(y)φh∞(y)

∣∣qdy) 1
q

� C‖φh∞‖Lq(Rn+1) � C. (5.19)

Considering I2 we take r such that r = n
n−2s + ζ for a small number ζ > 0. Then q is

close to n
2s . We further find numbers q1 slightly less than n

2s and q2 such that 1
q = 1

q1
+ 1

q2
.

Then we get

I2 � C

( ∫
{|x−y|>1}

1
|x− y|(n−2s)r dy

) 1
r ∥∥f ′

0(wλh∞)
∥∥
Lq1 (Rn+1)‖φh∞‖Lq2 (Rn+1) � C.

(5.20)

The estimates (5.19) and (5.20) show that φh∞ is bounded. Now we may achieve that
Φh∞ = 0 by the classification of the solutions for the linear problem (5.4) obtained
in [14]. In summary, we proved that



W. Choi et al. / Journal of Functional Analysis 266 (2014) 6531–6598 6575
lim
l→∞

Φhl = 0 weakly in Ds
(
R

n+1
+

)
and

lim
l→∞

φhl = 0 strongly in Lq(Ω) for 1 � q < p + 1 (5.21)

(h = 1, . . . , k).
Consequently, (5.21) yields

lim
l→∞

∫
Ωl

f ′
ε

(
k∑

i=1
Plwil

)
φ2
l = 0.

Hence by testing Φl to (5.16) we may deduce that

lim
l→∞

‖Φl‖Cl
= 0.

However it contradicts to (5.15). This proves the validity of the lemma. �
For each ε > 0 sufficiently small and (λ,σ) ∈ Oδ0 fixed, the linear operator Lε

λ,σ :
Kε

λ,σ → Kε
λ,σ has the form Id +K where Id is the identity operator and K is a compact

operator on Kε
λ,σ, because the trace operator iε : Hs

0,L(Cε) → Lq(Ωε) ⊂ Lp+1(Ωε) is
compact whenever q ∈ [1, p+1). Therefore, by the Fredholm alternative, it is a Fredholm
operator of index 0. However Lemma 5.1 implies that it is also an injective operator.
Consequently, we have the following result.

Proposition 5.2. The inverse (Lε
λ,σ)−1 of Lε

λ,σ : Kε
λ,σ → Kε

λ,σ exists for any ε > 0 small
and (λ,σ) ∈ Oδ0 . Besides, its operator norm is uniformly bounded in ε and (λ,σ) ∈ Oδ0 ,
if ε is small enough.

The previous proposition gives us that

Proposition 5.3. For any sufficiently small δ0 > 0 chosen fixed, we can select ε0 > 0 such
that for any ε ∈ (0, ε0) and (λ,σ) ∈ Oδ0 , there exists a unique Φε

λ,σ ∈ Kε
λ,σ satisfying

Πε
λ,σ

{
C−1

s

(
k∑

i=1
PεWi + Φε

λ,σ

)
− i∗ε

[
fε

(
k∑

i=1
Pεwi + iε

(
Φε
λ,σ

))]}
= 0

and

∥∥Φε
λ,σ

∥∥
Cε

� Cεη0 with η0 :=
{

1
2 + 2sα0 if n � 6s,
1
2 + (1 + δ)sα0 if 4s < n < 6s,

(5.22)

where δ > 0 is chosen to satisfy (4 + 2δ)s < n. Furthermore, the map (λ,σ) �→ Φε
λ,σ

is C1(Oδ0).
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Proof. Define

Nε(Φ) = Πε
λ,σ ◦ i∗ε

[
fε

(
k∑

i=1
Pεwi + iε(Φ)

)
− fε

(
k∑

i=1
Pεwi

)
− f ′

ε

(
k∑

i=1
Pεwi

)
iε(Φ)

]
,

Rε = Πε
λ,σ

(
i∗ε

[
fε

(
k∑

i=1
Pεwi

)]
− C−1

s

k∑
i=1

PεWi

)

and

Tε(Φ) =
(
Lε
λ,σ

)−1(
Nε(Φ) + Rε

)
for Φ ∈ Kε

λ,σ,

where the set Kε
λ,σ and the operator Πε

λ,σ are defined in (5.13) and the sentence following
it. Also, the well-definedness of the inverse of the operator Lε

λ,σ is guaranteed by Proposi-
tion 5.2. By Lemmas C.1, C.3 and C.5, we have ‖Rε‖Cε

= O(εη0) as ε → 0, and from this
we can conclude that Tε is a contraction mapping on Kε

λ,σ := {Φ ∈ Kε
λ,σ: ‖Φ‖Cε

� Cεη0}
for some small C > 0, which implies the existence of a unique fixed point of Tε on Kε

λ,σ. It
is easy to check that this fixed point is our desired function Φε

λ,σ. For the detailed treat-
ment of the argument, we refer to [31, Proposition 1.8] (see also [16, Proposition 3]). �
5.2. The reduced problem

We set α0 = 1
n−4s . Notice that Eq. (5.5) for each fixed ε > 0 has the variational

structure, that is, U ∈ Hs
0,L(Ω) is a weak solution of the equation if and only if it is a

critical point of the energy functional

Eε(U) := 1
2Cs

∫
Cε

t1−2s|∇U |2 −
∫

Ωε×{0}

Fε

(
iε(U)

)
(5.23)

where Fε(t) :=
∫ t

0 fε(t) dt. In fact, thanks to the Sobolev trace embedding iε : Hs
0,L(Cε) →

Lp+1(Ωε), we can obtain that Eε : Hs
0,L(Cε) → R is a C1-functional and

E′
ε(U)Φ = 1

Cs

∫
Cε

t1−2s∇U · ∇Φ−
∫

Ωε×{0}

fε
(
iε(U)

)
iε(Φ) for any Φ ∈ Hs

0,L(Cε).

Using Proposition 5.3, we can define a localized energy functional defined in the admis-
sible set Oδ0 in (5.7):

Ẽε(λ,σ) := Eε

(
k∑

i=1
PεWλi,

σi
εα0

+ Φε
λ,σ

)
(5.24)

for (λ,σ) = ((λ1, . . . , λk), (σ1, . . . , σk)) ∈ Oδ0 . Then we can obtain the following impor-
tant properties of Ẽε.
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Proposition 5.4. Suppose ε > 0 is sufficiently small.
(1) If Ẽ′

ε(λ
ε,σε) = 0 for some (λε,σε) ∈ Oδ0 , then the function Uε :=∑k

i=1 PεW
λε
i ,

σε
i

εα0
+ Φε

λε,σε is a solution of (5.6). Hence one concludes that a dilated

function Vε(z) := ε−
n−2s

2(n−4s)Uε(ε−
1

n−4s z) defined for z ∈ C is a solution of (5.1).
(2) Recall the number η0 chosen in (5.22). Then it holds that

Ẽε(λ,σ) = ks

n
c0 + 1

2Υk(λ,σ)ε
n−2s
n−4s + o

(
ε

n−2s
n−4s

)
(5.25)

in C1-uniformly in (λ,σ) ∈ Oδ0 . Here Υk is the function introduced in (1.7) and

c0 =
∫
Rn

wp+1
1,0 (x) dx (5.26)

(recall that w1,0 is the function obtained by taking (λ, ξ) = (1, 0) in (2.5)).

We postpone its proof in Appendix C.3.

5.3. Definition of stable critical sets and conclusion of the proofs of Theorems 1.4, 1.5

We recall the definition of stable critical sets which was introduced by Li [26].

Definition 5.5. Suppose that D ⊂ R
n is a domain and g is a C1 function in D. We say

that a bounded set Λ ⊂ D of critical points of f is a stable critical set if there is a number
δ > 0 such that ‖g − h‖L∞(Λ) + ‖∇(g − h)‖L∞(Λ) < δ for some h ∈ C1(D) implies the
existence of a critical point of h in Λ.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By the virtue of Proposition 5.4 (2) and Definition 5.5, we can
find a pair (λε,σε) ∈ Λk which is a critical point of the reduced energy functional Ẽε

(defined in (5.23)) given 0 < ε < ε0 for some ε0 small enough. From this fact and
Proposition 5.4 (1), we obtain a solution vε := iε(Vε) of (1.1) for ε ∈ (0, ε0).

Also, by using the dilation invariance of (2.7) and the trace inequality (2.9), we see that
vε =

∑k
i=1 P1wεα0λε

i ,σ
ε
i

+ φ̃ε
λε,σε in Ω where ‖φ̃ε

λε,σε‖
L

2n
n−2s (Ω)

� C‖Φε
λε,σε‖Cε

= O(εη0)

(η0 > 0 is chosen in (5.22)). From this fact, if we test (1.1) with φ̃ε
λ,σ and use (5.11),

we can deduce ‖φ̃ε
λ,σ‖Hs(Ω) = o(1). Furthermore, it is obvious that there exists a point

(λ0,σ0) ∈ Λk such that (λε,σε) → (λ0,σ0) up to a subsequence. This completes the
proof of Theorem 1.4. �
Proof of Theorem 1.5. We recall that G and τ are Green’s function and the Robin
function of As in Ω with the zero Dirichlet boundary condition, respectively (see (1.4)
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and (1.5)). To emphasize the dependence of G and τ on the domain Ω, we append the
subscript Ω in G and τ so that G = GΩ and τ = τΩ .

If a sequence of domains {Ωε: ε > 0} satisfies limε→0 Ωε = Ω and Ωε1 ⊂ Ωε2 for any
ε1 < ε2, then τΩε

converges to τΩ in C1
loc(Ω). In order to prove this statement, we first

note that the maximum principle (Lemma 2.1, cf. [40, Lemma 3.3]) ensures that τΩε

is monotone increasing as ε → 0 and tends to τΩ pointwise. Then we can deduce from
Lemma 2.4 that it converges also in C1 on any compact set of Ω. Similar arguments also
apply to show that GΩε

(x, y) converges to GΩ(x, y) in C1 locally on {(x, y) ∈ Ω2
ε : x �= y}.

The rest part of the proof goes along the same way to [31] or [17], where the authors
considered domains Ωε consisting of k disjoint balls and thin strips liking them whose
widths are ε. �
6. The subcritical problem

We are now concerned in the proofs of Theorem 1.6 and Theorem 1.7. Since many
steps of the proofs for the previous theorems can be modified easily for problem (1.12),
we only stress the parts where some different arguments should be introduced.

Remind that με = c−1
n,s supx∈Ω uε(x) and xε ∈ Ω is a point which satisfies με =

c−1
n,suε(xε). (See Lemma 3.2.) We also define the functions bε and Bε with their domains
Ωε and Cε as in (3.9) and (3.10), replacing the scaling factor 2

n−2s = p−1
2s by p−1−ε

2s . Then
bε converges to w1 pointwisely.

In order to get the uniform boundedness result, we first need the following bound
of με.

Lemma 6.1. There exists a constant C > 0 such that

C � μ
−( n

2s−1)ε
ε for all ε > 0. (6.1)

Proof. Since bε converges to w1 pointwise, we have∫
Bn(0,1)

bp+1−ε
ε � C

by Fatou’s lemma. Note that∫
Bn(0,1)

bp+1−ε
ε (x) dx =

∫
Bn(0,1)

μ−(p+1−ε)
ε up+1−ε

ε

(
μ
− p−1−ε

2s
ε x + xε

)
dx

�
∫
Ω

μ−(p+1−ε)
ε μ

n
2s (p−1−ε)
ε up+1−ε

ε (x) dx

� Cμ
−( n

2s−1)ε
ε .

Combining these two estimates completes the proof. �
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Next, as before we denote by dε and Dε the Kelvin transforms of bε and Bε (see (3.13)
and (3.14)). Then the function Dε satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div
(
t1−2s∇Dε

)
(z) = 0 in κ(Cε),

∂s
νDε = |x|−ε(n−2s)Dp−ε

ε in κ
(
Ωε × {0}

)
,

Dε > 0 in κ(Cε),
Dε = 0 on κ(∂LCε).

From (3.9), we have |x| � Cμ
− p−1−ε

2s
ε for x ∈ κ(Ωε), hence Lemma 6.1 yields

|x|−ε(n−2s) � μ
(p−1−ε)

2s (n−2s)ε
ε � C for all x ∈ κ(Ωε).

By this fact we may use Lemma 3.5 and Lemma 3.8 and the proof of Proposition 3.4 to
find C > 0 such that

uε(x) � Cw
μ
− 2

n−2s
ε ,xε

(x) for all ε > 0 and x ∈ Ω. (6.2)

Now we need to get a sharpened bound of με. Considering both (6.2) with Proposi-
tion 3.10 simultaneously, we can prove the following lemma.

Lemma 6.2. (1) There exists a constant C > 0 such that

ε � Cμ−2−2ε
ε for ε > 0 small.

(2) We have

lim
ε→0

με
ε = 1. (6.3)

Proof. As in the proof of Lemma 3.11, we take a small number δ > 0. Recall also the
definition of I(Ω, r) and O(Ω, r) (see (3.3) and (3.4)). Then we see that the left-hand
side of (3.30) is bounded below, i.e.,(

n

p + 1 − ε
− n− 2s

2

) ∫
I(Ω,δ)×{0}

∣∣Uε(x, 0)
∣∣p+1−ε

dx � Cε (6.4)

for some constant C > 0.
On the other hand, using (6.2) we deduce

(∫
up−ε
ε dx

)2

� C

( ∫
wp−ε

μ
− 2

n−2s
ε ,xε

(x) dx
)2
Ω Rn
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� Cμ−2(p−ε)
ε

(∫
Rn

(
μ
− 4

n−2s
ε + |x|2

)−n−2s
2 (p−ε)

dx

)2

� Cμ−2−2ε
ε . (6.5)

Since x0 /∈ O(Ω, 2δ) we have wμε,xε
(x) � Cμ−1

ε for x ∈ O(Ω, δ). It yields, for a fixed
large number q > 0, that

( ∫
O(Ω,δ)

u(p−ε)q
ε dx

)2/q

� Cμ−2(p−ε)
ε . (6.6)

Now we inject the estimates (6.4), (6.5) and (6.6) to the inequality in the statement of
Proposition 3.10 to get

Cε � C
[
μ−2−2ε
ε + μ−2(p−ε)

ε

]
� 2Cμ−2−2ε

ε ,

which proves the first statement of the lemma. Using Taylor’s theorem, we get∣∣με
ε − 1

∣∣ � sup
0�t�1

εμtε
ε log(με) = O

(
μ−1−2ε
ε log(με)

)
.

It proves limε→0 μ
ε
ε = 1 because με goes to infinity. Now the proof is complete. �

We now prove Theorems 1.6 and 1.7.

Proof of Theorem 1.6. By definition we have

As

(
‖uε‖L∞(Ω)uε

)
(x) = cn,sμεu

p−ε
ε (x).

Note from p = n+2s
n−2s that∫

Ω

cn,sμεu
p−ε
ε (x) dx =

∫
Ω

cn,sμ
p+1−ε
ε bp−ε

ε

(
μ

p−1−ε
2s

ε (x− xε)
)
dx

=
∫
Ωε

cn,sμ
( n
2s−1)ε

ε bp−ε
ε (x) dx.

Here, from Lemma 6.2 and the dominated convergence theorem with the fact that bε
converges to w1 pointwise, we conclude that

lim
ε→0

∫
Ω

cn,sμεu
p−ε
ε (x) dx =

∫
Rn

cn,sw
p
1(x) dx = bn,s

(see (3.41)). Now the first statement follows as in the proof of Theorem 1.1.



W. Choi et al. / Journal of Functional Analysis 266 (2014) 6531–6598 6581
The proof of the second statement can be performed similarly to the proof of Theo-
rem 1.2. The constant gn,s is given by

gn,s = 4n
2Cs

Sn/s
n,s Dn,san,sb

2
n,s. (6.7)

The proof is complete. �
Proof of Theorem 1.7. This theorem can be proved in a similar way to the proof of
Theorem 1.4. In this case, if we take α0 = 1

n−2s and fε(U) = Up−ε
+ , then an analogous

result of Proposition 5.4 holds with Υ̃ (refer to (1.13)). Therefore there exists a family
of solutions which concentrate at a critical point of Υ̃ . �
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Appendix A. Proof of Proposition 3.10

This section is devoted to present the proof of Proposition 3.10, namely, the following
proposition.

Proposition A.1. Suppose that U ∈ Hs
0,L(C) is a solution of problem (1.9) with f such

that f has the critical growth and f = F ′ for a function F ∈ C1(R). Then, for each
δ > 0 and q > n

s there is a constant C = C(δ, q) > 0 such that

min
r∈[δ,2δ]

∣∣∣∣n ∫
I(Ω,r/2)×{0}

F (U) dx−
(
n− 2s

2

) ∫
I(Ω,r/2)×{0}

Uf(U) dx
∣∣∣∣

� C

[( ∫
O(Ω,2δ)×{0}

∣∣f(U)
∣∣q dx) 2

q

+
∫

O(Ω,2δ)×{0}

∣∣F (U)
∣∣ dx +

( ∫
I(Ω,δ/2)×{0}

∣∣f(U)
∣∣ dx)2]

(A.1)

where I and O is defined in (3.3) and (3.4).
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Proof. Recall the local form of the Pohozaev identity

div
{
t1−2s〈z,∇U〉∇U − t1−2s |∇U |2

2 z

}
+
(
n− 2s

2

)
t1−2s|∇U |2 = 0 (A.2)

and define the following sets:

Dr =
{
z ∈ R

n+1
+ : dist

(
z, I(Ω, r) × {0}

)
� r/2

}
,

∂D+
r = ∂Dr ∩

{
(x, t) ∈ R

n+1: t > 0
}

and Eδ =
2δ⋃
r=δ

∂D+
r .

Note that ∂Dr = ∂D+
r ∪ (I(Ω, r/2) × {0}). Fix a small number δ > 0. We integrate the

identity (A.2) over Dr for each r ∈ (0, 2δ] to derive∫
∂D+

r

t1−2s
〈
〈z,∇U〉∇U − z

|∇U |2
2 , ν

〉
dS + Cs

∫
I(Ω,r/2)×{0}

〈x,∇xU〉∂s
νU dx

= −
(
n− 2s

2

) ∫
Dr

t1−2s|∇U |2 dx dt. (A.3)

In view of Lemmas 4.4 and 4.5 of [5], one can deduce that the i-th component ∂xi
U of

∇xU is Hölder continuous in Dr for each i = 1, . . . , n, which justifies the above formula.
By using ∂s

νU = f(U) and performing integration by parts, we derive∫
I(Ω,r/2)×{0}

〈x,∇xU〉∂s
νU dx =

∫
I(Ω,r/2)×{0}

〈
x,∇xF (U)

〉
dx

= −n

∫
I(Ω,r/2)×{0}

F (U) dx +
∫

∂I(Ω,r/2)×{0}

〈x, ν〉F (U) dSx

and ∫
Dr

t1−2s|∇U |2 dx dt = Cs

∫
I(Ω,r/2)×{0}

Uf(U) dx +
∫

∂D+
r

t1−2sU
∂U

∂ν
dS.

Then (A.3) is written as

Cs

{
n

∫
I(Ω,r/2)×{0}

F (U) dx−
(
n− 2s

2

) ∫
I(Ω,r/2)×{0}

Uf(U) dx
}

=
∫

∂D+
r

t1−2s
[〈

〈z,∇U〉∇U − z
|∇U |2

2 , ν

〉
dS +

(
n− 2s

2

)
U
∂U

∂ν

]
dS

+
∫

〈x, ν〉F (U) dSx. (A.4)

∂I(Ω,r/2)×{0}
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From this identity we get∣∣∣∣n ∫
I(Ω,r/2)×{0}

F (U) dx−
(
n− 2s

2

) ∫
I(Ω,r/2)×{0}

Uf(U) dx
∣∣∣∣

� C

∫
∂D+

r

t1−2s(|∇U |2 + U2) dS +
∫

∂I(Ω,r/2)×{0}

〈x, ν〉F (U) dSx.

We integrate this identity with respect to r over an interval [δ, 2δ] and then use the
Poincaré inequality. Then we observe

min
r∈[δ,2δ]

∣∣∣∣n ∫
I(Ω,r/2)×{0}

F (U) dx−
(
n− 2s

2

) ∫
I(Ω,r/2)×{0}

Uf(U) dx
∣∣∣∣

� C

∫
Eδ

t1−2s|∇U |2 dz + C

∫
O(Ω,δ)

∣∣F (U)(x, 0)
∣∣ dx.

We only need to estimate the first term of the right-hand side of the previous inequality
since the second term is already one of the terms which constitute the right-hand side
of (A.1). Note that

∇zU(z) =
∫
Ω

∇zGR
n+1
+

(z, y)f(U)(y, 0) dy −
∫
Ω

∇zHC(z, y)f(U)(y, 0) dy (A.5)

for z ∈ Eδ.
Let us deal with the last term of (A.5) first. Admitting the estimation

sup
y∈Ω

∫
Eδ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz � C (A.6)

for a while and using Hölder’s inequality, we get

∫
Eδ

t1−2s
(∫

Ω

∣∣∇zHC(z, y)f(U)(y, 0)
∣∣dy)2

dz

�
(

sup
y∈Ω

∫
Eδ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz)(∫

Ω

∣∣f(U)(y, 0)
∣∣dy)2

� C

( ∫ ∣∣f(U)(y, 0)
∣∣dy)2
I(Ω,δ)∪O(Ω,δ)
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� C

[( ∫
O(Ω,2δ)

∣∣f(U)(y, 0)
∣∣qdy) 2

q

+
( ∫
I(Ω,δ/2)

∣∣f(U)(y, 0)
∣∣dy)2]

, (A.7)

which is a part of the right-hand side of (A.1).
The validity of (A.6) can be reasoned as follows. First of all, if y is a point in Ω such

that dist(y,Eδ) � δ/2, then it automatically satisfies that dist(y, ∂Ω) � δ/2 from which
we know

sup
dist(y,∂Ω)�δ/2

(∫
Eδ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz)

� sup
dist(y,∂Ω)�δ/2

(∫
C

t1−2s∣∣∇zHC(z, y)
∣∣2 dz) � C.

See the proof of Lemma 2.2 for the second inequality. Meanwhile, in the complementary
case dist(y,Eδ) > δ/2, we can assert that

∫
Eδ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz � C

( ∫
N(Eδ,δ/4)

t1−2s∣∣HC(z, y)
∣∣2 dz) (A.8)

where N(Eδ, δ/4) := {z ∈ C: dist(z, Eδ) � δ/4}. To show this, we recall that HC satisfies

{
div
(
t1−2s∇HC(·, y)

)
= 0 in C,

∂s
νHC(·, y) = 0 on Ω × {0}.

(A.9)

Fix a smooth function φ ∈ C∞
0 (N(Eδ, δ/4)) such that φ = 1 on Eδ and |∇φ|2 � C0φ

holds for some C0 > 0, and multiply HC(·, y)φ(·) to (A.9). Then we have∫
C

t1−2s∣∣∇HC(z, y)
∣∣2φ(z) +

∫
C

t1−2s[∇HC(z, y) · ∇φ(z)
]
HC(z, y) dz = 0.

From this we deduce that∫
C

t1−2s∣∣∇HC(z, y)
∣∣2φ(z) dz

= −
∫
C

t1−2s[∇HC(z, y) · ∇φ(z)
]
HC(z, y) dz

� 1
2C0

∫
C

t1−2s∣∣∇HC(z, y)
∣∣2∣∣∇φ(z)

∣∣2 dz + 2C0

∫
N(Eδ,δ/4)

t1−2s∣∣HC(z, y)
∣∣2 dz.
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Using the property |∇φ|2 � C0φ we derive that∫
C

t1−2s∣∣∇HC(z, y)
∣∣2φ(z) dz � 4C0

∫
N(Eδ,δ/4)

t1−2s∣∣HC(z, y)
∣∣2 dz.

It verifies inequality (A.8). Since the assumption dist(y,Eδ) > δ/2 implies dist(y,
N(Eδ, δ/4)) > δ/4, it holds

sup
dist(y,Eδ)>δ/2

sup
z∈N(Eδ,δ/4)

∣∣HC(z, y)
∣∣ � sup

dist(y,Eδ)>δ/2
sup

z∈N(Eδ,δ/4)

∣∣G
R

n+1
+

(z, y)
∣∣ � C.

Combination of this and (A.8) gives

sup
dist(y,Eδ)>δ/2

(∫
Eδ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz) � C

( ∫
N(Eδ,δ/4)

t1−2s dz

)
� C.

This concludes the derivation of the desired uniform bound (A.6).
It remains to take into consideration of the first term of (A.5). We split the term as∫

Ω

∇zGR
n+1
+

(z, y)f(U)(y, 0) dy

=
∫

O(Ω,2δ)

∇zGR
n+1
+

(z, y)f(U)(y, 0) dy +
∫

I(Ω,2δ)

∇zGR
n+1
+

(z, y)f(U)(y, 0) dy

:= A1(z) + A2(z).

Take q > n
s and r > 1 satisfying 1

q + 1
r = 1. Then

∣∣A1(z)
∣∣ � ( ∫

O(Ω,2δ)

∣∣∇zGR
n+1
+

(z, y)
∣∣r dy) 1

r ∥∥f(U)(·, 0)
∥∥
Lq(O(Ω,2δ)).

In light of the definition of G
R

n+1
+

, it holds that

( ∫
O(Ω,2δ)

∣∣∇zGR
n+1
+

(z, y)
∣∣r dy) 1

r

� C

( ∫
O(Ω,2δ)

1
|(x− y, t)|(n−2s+1)r dy

) 1
r

� C max
{
t
n
r −(n−2s+1), 1

}
= C max

{
t−

n
q +2s−1, 1

}
.

Thus we have ∣∣A1(z)
∣∣ � C max

{
t−

n
q +2s−1, 1

}∥∥f(U)(·, 0)
∥∥

q .

L (O(Ω,2δ))
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Using this we see

∫
Eδ

t1−2s∣∣A1(z)
∣∣2 dz � C

1∫
0

max
{
t1−2st−

2n
q +4s−2, t1−2s}∥∥f(U)(·, 0)

∥∥2
Lq(O(Ω,2δ)) dt

=
1∫

0

max
{
t2s−

2n
q −1, t1−2s}∥∥f(U)(·, 0)

∥∥2
Lq(O(Ω,2δ)) dt.

� C
∥∥f(U)(·, 0)

∥∥2
Lq(O(Ω,2δ)). (A.10)

Concerning the term A2, we note that Eδ is away from I(Ω, 2δ) × {0}. Thus we have

sup
z∈Eδ,y∈I(Ω,2δ)

∣∣∇zGR
n+1
+

(z, y)
∣∣ � C.

Hence ∣∣A2(z)
∣∣ � C

∫
I(Ω,2δ)

∣∣f(U)(y, 0)
∣∣dy, z ∈ Eδ.

Using this we find∫
Eδ

t1−2s∣∣A2(z)
∣∣2 dz � C

( ∫
I(Ω,2δ)

∣∣f(U)(y, 0)
∣∣dy)2

. (A.11)

We have obtained the desired bound of
∫
Eδ

t1−2s|∇U |2 dz through the estimates (A.7),
(A.10) and (A.11). The proof is complete. �
Remark A.2. Estimate (A.6) can be generalized to

sup
y∈Ω

∫
Eδ

t1−2s∣∣∇z∂
I
yHC(z, y)

∣∣2 dz � C, (A.12)

for any multi-index I ∈ (N∪{0})n. The proof of this fact follows in the same way as the
derivation of (A.6) with an observation that ∂I

yHC(·, y) satisfies Eq. (2.14).

Appendix B. Proof of (4.1)

The aim of this section is to provide the derivation of (4.1). Due to a technical issue,
we shall use an identity derived from integrating the local Pohozaev identity (A.4) (ac-
tually, its slight modification) with respect to r ∈ (δ, 2δ), and then apply the Lebesgue
dominated convergence theorem to it. The notations defined in Section 4 will be used
here.
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In Section 3 we proved that Qε(x) := ‖Uε(x, 0)‖L∞(Ω)Uε(x, 0) is of the form

Qε(z) =
∫
Ω

GC(z, y)vε(y) dy, (B.1)

where vε ∈ C0(Ω) satisfies

lim
ε→0

∫
Ω

vε(x) dx = bn,s > 0 and lim
ε→0

vε(y) = 0 in C0
loc
(
Ω \ {x0}

)
(B.2)

(the number bn,s is defined in (3.41)). Using an equivalent form of the local Pohozaev
identity (A.2),

div
[
2t1−2s(〈z −X0,∇V 〉∇V − |∇V |2(z −X0)

)]
+ (n− 2s)t1−2s|∇V |2 = 0 in D

(B.3)

which holds for a function V ∈ C1(D) for some subset D ⊂ R
n+1
+ satisfying

div(t1−2s∇V ) = 0 in D, we can obtain an identity corresponding to (A.4) with I(Ω, r/2)
and Dr changed into Γr and Br, respectively. After integrating it for the function Qε in
r from δ to 2δ, we have

2δ∫
δ

[
εsCs

∫
Γr

Q2
ε (x, 0) dx

]
dr

=
2δ∫
δ

∫
∂B+

r

t1−2s
〈
〈z −X0,∇Qε〉∇Qε − (z −X0)

|∇Qε|2
2 , ν

〉
dS dr

+
(
n− 2s

2

) 2δ∫
δ

∫
∂B+

r

t1−2sQε
∂Qε

∂ν
dS dr

+
[ 2δ∫

δ

∫
∂Γr

〈x− x0, ν〉
∥∥Uε(x, 0)

∥∥2
L∞

(
ε

2U
2
ε + n− 2s

2n U
2n

n−2s
ε

)
dSx

]
dr. (B.4)

We shall apply the dominated convergence theorem to the right-hand side of this identity.
For this we need to find an integrable dominating function. We only concern the first
term in the right-hand side of (B.4) because the other terms can be handled in similar
fashion. Set E′

δ =
⋃2δ

r=δ ∂B
+
r for some sufficiently small δ > 0. Then we bound |∇Qε|

using (B.1) and (B.2) as follows.
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∣∣∇Qε(z)
∣∣ =

∣∣∣∣∫
Ω

∇zGC(z, y)vε(y) dy
∣∣∣∣ � 2bn,s sup

y∈Γr/2

∣∣∇zGC(z, y)
∣∣

+
∣∣∣∣ ∫
Ω\Γr/2

∇zGC(z, y)vε(y) dy
∣∣∣∣.

We will take 2bn,s supy∈Γr/2
|∇zGC(z, y)| as a dominating function and prove that the

quantity |
∫
Ω\Γr/2

∇zGC(z, y)vε(y) dy| is negligible in the sense that its contribution tends
to zero as ε → 0. Note that∣∣∣∣〈〈z −X0,∇Qε〉∇Qε − (z −X0)

|∇Qε|2
2 , ν

〉∣∣∣∣ � C
∣∣∇Qε(z)

∣∣2 on E′
δ.

Thus it is enough to show∫
E′

δ

t1−2s
(

sup
y∈Γr/2

∣∣∇zGC(z, y)
∣∣)2

dz � C (B.5)

and

lim
ε→0

∫
E′

δ

t1−2s
( ∫
Ω\Γr/2

∇zGC(z, y)vε(y) dy
)2

dz = 0. (B.6)

Proof of (B.5) and (B.6). We note that ∇zGR
n+1
+

(z, y) is uniformly bounded for z ∈ E′
δ

and y ∈ Γr/2 since dist(E′
δ, Γr/2) > 0. Thus we only need to prove that∫

E′
δ

t1−2s
(

sup
y∈Γr/2

∣∣∇zHC(z, y)
∣∣)2

dz � C. (B.7)

Using the Sobolev embedding Hn(Ω) ↪→ L∞(Ω) and (A.12), we obtain

(LHS) of (B.7) �
∑
|α|�n

∫
Γr/2

(∫
E′

δ

t1−2s∣∣∇z∂
I
yHC(z, y)

∣∣2 dz) dy � C.

It proves (B.5).
In order to deduce (B.6) it suffices to show that

lim
ε→0

∫
E′

δ

t1−2s
( ∫
Ω\Γr/2

∣∣∇zGR
n+1
+

(z, y)vε(y)
∣∣dy)2

dz = 0, (B.8)

and
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lim
ε→0

∫
E′

δ

t1−2s
( ∫
Ω\Γr/2

∣∣∇zHC(z, y)vε(y)
∣∣dy)2

dz = 0. (B.9)

To show (B.8) we note that∫
Ω\Γr/2

∣∣∇zGR
n+1
+

(z, y)vε(y)
∣∣dy � C sup

y∈Ω\Γr/2

∣∣vε(y)∣∣( ∫
Ω\Γr/2

1
|z − y|n+1−2s dy

)

�

⎧⎪⎪⎨⎪⎪⎩
Ct2s−1 supy∈Ω\Γr/2

|vε(y)| if s ∈ (0, 1/2),

C| log t| supy∈Ω\Γr/2
|vε(y)| if s = 1/2,

C supy∈Ω\Γr/2
|vε(y)| if s ∈ (1/2, 1).

Thus we have

(LHS) of (B.8) � lim
ε→0

(
sup

y∈Ω\Γr/2

∣∣vε(y)∣∣2 ∫
E′

δ

t1−2s max
{
t4s−2, | log t|, 1

}
dz

)

� C lim
ε→0

(
sup

y∈Ω\Γr/2

∣∣vε(y)∣∣2) = 0.

In order to prove (B.9) we use Hölder’s inequality and (A.6) to obtain

(LHS) of (B.9) �
∫
E′

δ

t1−2s
( ∫
Ω\Γr/2

∣∣∇zHC(z, y)
∣∣2∣∣vε(y)∣∣dy)( ∫

Ω\Γr/2

∣∣vε(y)∣∣dy) dz

� sup
y∈Ω

(∫
E′

δ

t1−2s∣∣∇zHC(z, y)
∣∣2 dz)( ∫

Ω\Γr/2

∣∣vε(y)∣∣dy)2

� C

( ∫
Ω\Γr/2

∣∣vε(y)∣∣dy)2

→ 0 as ε → 0.

It proves (B.6). �
Now we can take a limit ε → 0 to get

lim
ε→0

∫
E′

δ

t1−2s
〈
〈z −X0,∇Qε〉∇Qε − (z −X0)

|∇Qε|2
2 , ν

〉
dz

= b2
n,s

∫
E′

δ

t1−2s
〈〈

z −X0,∇G(z)
〉
∇G(z) − (z −X0)

|∇G(z)|2
2 , ν

〉
dz.

In a similar way one can deduce that
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lim
ε→0

[(
n− 2s

2

)∫
E′

δ

t1−2sQε
∂Qε

∂ν
dz

+
2δ∫
δ

∫
∂Γr

〈x− x0, ν〉
∥∥Uε(x, 0)

∥∥2
L∞

(
ε

2U
2
ε + n− 2s

2n U
2n

n−2s
ε

)
dSxdr

]

= b2
n,s

(
n− 2s

2

)∫
E′

δ

t1−2sG(z)∂G(z)
∂ν

dz.

Combining the above two identities gives

lim
ε→0

εsCs

2δ∫
δ

[ ∫
Γr

Q2
ε(x, 0) dx

]
dr

= b2
n,s

2δ∫
δ

[ ∫
∂B+

r

t1−2s
〈(

z −X0,∇G(z)
)
∇G(z) − (z −X0)

|∇G(z)|2
2 , ν

〉
dS

+
(
n− 2s

2

) ∫
∂B+

r

t1−2sG(z)∂G(z)
∂ν

dS

]
dr. (B.10)

On the other hand, since x0 ∈ Γr, we can derive that

εs

∫
Γr

Q2
ε (x, 0) dx = εsμ2

ε

∫
Γr

μ2
εb

2
ε

(
μ

p−1
2s

ε x
)
dx = εsμ

2n−8s
n−2s
ε

∫
(Γr)ε

b2ε(x) dx (B.11)

and

lim
ε→0

∫
(Γr)ε

b2ε(x) dx =
∫
Rn

w2
1(x) dx = c2n,s

πn/sΓ (n2 − 2s)
Γ (n− 2s) , (B.12)

where (Γr)ε := (Γr − x0)/ε. Now (B.10), (B.11), and (B.12) shows the validity of (4.1).

Appendix C. Technical computations in the proof of Theorem 1.4

In this section, we collect technical lemmas which are necessary during the proof of
Theorem 1.4.

C.1. Estimation of Pεwλ,ξ and Pεψ
j
λ,ξ (j = 0, . . . , n)

We recall the functions wλ,ξ, ψj
λ,ξ, Pεwλ,ξ and Pεψ

j
λ,ξ defined in (2.5), (5.9) and (5.10)

for any λ > 0, ξ ∈ R
n and j = 0, . . . , n.
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In the next two lemmas, we estimate the difference between wλ,ξ and Pεwλ,ξ (or ψj
λ,ξ

and Pεψ
j
λ,ξ) in terms of Green’s function G and its regular part H of the fractional

Laplacian As (see (1.4) and (1.5) for their definitions).

Lemma C.1. Let λ > 0 and σ = (σ1, . . . , σn) ∈ Ω. Then we have

Pεwλ,σε−α0 (x) = wλ,σε−α0 (x) − c1λ
n−2s

2 H
(
εα0x, σ

)
ε(n−2s)α0 + o

(
ε(n−2s)α0

)
,

Pεψ
j
λ,σε−α0 (x) = ψj

λ,σε−α0 (x) − c1λ
n−2s

2
∂H

∂σj

(
εα0x, σ

)
ε(n−2s+1)α0 + o

(
ε(n−2s+1)α0

)
,

Pεψ
0
λ,σε−α0 (x) = ψ0

λ,σε−α0 (x) − (n− 2s)c1
2 λ

n−2s−2
2 H

(
εα0x, σ

)
ε(n−2s)α0 + o

(
ε(n−2s)α0

)
for all x ∈ Ωε where c1 > 0 is the constant defined in (1.8). Here the little o terms tend
to zero as ε → 0 uniformly in x ∈ Ωε and σ ∈ Ω provided dist(σ, ∂Ω) > C for some
constant C > 0.

Proof. For fixed λ > 0 and σ ∈ Ω, let Φλ,σε−α0 = Wλ,σε−α0 −PεWλ,σε−α0 . Then Φλ,σε−α0

satisfies ⎧⎪⎨⎪⎩
div
(
t1−2s∇Φλ,σε−α0

)
= 0 in Cε,

Φλ,σε−α0 = Wλ,σε−α0 on ∂LCε,
∂s
νΦλ,σε−α0 = 0 on Ωε × {0}.

On the other hand, the function F(z) := c1λ
n−2s

2 HC(εα0z, σ)ε(n−2s)α0 defined for z ∈ Cε
solves ⎧⎪⎪⎨⎪⎪⎩

div
(
t1−2s∇F

)
= 0 in Cε,

F(z) = ε(n−2s)α0c1λ
n−2s

2 G
R

n+1
+

(εα0z, σ) on ∂LCε,
∂s
νF = 0 on Ωε × {0}.

Note that

Wλ,σε−α0 (x, t) =
∫
Rn

G
R

n+1
+

(x, t, y)W p
λ,σε−α0 (y, 0) dy

= cpn,s

∫
Rn

G
R

n+1
+

(x, t, y) λ
n+2s

2

|(y − σε−α0 , λ)|n+2s dy

= cpn,s

∫
Rn

λ
n−2s

2 G
R

n+1
+

(
x, t, λy + σε−α0

)
× 1

n+2s dy for (x, t) ∈ R
n+1
+ .
|(y, 1)|
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For (x, t) ∈ ∂LC, we calculate

Wλ,σε−α0

(
xε−α0 , tε−α0

)
= cpn,s

∫
Rn

λ
n−2s

2 G
R

n+1
+

(
(x− σ)ε−α0 , tε−α0 , λy

) 1
|(y, 1)|n+2s dy

= ε(n−2s)α0cpn,s

∫
Rn

λ
n−2s

2 G
R

n+1
+

(x− σ, t, λy) ε−nα0

|(yε−α0 , 1)|n+2s dy

= ε(n−2s)α0c1λ
n−2s

2 G
R

n+1
+

(x− σ, t, 0) + o
(
ε(n−2s)α0

)
.

As ε > 0 goes to 0, the term o(ε(n−2s)α0) above converges to 0 uniformly in (x, t) ∈ ∂LC
and σ ∈ Ω satisfying dist(σ, ∂Ω) > C.

On the other hand, we have

F
(
xε−α0 , tε−α0

)
= ε(n−2s)α0c1λ

n−2s
2 G

R
n+1
+

(x, t, σ)

= ε(n−2s)α0c1λ
n−2s

2 G
R

n+1
+

(x− σ, t, 0).

Thus

sup
(xε−α0 ,tε−α0 )∈∂LC

∣∣Ψλ,σε−α0

(
xε−α0 , tε−α0

)
−F

(
xε−α0 , tε−α0 , σ

)∣∣ = o
(
ε(n−2s)α0

)
.

By the maximum principle (Lemma 2.1), we get

sup
z∈Cε

∣∣Ψλ,σε−α0 (z) −F(z)
∣∣ = o

(
ε(n−2s)α0

)
.

By taking z = (x, 0) for x ∈ Ωε we obtain supx∈Ωε
|wλ,σε−α0 (x) − Pwλ,σε−α0 (x) −

F(x, 0)| = o(ε(n−2s)α0). Now the first identity follows from the definition of F .
The second and third estimation can be proved similarly. �
From the above lemma, we immediately get the following lemma.

Lemma C.2. For any λ > 0 and σ = (σ1, . . . , σn) ∈ Ω, we have

Pεwλ,σε−α0 (x) = c1λ
n−2s

2 G
(
εα0x, σ

)
ε(n−2s)α0 + o

(
ε(n−2s)α0

)
,

Pεψ
j
λ,σε−α0 (x) = c1λ

n−2s
2

∂G

∂σj

(
εα0x, σ

)
ε(n−2s+1)α0 + o

(
ε(n−2s+1)α0

)
,

Pεψ
0
λ,σε−α0 (x) =

(
n− 2s

2

)
c1λ

n−2s−2
2 G

(
εα0x, σ

)
ε(n−2s)α0 + o

(
ε(n−2s)α0

)
,

where the little o terms tend to zero uniformly in x ∈ Ωε and σ ∈ Ω provided |εα0x−σ| >
C and dist(εα0x, ∂Ω) > C for a fixed constant C > 0. As the previous lemma, c1 > 0 is
the constant given in (1.8).
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C.2. Basic estimates

Let wi and ψj
i (for i = 1, . . . , k and j = 0, . . . , n) be the functions given in (5.12). Then

applying the definition of wλ,ξ in (2.5), Lemma C.1 and the Sobolev trace inequality (2.9),
we can deduce the following estimates. For the details, we refer to [31] in which the
authors deal with the case s = 1.

Lemma C.3. It holds that

‖Pεwi‖
L

2n
n−2s (Ωε)

� ‖wi‖
L

2n
n−2s (Ωε)

� C.

Also we have

‖Pεwi‖
L

2n
n+2s (Ωε)

�
{

C if n > 6s,
Cε−(6s−n)α0/2| log ε| if n � 6s.

Similarly, ∥∥Pεψ
j
i

∥∥
L

2n
n−2s (Ωε)

� C,
∥∥Pεψ

j
i

∥∥
L

2n
n+2s (Ωε)

� C if j = 1, . . . , n,

and

∥∥Pεψ
0
i

∥∥
L

2n
n+2s (Ωε)

�
{

C if n > 6s,
Cε−(6s−n)α0/2| log ε| if n � 6s.

Lemma C.4. For i = 1, . . . , k, we have∥∥Pεψ
j
i − ψj

i

∥∥
L

2n
n−2s (Ωε)

� Cεα0(n
2 −s+1) if j = 1, . . . , n

and ∥∥Pεψ
0
i − ψ0

i

∥∥
L

2n
n−2s (Ωε)

� Cεα0
n−2s

2 .

Lemma C.5. It holds that∥∥∥∥∥
(

k∑
i=1

Pεwi

)p

−
k∑

i=1
wp

i

∥∥∥∥∥
L

2n
n+2s (Ωε)

�
{

Cε
n+2s

2 α0 if n > 6s,
Cε(n−2s)α0 | log ε| if n � 6s.

Besides, ∥∥∥∥∥
(

k∑
Pεwi

)p−1

−
k∑

wp−1
i

∥∥∥∥∥ n

� Cε2sα0
i=1 i=1 L 2s (Ωε)
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and

∥∥∥∥∥
[(

k∑
i=1

Pεwi

)p−1

−
k∑

i=1
wp−1

i

]
Pεψ

j
h

∥∥∥∥∥
L

2n
n+2s (Ωε)

� Cεα0
n+2s

2

for h = 1, . . . , k and j = 0, 1, . . . , n.

C.3. Proof of Proposition 5.4

This subsection is devoted to give a proof of Proposition 5.4.

Proof of Proposition 5.4. We first prove (1). Applying Ẽ′
ε(λ

ε,σε) = 0, we can obtain
after some computations that

∂

∂�
Ẽ′

ε

(
λε,σε

)
=

k∑
h=1

n∑
j=0

chj

[(
PεΨ

j
h,

k∑
i=1

Pε
∂Wi

∂�

)
Cε

−
(
Pε

∂Ψ j
h

∂�
, Φε

λε,σε

)
Cε

]
= 0

where � is one of λi or σj
i with i = 1, . . . , k and j = 0, . . . , n (see (5.7)). Using (5.17)

and (5.22), we can conclude that chj = 0 for all h and j, which implies that the function
Uε defined in the statement of the proposition is a solution of (5.6). The assertion that
Vε is a solution of (5.1) is justified by the following sublemma provided ε > 0 small.

Sublemma C.6. Suppose that U ∈ Hs
0,L(C) is a solution of problem (5.1) with Up substi-

tuted by Up
+ (here, the condition U > 0 in C is ignored). If ε is small, then there is a

constant C > 0 depending only on n and s, such that the function U is positive.

Proof. We multiply U− by Eq. (5.6) with ε = 1. Then we have

∫
C

t1−2s|∇U−|2 = εCs

∫
Ω×{0}

U2
−

(refer to (1.11)). By utilizing the Sobolev trace inequality and Hölder’s inequality, we
get

∥∥U−(·, 0)
∥∥
L

2n
n−2s (Ω)

� εC
∥∥U−(·, 0)

∥∥
L

2n
n−2s (Ω)

for some C > 0 independent of U . Hence U− should be zero given that ε is sufficiently
small. The lemma is proved. �

The first part (1) of Proposition 5.4 is proved.
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We continue our proof by considering the second part (2). By (5.22), there holds

Ẽε(λ,σ) = Eε

(
k∑

i=1
PεWλi,

σi
εα0

)
+ O

(
ε2η0

)
= Eε

(
k∑

i=1
PεWi

)
+ o
(
ε(n−2s)α0

)

= 1
2Cs

∫
Cε

t1−2s

∣∣∣∣∣∇
(

k∑
i=1

PεWi

)∣∣∣∣∣
2

−
∫
Ωε

Fε

(
iε

(
k∑

i=1
PεWi

))

+ o
(
ε(n−2s)α0

)
(C.1)

so it suffices to estimate each of the two terms that appear in (C.1) above.
Setting Bi = Bn(σi, δ0/2) ⊂ Ω where δ0 is a small number chosen in the definition

(5.7) of Oδ0 , and applying Lemma C.1 and Lemma C.2, we find that∫
Ωε

wp
i Pεwi =

∫
Ωε

wp+1
1 +

∫
Ωε

wp
i (Pεwi − wi)

= c0 − c21λ
n−2s
i H(σi, σi)ε(n−2s)α0 + o

(
ε(n−2s)α0

)
,∫

Ωε

wp
hPεwi =

∫
Bi
εα0

wp
hPεwi + o

(
ε(n−2s)α0

)
= c21(λhλi)

n−2s
2 G(σh, σi)ε(n−2s)α0 + o

(
ε(n−2s)α0

)
,∫

Ωε

wiPεwi =
∫
Ωε

w2
i + o(1) = c2λ

2s
i + o(1) (if n > 4s),

∫
Ωε

whPεwi = o(1) (if n > 4s),

for i, h = 1, . . . , k and i �= h, where G and H are the functions defined in (1.4) and (1.5),
and c1 and c2 are positive constants given in (1.8) while c0 is defined in (5.26).

Then the estimates obtained in the previous paragraph yield that

1
2Cs

∫
Cε

t1−2s

∣∣∣∣∣∇
(

k∑
i=1

PεWi

)∣∣∣∣∣
2

= 1
2

k∑
i=1

∫
Ωε

wp
i Pεwi + 1

2

k∑
i,h=1
i�=h

∫
Ωε

wp
hPεwi

= kc0
2 +

[
c21
2

{∑
G(σi, σh)(λhλi)

n−2s
2 −

k∑
H(σi, σi)λn−2s

i

}
+ o(1)

]
ε(n−2s)α0
i�=h i=1
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and

∫
Ωε

Fε

(
k∑

i=1
Pεwi

)
=

k∑
h=1

[ ∫
Bh
εα0

Fε

(
wh + (Pεwh − wh) +

k∑
i,h=1
i�=h

Pεwi

)
− Fε(wh)

]

+
k∑

h=1

∫
Bh
εα0

Fε(wh) + o
(
ε(n−2s)α0

)

=
k∑

h=1

[ ∫
Bh
εα0

Fε(wh) +
∫
Bh
εα0

fε(wh)(Pεwh − wh)
]

+
∑
i�=h

∫
Bh
εα0

fε(wh)Pεwi + o
(
ε(n−2s)α0

)

= kc0
p + 1 +

[
c21

{∑
i�=h

G(σi, σh)(λhλi)
n−2s

2 −
k∑

i=1
H(σi, σi)λn−2s

i

}

+ c2
2

k∑
i=1

λ2s
i + o(1)

]
ε(n−2s)α0

Note that here we also used that 1 + 2sα0 = (n − 2s)α0 which holds owing to our
choice α0 = 1

n−4s . As a consequence, (5.25) holds C0-uniformly in Oδ0 . Similarly, with
Lemmas C.3, C.4 and C.5, one can conclude that (5.25) has its validity in C1-sense (see
[22, Section 7] and [31, Proposition 2.2]). This completes the proof. �
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