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Abstract

We consider the chiral condensate in the baryonic dense medium using the generalized

Sakai-Sugimoto model. It is defined as the vacuum expectation value of open Wilson line

that is proposed to be calculated by use of the area of world-sheet instanton. We evaluate

it in confined as well as deconfined phase. In both phases, the chiral condensate has a

minimum as a function of baryon density. In the deconfined phase, taking into account

the chiral symmetry restoration, we classify the behavior of chiral condensate into three

types. One can set the parameter of the theory such that the results, in low but sufficiently

higher density, is in agreement with the expectation from QCD.
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1. Introduction

One of the most important problem in strong interaction physics is the understanding

of the chiral symmetry and calculation of its order parameter in dense medium, since it is

the key quantity determining the hadron property in the nuclei as well as in neutron stars.

For long time, there has been many speculation on the behaviour of chiral condensation

in dense medium: one of the intuitively compelling one is that as an order parameter, it is

non-zero at vacuum and vanishes at the large enough density where the chiral symmetry

is restored. Therefore the most naive but natural behaviour is to decrease as a function

of density until it vanishes at the transition point [1]. However, to our knowledge, there

is no work which prove this scenario from the first principle. This is because the strongly

interacting nature and the presence of the chemical potential have been blocking any

reliable calculation even in the numerical approach: the Dyson-Schwinger equation for the

resummation is not justified in strong coupling since it involve the truncation of significant

part of the diagrams. Furthermore the solution of notorious sign problem in lattice is not

available yet.

Since this situation, there have been many activities to utilize the gauge/gravity cor-

respondence [2] to improve the understanding of the nuclear physics. Most notable one is

the model of Sakai-Sugimoto [3,4], since the chiral symmetry and its breaking is intuitively

realized in geometric way. However, it has its own drawback, since one can not include

the quark mass in natural way and calculating chiral condensation is blocked for similar

reason. So far, in order to improve this problem, many prescriptions (e.g. the uses of

tachyonic DBI action [5–8], the introduction of additional D4-branes or D6-branes [9,10],

etc.) have been suggested. Especially in this paper we are interested in the idea suggested

by Aharony and Kutasov [11] to utilize the world-sheet instanton for quark mass and chiral

condensation. The idea is to separate the ψ̄ and ψ such that one is in D8-branes and the

other is in anti-D8-branes in the UV region and covariantize the composite operator by

inserting the open Wilson line connecting them. Then the gravity dual of this operator is

the world-sheet instanton, a minimal area whose boundary is given by the open Wilson

line connecting ψ̄ and ψ. This is analogous to the Wilson loop calculation in the closed

Wilson line case [12].

The baryons in the Sakai-Sugimoto model are realised as the instantons, in other

words, Skyrme-like solitons from the viewpoint of the flavour D8-branes [13], while the

baryons are also interpreted to the baryon vertex given by the D4-branes wrapping S4,
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which we call baryonic D4-branes [14]. Therefore one can describe the baryonic medium

by the use of the baryonic D4-branes which are uniformly distributed in R
3 [15]. The

Sakai-Sugimoto model in dense medium has been attracting many interests [15–18] as well

as the other holographic models have [19,20]. In a recent paper, the authors of Ref. [21]

worked out the problem of chiral symmetry order parameter in baryonic matter in the

context of holographic NJL model [22], which is uncompatified version of Sakai-Sugimoto

model, where there is no confinement. In this paper we will work out the calculation in

compactified version with confinement.

We will find that we can tune the parameters of the Sakai-Sugimoto model such that

chiral condensation decreases as function of density until density reach the chiral transition

point, where it suddenly drops to zero. That is, it does not decreases to zero continuously

but will go to the first order transition.

The remaining of the paper goes as follows: In Section 2, we review the definition

of the generalised Sakai-Sugimoto model [23] and the open Wilson line operator as chiral

condensate [11]. In Section 3, we analyse the confined phase. After showing the force

balance condition by following Ref. [15], we numerically calculate the chiral condensate,

and compare it with the normal nuclear density by the use of the experimental values. In

Section 4, in the way similar to the confined phase, we investigate the chiral condensate

and the chiral symmetry restoration in the deconfined phase. Section 5 is devoted for the

conclusion and discussion.

2. Chiral condensate in generalised Sakai-Sugimoto model

2.1. Generalised Sakai-Sugimoto model

The Sakai-Sugimoto model [3,4] consists ofNc colour D4-branes andNf pairs of flavour

D8-branes and anti-D8-branes. The open strings connecting the D4-branes and the D8-

branes (anti-D8-branes) describe quarks (anti-quarks). In large Nc where the AdS/CFT

correspondence is valid, we can interpret the colour D4-branes as a background which has

two phases.
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fig. 1 (a) The confined phase where the chiral symmetry is broken.

(b) The deconfined phase where the chiral symmetry is broken.

(c) The deconfined phase where the chiral symmetry is restored.

One is the confined phase (fig. 1a), the other is the deconfined phase (fig. 1b,c). The

transition between these two phases is realised as Hawking-Page transition. We can deal

with the flavour D8-branes and anti-D8-branes as a probe in this background.

The background (Euclidean) metric in the confined phase is described as

R−2ds2 = u
3
2

[

dτ2 +

3
∑

i=1

(dxi)
2 + f(u)(dx4)

2

]

+ u−
3
2

[

du2

f(u)
+ u2dΩ2

4

]

, (2.1a)

eφ = gsu
3
4 , F4 =

(2π)3(α′)
3
2Nc

Ω4
ǫ4 , R3 = πgsNc(α

′)3/2 , (2.1b)

f(u) = 1−
(

uKK

u

)3

. (2.1c)

Note that the coordinates are dimensionless due to rescaling by the radius R which has a

dimension of length. Ω4 is the volume of a unit S4, i.e., Ω4 = 8π2/3. The D4-branes are

originally spanned in the (t, x1, x2, x3, x4) directions where t is Wick-rotated as t → iτ .

The x4 direction is compact with a period β4, namely, x4 ∼ x4 + β4. Although generally

this yields a conical singularity at u = uKK, one can remove it by choosing

β4 =
4π

3

1√
uKK

, (2.2)

so that the u-x4 space has cigar geometry (see fig. 1a). The period β4 leads to the Kaluza-

Klein Mass and the Yang-Mills coupling,

MKK =
2π

Rβ4
, g2YM =

(2π)2gsls
Rβ4

.
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Therefore one can obtain the relations between the parameters in the gravity side, R, uKK

and gs, and those in the Yang-Mills theory side, MKK and λ (:= g2YMNc), as follows:

R3 =
λl2s

2MKK
, uKK =

2
4
3

9
(λM2

KKl
2
s)

2
3 , gs =

λ

2πNcMKKls
. (2.3)

In order to introduce a temperature in this phase, we compactify the τ direction with a

period βτ , so that the temperature is given by 2π/(Rβτ).

In the deconfined phase (fig. 1b,c), the background metric is

R−2ds2 = u
3
2

[

fT (u)dτ
2 +

3
∑

i=1

(dxi)
2 + (dx4)

2

]

+ u−
3
2

[

du2

fT (u)
+ u2dΩ2

4

]

, (2.4a)

eφ = gsu
3
4 , F4 =

(2π)3(α′)
3
2Nc

Ω4
ǫ4 , R3 = πgsNc(α

′)
3
2 , (2.4b)

fT (u) = 1−
(

uT
u

)3

. (2.4c)

This Euclidean metric allows us to consider thermodynamics in the deconfined phase. The

τ direction is compactified with a period βτ , i.e., τ ∼ τ + βτ , so that the period should be

related to uT as

βτ =
4π

3

1√
uT

, (2.5)

by the same reason as (2.2). Then the Hawking temperature T is denoted by T =

2π/(Rβτ). By this compactification the τ -u space of the background becomes a cigar

(fig. 1b,c). We also compactify the x4 direction with the period β4.

In the backgrounds, (2.1) and (2.4), we consider the flavour D8-branes and anti-D8-

branes as a probe. In the confined phase, the D8-branes and anti-D8-branes are connected

and become U-shape D8-branes. Since the pair of D8-branes and anti-D8-branes describe

U(Nf )L × U(Nf )R chiral symmetry, the U-shape D8-branes imply the chiral symmetry

breaking, U(Nf )L × U(Nf )R → U(Nf ). On the other hand, there are two possibilities in

the deconfined phase. One is the chiral symmetry broken phase which is represented by

the U-shape D8-branes (fig. 1b). The other is the chiral symmetry restored phase given

by the configuration of parallel D8-branes and anti-D8-branes (fig. 1c).

In the original Sakai-Sugimoto model, the D8-branes and anti-D8-branes are placed at

the antipodal position in the circle of x4 direction, in other words, the separation ℓ between

the D8-branes at the UV limit, u = ∞, is a half of the period of x4 direction, ℓ = β4/2.

However one can generalise the separation to be any ℓ less than β4/2. In this paper we
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consider this generalised Sakai-Sugimoto model, to which Bergman et al. introduced a

baryon density [15].

fig. 2 The V-shape D8-branes with baryonic D4-branes. The green shaded region

is the world-sheet of string corresponding to the open Wilson line.

The baryons are realised as the D4-branes wrapping S4 which are located at the tip

of the flavour D8-branes. Therefore the system of generalised Sakai-Sugimoto model with

baryons should obey the balance condition for the forces between the D4-branes and the

D8-branes. This condition gives rise to the modification of the D8-branes from U-shape

to V-shape (fig. 2) [15].

2.2. Open Wilson line as chiral condensate

So far many trials for incorporating a chiral condensate into the Sakai-Sugimoto model

have been done. In this paper we adopt the method introduced by Aharony and Kutasov

[11]. Let us consider the open Wilson line operator,

Oj
i (x

µ) = ψ†j
L

(

xµ, x4 = − ℓ
2

)

P exp

[

∫ ℓ/2

−ℓ/2

(iA4 + Φ)dx4

]

ψRi

(

xµ, x4 =
ℓ

2

)

,

where Φ is one of the scalar fields in the super-Yang-Mills theory and i, j are indices

of the fundamental representation of U(Nf ). This corresponds to the well-known order

parameter of chiral symmetry breaking, ψ†j
L ψRi, in QCD. In the D-brane configuration

that we are considering, the operator ψ is at the UV boundary on the V-shape (or U-

shape) D8-branes. Therefore, following the AdS/CFT correspondence, one can calculate

the vacuum expectation value of Oj
i ,

〈Oj
i 〉 ≃ δij〈O〉 , 〈O〉 = e−SO ,
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where SO is the on-shell Euclidean action of the open string whose world-sheet is bounded

by the flavour D8-branes (see fig. 2). To leading order in α′, SO is calculated by the

minimal area of the string world-sheet,

SO =
1

2πα′

∫

Σ

d2σ
√

det g , (2.6)

where Σ is the region surrounded by the flavour D8-branes (see fig. 2). 〈O〉 is proportional
tomq〈ψ̄ψ〉, and indeed Ref. [11] has shown that 〈O〉 naively satisfies the Gell-Mann-Oakes-

Renner relation, m2
πf

2
π ∝ 〈O〉.

3. Confined phase

3.1. D-brane configuration and force balance condition

In this subsection, following Ref. [15], we shall show the V-shape solution of flavour

D8-branes, the baryonic D4-branes wrapping S4 and their force balance condition.

We start with the action of the Nf flavour D8-branes embedded in the background

(2.1) which have the world-volume coordinates (τ, x1, x2, x3, u,Ω4) and the collective co-

ordinate x4(u). The world-volume gauge fields on the D8-branes are decomposed into

A = ASU(Nf ) +
1

√

2Nf

AU(1) .

Since the U(1) part is related with the baryon density that we are here interested in, we

turn on

aτ (u) :=
2πα′

R2
√

2Nf

AU(1),τ (u) , (3.1)

where we assumed that the gauge field depends only on u. Note that the rescaled gauge

field aτ (u) is dimensionless. Then the DBI action of D8-branes is written down as

S
(DBI)
8 = −NV3

∫

dτduL[x′4, a′τ ] , (3.2a)

L[x′4, a′τ ] = u4

√

f(u)
(

x′4(u)
)2 − 1

u3
(

a′τ (u)
)2

+
1

u3f(u)
, (3.2b)

where N = Nfµ8Ω4R
9/gs and V3(=

∫

d3x) is the volume of R3. µ8 is the D8-brane’s

tension, i.e., µ8 = (2π)−8(α′)−9/2. Note that V3 is a dimensionless value because the
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coordinates of R3, xi (i = 1, 2, 3), are dimensionless. We introduce an electric displacement

field d(u) by

d(u) := − δL
δa′τ (u)

= ua′τ (u)

[

f(u)
(

x′4(u)
)2 − 1

u3
(

a′τ (u)
)2

+
1

u3f(u)

]− 1
2

. (3.3)

This will later be associated with the baryon density. In terms of d(u), the equations of

motion for x4(u) and aτ (u) from the action (3.2) are expressed as

0 =
d

du

[

u4f(u)x′4(u)

(

1 +

(

d(u)
)2

u5

)
1
2
(

f(u)
(

x′4(u)
)2

+
1

u3f(u)

)− 1
2

]

, (3.4a)

0 = d′(u) . (3.4b)

Integrating these equations once with respect to u, we obtain

(

x′4(u)
)2

=
1

u3
(

f(u)
)2

[

f(u)(u8 + u3d2)

f(u0)(u80 + u30d
2)

− 1

]−1

, (3.5a)

d(u) = d , (3.5b)

where d and u0 are integration constants. u0 is the point at which x′4 diverges (see fig. 2).

The Chern-Simons action of the D8-branes,

S
(CS)
8 =

µ8

3!

∫

C3 ∧ Tr(2πα′F ′)3 =
Nc

24π2

∫

ω5(A) ,

where ω5(A) = Tr(AF2−2−1A3F+10−1A5), introduces a source of aτ (u) at u = uc (≥ u0):

NcV3

∫

dτdu
1

√

2Nf

AU(1), τ
1

8π2
trF 2

SU(Nf )
.

We assume a uniform distribution of baryons in the R
3 of xi (i = 1, 2, 3), namely,

1

8π2
trF 2

SU(Nf )
= n4δ(u− uc) . (3.6)

n4 implies a baryon density and indeed one can measure the realistic baryon number

density nB with (length)−3 dimension by

nB :=
n4

R3
. (3.7)

n4 also corresponds to a dimensionless density parameter of baryonic D4-branes wrapping

S4. By (3.1), the source term can be written as

S
(source)
8 =

NcR
2V3

2πα′

∫

dτdu aτ(u)n4δ(u− uc) .
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Therefore the equation of motion for aτ (u) coming from the total action, SDBI
8 +S

(source)
8 ,

is

Nd′(u) =
NcR

2

2πα′
n4δ(u− uc) .

By integrating this with respect to u, the densities, d and n4, are related by

d =
NcR

2

2πα′N n4 . (3.8)

The source of baryon charge can be interpreted as N4(= n4V3) baryonic D4-branes

wrapping S4 at u = uc. Since the DBI action of the D4-branes is

S4 = −N4µ4

∫

dτdΩ4 e
−φ

√

det g ,

where µ4 = (2π)−4(α′)−5/2, the free energy E4 of the on-shell D4-branes wrapping S4 at

u = uc is given by S4|on-shell =: −
∫

dτ E4,

E4 =
NV3
3

ucd . (3.9)

We now consider the force balance condition between the baryonic D4-branes and the

flavour D8-branes. The force of the D4-branes along the u direction at u = uc is evaluated

as

f4 =
1√
guu

∣

∣

∣

∣

u=uc

dE4
duc

=
NV3
3R

du
3
4
c

√

f(uc) . (3.10)

Since the Legendre transformation of the D8-branes’ action (3.2) with respect to aτ (u)

becomes

S̃8 = S
(DBI)
8 −NV3

∫

dτdu d(u)a′τ(u)

= −NV3

∫

dτ

∫ ∞

uc

du u4

√

(

f(u)
(

x′4(u)
)2

+
1

u3f(u)

)(

1 +

(

d(u)
)2

u5

)

,

we can read the tension of D8-branes at u = uc under the on-shell condition (3.5),

f8 =
NV3
R

u
3
4
c

√

u5c + d2 , (3.11)

while the angle between the u axis and the D8-branes is described as

cos θ =

√
guudu

√

guudu2 + g44dx24

∣

∣

∣

∣

u=uc

=

√

1− f(u0)(u80 + u30d
2)

f(uc)(u8c + u3cd
2)
. (3.12)
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Therefore the force yielded by the D8-branes along the u direction is f8 cos θ. Finally, from

(3.10), (3.11) and (3.12), the force balance condition, f4 = f8 cos θ, leads to

1

3
d =

√

u5c + d2

f(uc)

(

1− f(u0)(u80 + u30d
2)

f(uc)(u8c + u3cd
2)

)

. (3.13)

One can show that uc is related to ℓ, the separation between the D8-branes in the x4

direction, by

ℓ = 2

∫ ∞

uc

du x′4(u) = 2

∫ ∞

uc

du
1

u
3
2 f(u)

[

f(u)(u8 + u3d2)

f(u0)(u80 + u30d
2)

− 1

]− 1
2

. (3.14)

Note that ℓ ≤ β4/2. The ℓ = β4/2 case corresponds to the original Sakai-Sugimoto model.

3.2. Chiral condensate

In order to evaluate the chiral condensate, we need to compute the area of string

instanton world-sheet (2.6),

SO =
R2

2πα′

∫ ℓ/2

−ℓ/2

dx4

∫ ∞

u(x4)

du =
R2

πα′

∫ ℓ/2

0

dx4

∫ ∞

u(x4)

du .

Since there is UV divergence in SO, regularisation is necessary. In Ref. [21] a UV cutoff

parameter u∞ was introduced, however this regularisation neglects the contribution from

the shape of D8-branes in the region of u > u∞. Here we regularise SO by subtracting a

density independent but infinite constant,

S∞ :=
R2

πα′

∫ ℓ/2

0

dx4

∫ ∞

uKK

du ,

which is the area supported by two lines, x4 = ±ℓ/2. Then the regularized area Sreg
O is

given by

Sreg
O := SO − S∞ =

R2

2πα′
ℓuKK − R2

πα′

∫ ∞

uc

du ux′4(u) . (3.15)

Then the vacuum expectation value of open Wilson line operator is defined by

〈O〉reg := e−Sreg

O , (3.16)

and it is identified as the chiral condensate 〈ψ̄ψ〉.
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We shall compute it numerically, since computing Sreg
O analytically is not easy. If we

rescale the variables as

z :=
u

uKK
, z0 :=

u0
uKK

, zc :=
uc
uKK

, ρ :=
d

u
5/2
KK

, ℓ̃ := ℓ
√
uKK , (3.17)

then one can exclude the appearance of uKK from the numerical analysis. (3.13) leads to

Z0(zc, ρ) := (z30 − 1)(z50 + ρ2) = (z3c − 1)(z5c + ρ2)

(

1− 1

9
ρ2

1− z−3
c

z5c + ρ2

)

, (3.18)

and (3.14) can be rewritten as

ℓ̃ = 2

∫ ∞

zc

dz
z3/2

z3 − 1

[

(z3 − 1)(z5 + ρ2)

Z0(zc, ρ)
− 1

]− 1
2

. (3.19)

ℓ̃(zc, ρ) is the monotonically decreasing function with respect to zc for any fixed ρ, and

especially ℓ̃(1, ρ) is equal to
√
uKKβ4/2 = 2π/3, which means the antipodal position. The

regularized area (3.15) is

Sreg
O =

R2

πα′

√
uKKGconf , (3.20a)

Gconf = −
∫ ∞

zc

dz
z3/2

z2 + z + 1

[

(z3 − 1)(z5 + ρ2)

Z0(zc, ρ)
− 1

]− 1
2

. (3.20b)

0.4 0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

2.5

3.0

2
4 6 8

0.80

0.85

0.90

0.95

fig. 3 (a) The numerical plot of −Gconf (ρ) with ℓ̃ = 1/2 fixed.

(b) The critical density nB,cr(ℓ̃).

From now on we set ℓ̃ = 1/2 for definiteness of our model. The numerical plot of

−Gconf(ρ), the regularized area, is depicted by fig. 3a. From this plot, we can find that

10



〈O〉reg becomes minimum at ρcr ≈ 2.058. Setting Nc = 3 and Nf = 2, we evaluate the

baryon number density at ρ = ρcr in terms of (3.7) and (3.8), namely,

nB =
NfM

3
KKλ

2

1458π4
ρ . (3.21)

Here we are interested in the low density region where the chiral condensate (∼ 〈O〉reg) is
expected to decreases. We fix MKK and λ by the use of the generalized Sakai-Sugimoto

model at zero density [24,25]. Using the experimental values of the mass of ρ meson,

mρ ≈ 776MeV, and the pion decay constant, fπ ≈ 93MeV, one can obtain

MKK ≈ 496MeV , λ ≈ 61.7 .

Note that these values are for the non-antipodal model with ℓ̃ = 1/2, and different from

those in the usual antipodal Sakai-Sugimoto model. Then the number density (3.21) at

ρcr ≈ 2.058 is evaluated to be

nB,cr ≈ 1.76 fm−3 .

In terms of the normal nuclear density, n0 = 0.16 fm−3, we obtain the ratio, nB,cr/n0 ≈ 11,

therefore nB,cr is sufficiently dense.

For any other ℓ̃, the behaviour of 〈O〉reg is schematically same as the case of ℓ̃ = 1/2,

that is to say, the regularized area has minimum at ρcr as a function of density. Once

we choose a model by fixing ℓ̃, then ρcr is determined. nB,cr calculated from ρcr through

(3.21) is the function of ℓ̃, which is depicted by fig. 3b. nB,cr becomes equal to the normal

baryon density at ℓ̃ ≈ 1.022.

4. Deconfined phase

In this section we concentrate on the deconfined phase of the generalised Sakai-

Sugimoto model with a baryon density. This phase is similar to the holographic dual

of NJL model [22]. Since the fifth direction (x4) is not compact in the holographic NJL

model, the Kaluza-Klein scale MKK does not appear. On the other hand, in our case the

x4 direction is compactified, so that we can compare our results with experimental values

by calibrating MKK. The open Wilson line in the holographic NJL model with a baryon

density has been studied by Ref. [21], whose analysis is quite similar to ours in the gen-

eralised Sakai-Sugimoto model. However we shall use the different regularisation scheme

from Ref. [21] in order to include more accurate UV behaviour, and compute physical

values by the use of the calibrated MKK and λ.
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4.1. D-brane configuration and force balance condition

We turn on the U(1) gauge field defined by (3.1). Then the DBI action of Nf flavour

D8-branes in the background (2.4) corresponding to the deconfined phase is

S
(DBI)
8 = −NV3βτ

∫

duL[x′4, a′τ ] , (4.1a)

L[x′4, a′τ ] = u4
√

fT (u)
(

x′4(u)
)2 − 1

u3
(

a′τ (u)
)2

+
1

u3
. (4.1b)

Note that the last term in the square root of (4.1b) is different from that of (3.2b) by

the absence of 1/f factor. We recall that βτ is the period of τ direction given by (2.5),

therefore the temperature in the deconfined phase is denoted by T = β−1
τ = (3/4π)

√
uT .

In the same way as Section 3, we define the electric displacement field by d(u) ≡ −δL/δa′τ
(cf. (3.3)),

d(u) = ua′τ (u)

[

fT (u)
(

x′4(u)
)2 − 1

u3
(

a′τ (u)
)2

+
1

u3

]− 1
2

. (4.2)

Then the equations of motion for x4(u) and aτ (u) are written down as

0 =
d

du

[

u4fT (u)x
′
4(u)

(

1 +

(

d(u)
)2

u5

)
1
2
(

fT (u)
(

x′4(u)
)2

+
1

u3fT (u)

)− 1
2

]

, (4.3a)

0 = d′(u) . (4.3b)

In the deconfined phase, the following constant solution is allowed:

x4(u) = ±1

2
ℓ , d(u) = d . (4.4)

This describes the parallel D8-branes and anti-D8-branes whose separation is ℓ (see fig. 1c).

Therefore (4.4) implies that the chiral symmetry is restored.

One can also find a non-trivial solution of (4.3):

(

x′4(u)
)2

=
1

u3fT (u)

[

fT (u)(u
8 + u3d2)

fT (u0)(u80 + u30d
2)

− 1

]−1

, (4.5a)

d(u) = d . (4.5b)

This solution corresponds to the V-shape (or U-shape) D8-branes (fig. 1b). From (4.5a)

we can calculate the separation between the D8-branes at u = ∞,

ℓ = 2

∫ ∞

uc

du x′4(u) = 2

∫ ∞

uc

du
1

u3/2
√

fT (u)

[

fT (u)(u
8 + u3d2)

fT (u0)(u
8
0 + u30d

2)
− 1

]− 1
2

. (4.6)
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The source term comes from the Chern-Simons action of the D8-branes as we explained

in Section 3. We assume the uniform distribution of baryons in R
3 whose density is denoted

by n4. By integrating the equation of motion for aτ (u) which is derived from the DBI action

and additionally the source term, the constants d and n4 are related by (3.8) again in the

deconfined phase. The action of N4(= n4V3) baryonic D4-branes wrapping S4 at u = uc

is calculated as

S4 = −NV3βτ
3

duc
√

fT (uc) , (4.7)

and the force generated by these D4-branes along the u direction is evaluated as

f4 =
NV3βτd

3R
u

3
4
c

[

1 +
1

2

(

uT
uc

)3
]

=
NV3βτ
2R

du
3
4
c

(

1− 1

3
fT (uc)

)

. (4.8)

We now compute the force from the flavour D8-branes. From the Legendre transformed

action,

S̃8 = −NV3βτ

∫

du u4

√

(

fT (u)
(

x′4(u)
)2

+
1

u3

)(

1 +

(

d(u)
)2

u5

)

,

the tension of the flavour D8-branes is computed to be

f8 =
NV3βτ
R

u
3
4
c

√

fT (uc)
(

u5c + d2
)

. (4.9)

Since the angle between the D8-branes and the u axis is

cos θ =

√

1− fT (u0)(u
8
0 + u30d

2)

fT (uc)(u8c + u3cd
2)
, (4.10)

the force coming from the D8-brane along the u direction becomes f8 cos θ. From (4.8),

(4.9) and (4.10), we can obtain the force balance condition, f4 = f8 cos θ, that is,

d

2

(

1− 1

3
fT (uc)

)

=

√

fT (uc)(u5c + d2)

(

1− fT (u0)(u80 + u30d
2)

fT (uc)(u8c + u3cd
2)

)

. (4.11)

4.2. Chiral condensate

We redefine the coordinates by

z :=
u

uT
, z0 :=

u0
uT

, zc :=
uc
uT

, ρ :=
d

u
5/2
T

, ℓ̃ := ℓ
√
uT , (4.12)
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in the similar way to (3.17). Then (4.6) leads to

Z0(zc, ρ) := (z30 − 1)(z50 + ρ2) = (z3c − 1)(z5c + ρ2)

[

1− 1

36
ρ2

(1 + 2z3c )
2

z3c (z
3
c − 1)(z5c + ρ2)

]

, (4.13)

and one can rewrite (4.11) as

ℓ̃ = 2

∫ ∞

zc

dz
1√

z3 − 1

[

(z3 − 1)(z5 + ρ2)

Z0(zc, ρ)
− 1

]− 1
2

. (4.14)
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fig. 4 (a) The plot of ℓ̃ as function of zc with ρ = 1.

(b) The ρ dependence of ℓ̃max(ρ).

(4.14) includes three variables, ℓ̃, ρ and zc. As Ref. [15] has pointed out,1 for any combina-

tion of ℓ̃ and ρ, zc does not necessarily exist, because the right hand side of (4.14) with a

fixed ρ is the function of zc, which has a maximum, ℓ̃max (see fig. 4a). This is a remarkable

feature different from the confined phase. By changing ρ, we depict the ρ dependence of

ℓ̃max in fig. 4b. For ℓ̃ > ℓ̃max, there is no solution of (4.14), that is, the V-shape solution

does not exist, but there is only the parallel solution (4.4). On the other hand, for the

opposite case, as one can see from fig. 4a, there are two solutions in zc of (4.14) for the

given value of ℓ̃ (< ℓ̃max) and ρ. These two solutions describe different configurations of

V-shape D8-branes. By comparing the free energies for these two configurations, one can

clarify that the larger zc is favoured. Therefore we hereafter use only the larger zc.

Let us evaluate the open Wilson line under the constraints given by (4.13) and (4.14).

The on-shell world-sheet action of open Wilson line (2.6) in the background (2.4) is

SO =
R2

πα′

∫ ℓ/2

0

dx4

∫ ∞

u(x4)

du
1

√

fT (u)
.

1 Ref. [15] considered in the variables ℓ and d with fixed temperature. However we here use

the rescaled variables (4.12), such that the temperature factor uT is excluded from the following

numerical analyses.
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Since this integration diverges by the contribution of UV region, we have to regularise it in

the similar manner done in the previous section, that is, we subtract the infinite constant

defined by

S∞ :=
R2

πα′

∫ ℓ/2

0

dx4

∫ ∞

uT

du
1

√

fT (u)
.

Since this area is supported by the two parallel lines (4.4), S∞ is related to “chiral conden-

sate” in the chiral symmetry restoration. We shall give more comments about this issue

in Section 5. Then the regularised area becomes

Sreg
O = SO − S∞ =

R2

πα′

√
uTGdeconf , (4.15a)

Gdeconf = −
∫ ∞

zc

dz

(
∫ z

1

dζ
√

1− ζ−3

)

1√
z3 − 1

[

(z3 − 1)(z5 + ρ2)

Z0(zc, ρ)
− 1

]− 1
2

, (4.15b)

where we used (3.16) and (4.13).
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fig. 5 (a) The numerical plot of −Gdeconf(ρ) with ℓ̃ = 1/2 fixed.

(b) The numerical plot of nB,cr(ℓ̃).

Let us set ℓ̃ = 1/2 for example. The numerical plot of −Gdeconf is shown in fig. 5a. It

implies that in the deconfined phase also 〈O〉reg firstly decreases and then increases with

respect to the density ρ. 〈O〉reg has a minimum value at

ρcr ≈ 2.073 . (4.16)

This is interpreted by the use of (3.21) to the dimensionful value,

nB,cr = 1.771 fm−3 ≈ 11n0 ,
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where we assumed uKK = uT for simplicity.2

For arbitrary ℓ̃, ρcr is given by a function of ℓ̃. In fig. 5b, we plot nB,cr(ℓ̃) under the

assumption of uKK = uT . The chiral condensate monotonically decreases in the region

nB < nB,cr. A remarkable feature in fig. 5b is that nB,cr is sufficiently larger than the

normal nuclear density.

4.3. Can the chiral symmetry be restored by the density effect?

We have to clarify which solution of the D8-branes is favoured with respect to the

baryon density, the parallel configuration (4.4) or the V-shape one (4.5). For this purpose

we compare the free energies of these two configurations (cf. Ref. [23] in zero density). The

energy of the V-shape is given by the flavour D8-branes and the baryon vertex of D4-branes.

On the other hand, the energy of the parallel configuration consists of only the D8-branes,

because the D4-branes of baryons disappear into the black hole. The discrepancy of the

free energies between those configurations is

S̃
(V)
8 + S

(V)
4 − S̃

(parallel)
8 =: −NV3βτu

7
2

T∆E(ρ; ℓ̃) ,

where

∆E(ρ; ℓ̃) =
∫ ∞

zc

dz
√

z5 + ρ2
[(

1− (z30 − 1)(z50 + ρ2)

(z3 − 1)(z5 + ρ2)

)− 1
2

− 1

]

−
∫ zc

1

dz
√

z5 + ρ2

+
1

3
ρzc

√

1− z−3
c .

Note that there are the overall minus signs in the actions. Therefore, if ∆E is positive

(negative), then the parallel configuration (the V-shape configuration) is favoured.

2 If we consider arbitrary uKK and uT , we have to take care on the difference of scalings

(see (3.17) and (4.12)), ℓ̃(confine) =
√

uKK/uT ℓ̃(deconfine) (= ℓ), in calibrating MKK and λ. The

decreasing behaviour of nB,cr schematically does not change.
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fig. 6 (a) The plot of ∆E(ρ; ℓ̃ = 1/2), whose zeros are ρχ and ρχ′ .

(b) The plots of ρχ(ℓ̃) and ρχ′(ℓ̃). Their crossing point is approximately equal

to (0.485, 3.144).

For example, fixing ℓ̃ = 1/2 again, we compute ∆E(ρ; ℓ̃ = 1/2). The plot for ∆E(ρ; ℓ̃ =
1/2) given in fig. 6a shows that ∆E has two zeros, namely, the smaller zero, ρχ ≈ 1.571,

and the larger one, ρχ′ ≈ 5.798. In the region, ρ < ρχ and ρ > ρχ′ , the chiral symmetry

is broken, while in the region, ρχ < ρ < ρχ′ , the chiral symmetry is restored. In the

ℓ̃ = 1/2 model, ρχ is smaller than ρcr (see (4.16)). Therefore the chiral symmetry is

restored before the chiral condensate 〈O〉reg starts to increase. Since one can regard SO

as S∞, i.e. Sreg
O = 0, in the parallel D8-branes solution, the chiral condensate becomes

〈O〉reg = 1 in the chiral symmetry restored phase.

Let us consider an arbitrary ℓ̃. The chiral symmetry restoration/breaking points, ρχ

and ρχ′ , do not necessarily exist for any ℓ̃. The ℓ̃ dependences of ρχ and ρχ′ are depicted in

fig. 6b, which says that ρχ and ρχ′ do not exist when ℓ̃ < 0.485. In other words, the model

with ℓ̃ < 0.485 does not have the phase of chiral symmetry restoration. On the other hand,

in the model with ℓ̃ > 0.485, the chiral symmetry is restored only in the window region:

ρχ < ρ < ρχ′ .
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fig. 7 (a) The plots of ρcr(ℓ̃), ρχ(ℓ̃), ρχ′(ℓ̃) and ℓ̃max(ρ).

(b) The magnified plot of (a) around the crossing points of ρcr, ρχ and ρχ′ .
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Combining ρcr(ℓ̃), ρχ(ℓ̃), ρχ′(ℓ̃) and ℓ̃max(ρ) that we have calculated so far, we obtain

fig. 7. In the region of ℓ̃ > ℓ̃max, the chiral symmetry is restored, because there does

not exist the V-shape solution but the parallel one. Also in the region of ℓ̃ & 0.485 and

ρχ < ρ < ρχ′ , the chiral symmetry is restored, because the free energy of the parallel

solution is smaller than that of the V-shape solution. In the other region, the chiral

symmetry is broken. From fig. 7, we can find the following three types of models on the

chiral condensate 〈O〉reg:

fig. 8 The (regularised) chiral condensate in (a) type I, (b) type II, (c) type III.

I. ℓ̃ < 0.485

Since the chiral symmetry is always broken, in other words, the chiral symmetry is

never restored. 〈O〉reg firstly decreases and then starts to increase. This is depicted

by fig. 8a.

II. 0.485 < ℓ̃ < 0.488

In this type, ρcr < ρχ < ρχ′ . Therefore the chiral condensate decreases in ρ < ρcr

and increases in ρcr < ρ < ρχ. In ρχ < ρ < ρχ′ the chiral symmetry is restored, so

that 〈O〉reg is equal to one. When ρ is larger than ρχ′ , the chiral symmetry is broken

again. The behaviour of 〈O〉reg is depicted by fig. 8b.

III. ℓ̃ > 0.488

Since ρχ is smaller than ρcr, before 〈O〉reg goes up, the chiral symmetry is restored,

namely, 〈O〉reg becomes one. Then in ρ > ρχ′ the chiral symmetry is broken again

and 〈O〉reg increases. This behaviour is shown in fig. 8c and this case corresponds to

the expected result from the field theory intuition.

In models with any ℓ̃, 〈O〉reg almost linearly decreases in low density, and increases at very

high density. The type II and type III have the transition to the chiral symmetry restored

phase at ρ = ρχ.
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5. Conclusions and discussions

We have studied the chiral condensate given by the open Wilson line in the generalised

Sakai-Sugimoto model with the baryon density. In order to exclude uKK and uT depen-

dences from numerical analyses, we introduced the rescaled variables, (3.17) and (4.12).

In both of the confined and deconfined phases, the chiral condensate firstly decreases and

then increases with respect to the density ρ (equivalently nB). We have calculated the

critical density nB,cr at the turning point, which depends on ℓ̃. As a result, nB,cr is the

decreasing function of ℓ̃. For instance, in the model of ℓ̃ = 1/2, nB,cr is about eleven times

as large as the normal nuclear density n0. Therefore the range, nB < nB,cr, in which the

chiral condensate decreases, is sufficiently large, and this decreasing behaviour agrees with

our intuition from ordinary QCD. However the increasing behaviour in very high density

is different from the expectation from QCD.

There is not chiral symmetry restoration in the confined phase. On the other hand,

in the deconfined phase, there is the region of ℓ̃ and ρ in which the chiral symmetry is

restored, so that we have found the three types of behaviour of 〈O〉reg with respect to ℓ̃

(see fig. 8). In any types, the decreasing behaviour of 〈O〉reg in low density is consistent

with the results which we expect from the ordinary QCD. In the models of type II and III,

there is a transition to the chiral symmetry restoration at ρ = ρχ, especially the models in

the type III, i.e. ℓ̃ > 0.488, are in good agreement with QCD. However the chiral symmetry

restoration occurs before 〈O〉reg reaches one, that is to say, this transition is in first order.

In all types the chiral condensate grows in very high density, and this behaviour

disagrees with our intuition from QCD. A possible problem in the high density is a back-

reaction of the baryonic D4-branes. Since the high density means the large number of

baryonic D4-branes, the background geometry should be modified by these D4-branes.

Ref. [26] has mentioned about such kind of modification. The most honest way to deal

with dense baryons in the generalised Sakai-Sugimoto model is to find a classical solution

in supergravity with Nc colour D4-branes and N4 baryonic D4-branes and to deal with the

flavour D8-branes as a probe, but this would be difficult.

As we studied so far, the chiral condensate 〈O〉 itself defined by the open Wilson line

is not appropriate for the order parameter of chiral symmetry. However the positivity

of −Sreg
O by definition, namely, 〈O〉reg ≥ 1, is a good tendency to the order parameter.

Therefore we suggest the chiral symmetry order parameter χ defined by

χ := 〈O〉reg − 1 (5.1)
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so that χ vanishes only when the chiral symmetry is restored: SO is equal to S∞ in the

parallel D8-branes and anti-D8-branes configuration. When the chiral symmetry is broken,

χ is always positive (see also fig. 8).
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