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We study the phase diagram of black D3 geometry with uniformly distributed D-instanton charge using

the probe D7 brane. In the presence of uniform D-instanton charges, quarks can be confined, although

gluons are not, because baryon vertices are allowed due to the net repulsive force on the on the probe

D-branes. Since there is no scale in the geometry itself apart from the horizon size, there is no Hawking-

Page transition. As a consequence, the D7 brane embedding can encode the effect of the finite temperature

as well as finite baryon density even for low temperature. The probe D-brane embedding, however,

undergoes a phase transition which can be interpreted as a chiral transition as we change temperature and

density. We studied such phase transitions and calculated the constituent quark mass, chiral condensation,

and the binding energy of baryons as function of the density. The baryon vertex melting is identified as the

quark deconfinement. We draw the phase diagram according to these transitions.
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I. INTRODUCTION

One of the difficulties in holographic QCD is to discuss
the temperature dependence of physical observables in
the hadron phase. The problem is the presence of the
Hawking-Page transition as the deconfinement/confinement
transition [1]; the background metric describing the low-
temperature phase does not contain any temperature
parameter. Describing the hadrons in finite temperature
requires having a black hole metric, in which gluons are
always deconfined. Therefore, we are lead to the question
whether a quark can be confined while gluons are decon-
fined. In fact, the degrees of freedom of two species are
different in large Nc order, and the confinement of gluons
and that of quarks should be separate phenomena at least in
the large Nc limit. However, in most of the geometric
background with well-defined Hawking temperature, a
baryon vertex [2] is not allowed as a finite energy solution
[3,4] because a black D-brane has net attractive gravity.

To have a phase transition, we need a scale other than the
temperature. In QCD, scale invariance is broken by the
chiral and gluon condensation, and it is also known that
both of them can be induced by the instanton effect. In fact,
there has been huge activity to utilize the instanton back-
ground. The topic directly relevant to our paper is the
instanton gas/liquid model, where mass generation and
the chiral symmetry breaking is discussed using chiral
anomaly and fermion zero modes. For a review, see the
article by Schafer and Shuryak [5] and references therein.

It is also well-known that the D-instanton is the gravity
dual to the Yang-Mills instanton. Therefore, it is very
natural to try to use a gravity background dual to the
instanton gas. In fact, Hong Liu and Tseytlin, in Ref. [6],
proposed that the D3/D-instanton geometry where
D-instanton is uniformly distributed over D3, is dual of
the N ¼ 4 Yang-Mills theory with constant gluon conden-
sation but zero electric/magnetic gluon field, which
is hF��i ¼ 0, hTrF��F��i ¼ cq � 0, where F is field

strength of the gauge fields. Such D3/D-instanton geome-
try contains a nontrivial dilaton giving a nonzero value of
gluon condensation q, which was identified precisely as the
D-instanton density.
While the chiral symmetry breaking was a natural con-

sequence of the instanton background, the confinement
was not easy to show with the instanton gas model.
One of the interesting consequences of the AdS/CFT is
that it is easy to show that the dual gauge theory of the
D3/D-instanton background has a confinement property
with the linear quark-antiquark potential. Therefore, both
the chiral condensation and confinement turn out to be
consequences of the presence of the D-instanton charge,
which effectively produces net repulsive force on the probe
D-branes and the fundamental strings.
The purpose of this paper is to consider the finite

temperature and density of the holographic dual of
the D-instanton gas/liquid. For our purpose, we need to
extend the geometry of Liu and Tseytlin to the finite
temperature case. The necessary metric was found by
Ghoroku et al. [7] in the context completely unrelated to
the instanton gas model. While most of the dilaton gravity
solution is singular [8,9] such that temperature is ill-
defined, the solution in Ref. [7] allows a Hawking tem-
perature. The geometry is quasiconfining; namely, it has
the following properties [7]:
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(i) gluons are deconfined: In QCD, one can consider the
gluon propagator directly and state the (de)confine-
ment. However, in holographic QCD, one cannot
look at the gluon propagator directly since that is a
colored object whose treatment is beyond the gravity
limit. Instead, what one should look at is the spec-
trum of the dilaton field which is the dual of the
glueball operator. If that spectral function has well-
defined peaks, this is the signal of confinement. If it
does not show any peak, it means glueballs are all
disintegrated and the system is in a deconfined
phase. The presence of the horizon does not allow
any stable glueball spectrum because it is known that
the quasinormal mode in an AdS black hole has a
large imaginary part.

(ii) the quark-anti quark potential is Coulomb-like for
short distance, linear for medium distance, and con-
stant for large enough distances. The turnover points
depend on temperature and gluon condensation.

(iii) A baryon vertex solution is allowed in a low enough
temperature.

It is important to notice that in this background, there is
no geometric transition as temperature grows. This is
because (i) we do not have any compactified direction,
(ii) we need to work out the thermodynamics of the bulk
theory in Einstein frame, in which our geometry is the
same as the black D3 brane, and (iii) the action for the
dilaton and axion cancel each other. The difference be-
tween the black D3 brane with and without D-instantons
comes from the probe D-brane dynamics, which should be
calculated in the string frame where the dilaton factor is
manifest as an overall factor in the metric.

It turns out that the Chern-Simons (CS) term cannot
cancel the effect of the dilaton unlike the claim of
Ref. [7], which is the origin of the chiral symmetry break-
ing in our paper. On the other hand, in Ref. [7], embedding
is flat, and there is no chiral condensation. The flat
embedding was attributed to the cancellation of the dilaton
effect by the CS term. However, as we have shown in
Appendix A, cancellation does not happen, and, therefore,
brane embedding cannot be flat, which in turn induces the
chiral symmetry breaking. We attribute such an effect to
the net repulsive force acting on probe D7 created by the
D-instanton charges. Such breaking of the chiral symmetry
is consistent with the gauge theory where the zero mode of
the fermions in the D-instanton background requires chiral
symmetry breaking.

For the treatment of chemical potential, we follow the
method first suggested in Refs. [10,11] and developed in
Refs. [12,13]. There are two types of probe-brane embed-
ding. One describes quark phase, where the flavor brane
touches the black-hole horizon, and a baryon vertex is not
allowed. Usually this embedding is called black hole
embedding. If there are strings connecting the horizon
and the D7, the latter is deformed to a spiky brane to touch

the horizon. The other embedding is the one where D7
brane never touches the horizon. On such a brane, strings
can be attached only if a baryon vertex is allowed and
present so that the strings connect the baryon vertex to D7.
We find that there is a phase transition between two
embeddings. We also find that there is a transition between
the two black-hole embeddings. The binding energy of the
baryon and the melting temperature in this background was
studied in Refs. [14,15] by considering one baryon vertex
connected to the boundary at infinity by Nc strings. We
treat the baryonic medium using the method developed in
Ref. [4] where each compact baryon vertex is joined with a
D7 probe brane through a funnel, and such a configuration
is smeared along the D3 direction.
One final comment here is about the nomenclature:

usually, instanton gas is for a weakly interacting far-
separated instanton, and liquid is for dense and nontrivial
interaction. Here, we are using the words ‘‘instanton liq-
uid’’ since homogenous distribution would not be consis-
tent with the well-separated gas configuration. We do not
focus on the interaction strength at all. Also, instanton
liquid is a name to denote a phenomenological model
assuming a certain size and distribution of instantons.
While we aim to discuss the dual of this model, there are
differences in detail. Therefore, it is better to call our
model a D-instanton liquid.
The rest of the paper is planned as follows. In Sec. II, the

background geometry is reviewed, and various embedding
configurations were studied with zero density, and chiral
condensations are calculated. In Sec. III, we study how the
embedding geometry changes as we vary 3 parameters:
temperature, baryon/quark density, and the gluon conden-
sation. We find that there can be two phases within quark
phase: one chiral symmetry broken and the other chiral
symmetry restored. In Sec. IV, by calculating the free
energy and chemical potential as a function of density,
we study the phase transition between the baryon and
quark phases as well as the phase transition between the
two quark phases. We work out the complete phase dia-
gram both in canonical and grand canonical ensemble. In
Sec. VI, we give a conclusion and future directions. In
Appendix A, we show that the CS term cannot cancel the
effect of the dilaton unlike the Ref. [7].

II. BACKGROUND GEOMETRYAND
D-BRANE SETUP

Here, we will briefly review the background geometry
and the probe-brane setup within it. The geometry is the
one which is a finite temperature extension of D3/
D-instanton background with Euclidean signature given
by Ref. [7]. The background has a fiveform field strength
and a axion field which couples to the D3 and D-instanton,
respectively. The ten-dimensional supergravity action in
the Einstein frame is given by Refs. [16,17]
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where � and � denote the dilaton and the axion, respec-
tively. If we set � ¼ �e�� þ �0, the dilaton term cancels
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where R4 ¼ 4�gsNc�
02. The constant q denotes the num-

ber of D-instantons. From the AdS/CFT dictionary, it also
represents the vacuum expectation value of gluon conden-
sation. The dilaton factor diverges at the black-hole hori-
zon. However, it does not give any effect on the
thermodynamics of the bulk theory since the latter should
be calculated in the Einstein frame where its on-shell
action is the same as that of the black D3-brane solution.
The geometry has a regular event horizon and Hawking
temperature given by T ¼ rT=�R

2.
Quark-antiquark potential is derived from the expecta-

tion value of a Wilson loop using a U-shaped fundamental
string configuration [7]. For a given temperature T, the
U-shaped string touches the black hole horizon and splits
into two straight strings at certain separation L�ðTÞ. This
critical distance L� increases as temperature decreases as
in the usual black-hole geometry. The geometry corre-
sponds to a deconfined phase from the gluon point of
view. In usual black D3-brane geometry, q �q potential is
Coulomb-like for small separation and flat when separation
is larger than L�, where it is completely screened. In this
background, the potential is Coulomb-like at short dis-
tances but linearly grows until the U-shaped string touches
the horizon. At zero temperature, the potential is linear up
to an indefinitely large distance. This is a similarity to the
real QCD. But the gluon is deconfined, which is different
from the real QCD.We call such phenomena ‘‘quasiconfin-
ment’’. Such a quasiconfining property comes from the
presence of q, which is the value of gluon condensation.
It is the D-instanton number, and it should be closely
related to the chiral condensation as well as the gluon
condensation.

Introducing a dimensionless coordinate � by d�2
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r2f2ðrÞ ,
the background geometry can be rewritten as
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To describe the embedding of the probe the D7-brane,
we decompose the R6 part in Eq. (2.3) into R4 � R2,

ds2 ¼ e�=2

�
r2
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ðfðrÞ2dt2 þ d~x2Þ þ R2

�2
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3
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�
: (2.5)

The D7-brane spans ðt; ~x; �Þ direction and wraps S3 and is
perpendicular to the y and 	 direction. We can set 	 ¼ 0
using the SOð2Þ symmetry in the x8, x9 plane. Then, the
induced metric on the D7-brane becomes

ds2D7 ¼ e�=2

�
r2

R2
ðfðrÞ2dt2 þ d~x2Þ
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�2
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where y0 denotes @yð�Þ=@� and �2 ¼ �2 þ y2.
The general action of the probe D7-brane can be written

as sum of Dirac-Born-Infeld (DBI) action of the D7-brane
and the Chern-Simons term. The embedding dynamics of
the D7-brane gives the dependence of the chiral condensa-
tion on control parameters like temperature, density, quark
mass, etc., as we will describe below.

III. CHIRAL CONDENSATION AT ZERO DENSITY

Here, we study D7-brane embeddings at zero density,
but we first consider the zero-temperature and zero-density
case to study q dependence of the chiral condensation and
then consider the finite temperature to study the chiral
phase transition temperature as a function of gluon
condensation.

A. Zero-temperature limit

In this limit, 10-dimensional geometry (2.2) becomes
near-horizon geometry of a D3/D-instanton system which
preserves half of supersymmetry [6],

ds2 ¼ e�=2

�
r2

R2
ðdt2 þ d~x2Þ þ R2

r2
ðdr2 þ r2d�2

5Þ
�
;

e� ¼ 1þ q

r4
; � ¼ �e�� þ �1: (3.1)

The induced metric on the D7-brane can be written as
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where r2 ¼ �2 þ y2. The presence of a D-instanton im-
plies that of an axion. The axion can couple to the D7-
brane world volume through the Chern-Simons term.
Therefore, D7-brane action can be written as
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where 
 is world volume coordinates of the D7-brane, g is
the induced metric on the D7-brane, and Cð8Þ is the Hodge
dual 8-form gauge potential of the axion field which is 0-
form. If we fix the D7-brane position along the fixed 	
direction, the Chern-Simons term becomes locally total
derivative as we prove in Appendix A. Therefore, it cannot
affect the equation of motion; hence, we can ignore the
Chern-Simons term. This observation makes the key dif-
ference of our D7-brane embedding compared to the one
described in Ref. [7], and it will be the origin of the chiral
symmetry breaking.

Now, the DBI action for the D7-brane can be written as

SD7 ¼ ��7
Z
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
; (3.4)

with �7 ¼ �7V3�3, and the equation of motion is
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For a generic value of q, an analytic solution is not avail-
able. So we look for a numerical one. For q ¼ 0, the trivial
embedding y ¼ constant is a solution which is consistent
with the result in Ref. [19].
If we turn on q, the solution deforms. The bare quark

mass mq and chiral condensation c are encoded in the

asymptotic form of embedding function yð�Þ [20,21]:
yð�Þ ¼ mq þ c

�2
þ � � � : (3.6)

The embeddings with fixed mq are drawn in Fig. 1. As q

increases, probe D7-brane in the central region bends up-
ward more and more so that we have nonvanishing chiral
condensation which is an increasing function of q. The
value q corresponds to the gluon condensation hTrF2i in
boundary theory and hence plays the role of parameter of
scale symmetry breaking. The mq dependence of chiral

condensation is drawn in Fig. 2(a). With nonzero value of
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FIG. 1 (color online). (a) D7-brane embeddings for mq ¼ 0 with q ¼ 0, 0.1, 0.3, 0.5, 1, 3, 5, 10 from bottom to top. (b) D7-brane
embeddings for mq ¼ 5 with q ¼ 0, 0.1, 0.3, 0.5, 1,3, 5, 10 from bottom to top.
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FIG. 2 (color online). (a)mq dependence of chiral condensation with fixed q. (b) q dependence of chiral condensation with fixed mq.
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q, the value of chiral condensation goes to a finite value in
(mq ! 0). Therefore, the chiral symmetry is broken. The q

dependences of the chiral condensation for given mq are

drawn in Fig. 2(b). The condensation is an increasing
function of q but a decreasing one of mq. At large quark

mass, chiral condensation is linearly in q. It is consistent
with the expectation from field theory [21–23],

h �c c i ¼ �sNf

12�mq

hTrF2i: (3.7)

B. Finite temperature without density

In this section, we will study D7-brane embedding in
black-hole geometry without chemical potential. We use
the black-hole metric (2.2) and induce the metric on the
D7-brane with Eq. (2.6). Then, DBI action for the D7-brane
becomes

SD7 � �7
Z

dtd�Vð�; yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q
; (3.8)

where �7 ¼ �4
T�7V3�3 and V ¼ e��3!þ �!�. The dila-

ton factor seems to diverge at the black-hole horizon.
However, the dilaton factor e� comes with !� which
contains the zero �ðr� rTÞ at the horizon. This zero is
enough to kill the logarithmic divergence of the dilaton.
In other words, the dilaton’s log singularity does not
change the qualitative behavior of the brane dynamics
near the horizon.

The equation of motion for the DBI action can be written
following form:

y00

1þ y02
þ @ logV

@�
y0 � @ logV

@y
¼ 0: (3.9)

This equation of motion is highly nonlinear. We can get the
solution only in a numerical way with the proper boundary
condition (BC). In the presence of a black-hole horizon,
embedding of probe D7 can be classified as ‘‘Minkokwski
embedding’’ and ‘‘black-hole embedding’’ [24]. For the
Minkowski embedding, we impose the BC: yð0Þ ¼ y0
and y0ð0Þ ¼ 0. For the black-hole embedding, the BC is

determined by the regularity condition of the equation of
motion at the horizon:

yð�minÞ ¼ y0; y0ð�minÞ ¼ tan�; (3.10)

where � is the angle between the � axis and probe-brane
position at the horizon. In usual black-hole geometry,
gravitational attraction of a black hole bends the probe
brane downward. However, a nonzero value of q gives
net ‘‘repulsive’’ force on probe D7. Therefore, D7 bends
upward. q dependences of Minkowski embedding and
black-hole embedding are drawn in Fig. 3. For fixed quark
mass and temperature, the bigger q is, the more pushed up
the D7 brane is. Such an effect is common both in
Minkowski and black-hole embedding.
We expect a phase transition between Minkowski and

black-hole embeddings as we increase temperature. Namely,
Minkowski embedding in low temperature will change into
black-hole embedding in high temperature. In the presence
of q, D7 feels repulsive force; therefore, we expect that as q
increases, phase-transition temperature goes up. One may
expect that the phase transition might be smoother compared
with the case of no instanton charge. One can extract the q
dependence of phase-transition temperature ��

T from the free
energy. The case formq ¼ 1 is drawn in Fig. 4.

Now, we will discuss chiral condensation for this sys-
tem: it was defined as the slope of D7-brane at the asymp-
totic region. See Eq. (3.6). We first fix the temperature and
calculate it with different mq’s. For q ¼ 0, the D7-brane

bends down, its slope at the asymptotic region is positive,
and therefore, the condensation value is negative. See
Fig. 5(a). If we turn on q and increase it slowly, the brane
bends up a relatively very small value of q since the
pushing-up effect of q is very effective. Therefore, the
sign of the condensation flips at a small value of q. Also,
the value of mq where phase transition occurs decreases as

q increases.
As we decreasemq with fixed q, there is phase transition

from Minkowski embedding to black-hole embedding at
a certain value of mq. See Fig. 5. In Figs. 5(e) and 5(f),

there is range where mq becomes negative. If we calculate

free energy, there is phase transition before mq becomes
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FIG. 3 (color online). (a) q dependence of Minkowski embedding for mq ¼ 1 with q ¼ 0, 1, 3, 5, 10 from below. (b) q dependence
of black hole embedding for mq ¼ 0:1 with q ¼ 0, 1, 3, 5, 10 from below.
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negative. Moreover, in Fig. 5(f), free energy of Minkowski
embedding is always smaller than free energy of black-
hole embedding. It means that in the mq ! 0 limit, the

value of chiral condensation does not vanish; see Fig. 6.
This is a spontaneous breaking of a Uð1Þ symmetry which
is an analogue of the chiral symmetry discussed [20,21].
Although the relevant symmetry is the rotation in the x8, x9

plane which is not a true chiral symmetry, one can develop
the Gellman-Oakes-Renner relation [20,21], which is the
purpose of having the chiral symmetry. Therefore, from
now on, we call this chiral symmetry breaking and we call
c the chiral condensation.

For a given temperature, the chiral symmetry is broken if
q is large enough. The q dependence of the chiral-symme-
try-restoring temperature is drawn in Fig. 7. When q ! 0,
chiral-symmetry-restoring temperature goes to zero.

IV. CHIRAL SYMMETRYAT FINITE
TEMPERATURE AND FINITE BARYON DENSITY

In this section, we discuss D7-brane embedding with
finite density using the induced metric (2.6). Adding den-
sity corresponds to turning on theUð1Þ gauge field Atð�Þ on
the D7-brane. The DBI action of the D7-brane can be
written

SD7 ¼ ��7
Z

dtd��3e�=2!3=2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�=2 !

2�
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ð1þ _y2Þ � ~F2

s

:¼
Z

dtd�LD7; (4.1)

where

�7 ¼ �7V4�3; ~F ¼ 2��0Ft� (4.2)

and dot denotes the derivative with respect to �. We used
the A� ¼ 0 gauge. For a fixed-charge dynamics, we need

the Legendre transformation of the Lagrangian, which we
call ‘‘Hamiltonian’’:

H D7 ¼ ~F
@LD7

@ ~F
�LD7

¼ �7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

!2�
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s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q̂2 þ �6e�!3þ
q

;

(4.3)

where Q̂ ¼ Q=ð2��0�7Þ, Q is the number of source
charges. Notice that near the horizon, the last factor is
dominated by the dilatonic term, and the whole action is
reduced to the case of Q ¼ 0. Therefore, the argument for
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FIG. 4 (color online). q dependence of phase-transition tem-
perature.
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FIG. 5 (color online). mq dependence of chiral condensation c for �T ¼ 1. The blue dashed line denotes chiral condensation for
Minkowski embedding, and the red line denotes black hole embedding. The dotted line indicates phase transition between two
embeddings.
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the regularity near the horizon goes exactly the way of the
previous section. We can get a numerical solution for the
equation of motion provided we have proper boundary
conditions. The stringy objects corresponding to the sources
on the D7-brane are the end points of fundamental strings.

Unlike usual black-hole background, our background
permits the presence of a baryon vertex. Therefore, there
are two ways of attaching fundamental strings on the D7-
brane. One is connecting D7 to the black-hole horizon, and
the other is connecting it to the baryon vertices. Two
configurations give different boundary conditions for the
D7-brane dynamics. We need to examine which configu-
ration has lower free energy.

A. Quark phase

One way to put point electric sources on the D7-brane is
to add fundamental strings such that one end of the strings
are on D7 and the other end on the black-hole horizon. It is
equivalent to add a freely moving quark in boundary theory
because the fundamental strings can move freely on both
D7 and the horizon. We call it ‘‘quark’’ phase. Since the
tension of the D7-brane is always smaller than that of the
fundamental string [13], the D7-brane pulls down to the
horizon.

Regularity at the black-hole horizon requires

_yð�minÞ ¼ tan�; (4.4)

where � is the polar angle of the position where the
D7-brane touches the horizon. As discussed in the previous
section, the presence of q gives repulsion on the probe
D7-brane, and it affects its embedding. The q dependence
of D7-brane embeddings are drawn in Fig. 8 for two differ-
ent densities Q.
From the figure, we can see that as q increases, the

repulsion effect on D7 also increases in small density Q̂.

However, if Q̂ is not small, the brane embedding is less
sensitive to q, as shown in Fig. 8(b). This is because the

charge Q̂ introduces a flux whose electric field energy
increases the tension of the D7. That is, the stiffness due
to the flux is dominating repulsion due to the q.
In the absence of q, the embedding solution which

corresponds to mq ¼ 0 is uniquely determined to be the

flat embedding, yð�Þ ¼ 0, for which the value of chiral
condensation is automatically zero. However, in the pres-
ence of q, there are two different embeddings for the given
mq. For mq ¼ 0, one is trivial with zero chiral condensa-

tion c, and the other has nonzero chiral condensation, as we
can see in Fig. 9(a). The solution with nonzero c exists in
the low-temperature and small-density region. In the large-
density region, only y ¼ 0 is the solution. Actually, we
found that there is a phase transition between the two
embeddings in certain temperature and density. The phase
diagram is presented in Fig. 9(b). As q increases, the phase
boundary expands toward a larger temperature and density
region. See Fig. 10. This is natural since the chiral sym-
metry breaking is caused by the effect of gluon condensa-
tion q, as we have seen in Fig. 2.1

In Fig. 8, D7 embedding for nonzeromq is drawn. In this

case, behavior of the D7-brane embedding is similar to
black-hole embedding with q ¼ 0. Because of the nonzero
value of yð1Þ �mq, chiral symmetry is explicitly broken.

However, it is known that there is first-order phase
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FIG. 7 (color online). q dependence of chiral-symmetry restor-
ing temperature. �SB denotes chiral-symmetry breaking phase
and �S denotes chiral-symmetry restored phase.
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FIG. 6 (color online). (a) Fig. 5(f). A, B and C denote three solutions which give zero quark mass. (b) Probe-brane embeddings for
each case. (c) Free energy as a function of quark mass. (c) Minkowski embedding has minimum energy.

1This phenomenon is very similar when we turn on the
magnetic field on the probe brane [25] in the black D3-brane
background. But in that case, the magnetic field cannot affect the
background geometry, and the interpretation of magnetic field is
also different.
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transition in the black-hole background between two quark
phases in the small-density region [12,13]. This phase
transition line finishes at a certain density and temperature.
At this point, the order of phase transition is second. As
q increases, the phase boundary line moves upward in the
(T, Q) plane. See Fig. 11.

There is an issue about thermodynamical instability
around the first-order phase transition point in black-hole
background [12,13]: chemical potential decreases as den-
sity increases; that is, @�=@Q< 0. But in the presence of
q, this instability can be cured as we will discuss later.

B. Baryon phase

In this section, we study a baryon vertex in the D3/D-
instanton background. Baryon vertex is originally pro-
posed in Ref. [2]. Near-horizon geometry of a black
D3-brane is AdS5 � S5. If we wrap a spherical D5-brane
on S5, due to the Chern-Simons interaction between R-R
fiveform field strength and D5-brane world volume, Uð1Þ
gauge field is induced on the D5-brane world volume, and
to cancel these fluxes, we need to put Nc fundamental
strings on the D5-brane. In the asymptotic region, this
object looks like a bound state of theNc fundamental string
or quark. We call this object ‘‘baryon vertex.’’

However, as discussed in Ref. [4], black-hole back-
ground does not allow compact D5-brane as a solution of
the equation of motion of DBI action. Therefore, the quark

phase is only physical in the finite temperature system. But,
in the D3/D-instanton background, a compact D5-brane
with Nc fundamental strings can be formed even in the
black-hole background [14]. By connecting baryon vertex
and the probe D7-brane [4], we can discuss thermodynam-
ics of the finite density and temperature system.
To study properties of the baryon vertex, we rewrite the

10-dimensional metric (2.3):

ds2 ¼ e�=2

�
r2

R2
ðfðrÞ2dt2 þ d~x2Þ

þ R2

�
d�2

�2
þ d�2 þ sin2�d�2

4

��
: (4.5)

We take ðt; ��Þ as world volume coordinates of a compact
D5-brane and turn on the Uð1Þ gauge field on it to have
Ft� � 0. As the ansatz for the embedding of compact D5,
we assume the SOð5Þ symmetry so that the position of the
D5-brane and gauge field depend only on �, i.e. � ¼ �ð�Þ,
At ¼ Atð�Þ, where � measures the polar angle of S5 from
the north pole. The induced metric on the D5-brane is

ds2D5 ¼ e�=2

�
r2

R2
f2dt2 þ R2

�
�02

�2
þ 1

�
d�2

þ R2sin2�d�2
4

�
; (4.6)
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FIG. 8 (color online). D7-brane embeddings for mq ¼ 1 and �T ¼ 1 with q ¼ 0, 2, 4, 6, 8, 10 from below for (a) Q̂ ¼ 0:1,
(b) Q̂ ¼ 10.
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FIG. 9 (color online). (a) Two embedding solutions with the same temperature, density, and q. (b) Phase boundary between chiral-
symmetry breaking and restored phases with q ¼ 20.
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where �0 ¼ d�=d�. The DBI action for a single D5-brane
with Nc fundamental string can be written as

SD5¼��5

Z
e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðgþ2��0FÞ

q
þ�5

Z
Að1Þ ^Gð5Þ

¼�5
Z
dtd�sin4�e�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

!2�
!þ

ð�2þ�02Þ� ~F2

s
þ4 ~At

�

¼
Z
dtd�LD5; (4.7)

where

�5 ¼ �5�4R
4rT; ~F ¼ 2��0Ft�; ~At ¼ 2��0At:

(4.8)

After solving the equation of motion for the gauge field
and substituting it to the Lagrangian density, we can get the
Hamiltonian density of the D5-brane,

H D5 ¼ �5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

2

!2�
!þ

ð�02 þ �2Þ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D̂ð�Þ2 þ sin8�
q

; (4.9)

where

D̂ð�Þ ¼ � 3

2
�þ 3

2
sin� cos�þ sin3� cos�: (4.10)

Here, we consider all fundamental strings are attached at
the north pole. For more detail, see Appendix B.
The equation of motion for Eq. (4.9) depends on two

parameters q, �T and two initial conditions �ð� ¼ 0Þ ¼ �0,
�0ð� ¼ 0Þ ¼ 0. Here, we set � ¼ 0 as the south pole of the
D5-brane. For a given value of the expectation value of
gluon condensation (q) and temperature (�t), we can get a
numerical solution in terms of �0. The set of numerical
solutions in the � plane is drawn in Fig. 12(a). In this
figure, a cusp appears at � ¼ � where Nc fundamental
strings are attached. But these closed D5-branes do not
exist in the whole value of q and �t. When the value of q
decreases, the position of tip (we denote it to be �c)
increases, and in the q ! 0 limit, the tip of D5-brane
goes to infinity (Fig. 12(b)). It is consistent with the fact
that the usual Schwartzschild black-hole background does
not allow a baryon vertex. We also check that the baryon-
vertex solution does not exist at high temperature.
As we discussed in Ref. [4], we can add a D7-brane at the

tip of the D5-brane with the force-balance condition [26],
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FIG. 10 (color online). Phase diagram of chiral-symmetry
restoration within the quark phase for q ¼ 15, 25 and 50.
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FIG. 11 (color online). q dependence of the phase transition
between two quark phases for fixed mq ¼ 1. These phase tran-

sition lines end with the second-order phase-transition point.
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FIG. 12 (color online). (a) �0 dependence of D5-brane embeddings with q ¼ 10, �T ¼ 0:5. The gray disk denotes black hole.
(b) q dependence of the tip of the D5-brane (�c).
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y0ð� ¼ 0Þ ¼ �0
c

�c

; (4.11)

where �c and �
0
c denote the position and slop of the D5-brane

at � ¼ �. For details, see Appendix C. The full configura-
tions of D7/D5-brane embeddings with a certain value of q
and density are drawn in Fig. 13. We call this phase ‘‘baryon
phase’’ because in this phase, the physical object is the baryon
vertex. From this figure, we can see that in the presence of the
baryon vertex, the slope of the probe brane in the asymptotic
region is always nonzero. It means that in the baryon phase,
chiral symmetry is always broken. We found that the embed-
ding corresponding to the baryon phase does not exist at high
temperature.

V. PHASE TRANSITION

As we discussed in the previous section, two kinds of
embeddings can exist in finite temperature. They corre-
spond to two phases: black-hole embedding corresponds to
the quark phase, and Minkowski embedding corresponds
to the baryon phase. The quark phase can exist in a whole
temperature region, while the baryon phase can exist only
at the low-temperature region. In our model, the baryon
phase exists if the temperature is low enough, regardless of
how high the density is. However, in low temperature, the
quark phase is also possible. To determine which is the
physical phase, we need to compare the free energies of
two systems. There are two ensembles we can choose,
one is the canonical ensemble where density is a control
parameter. In the canonical ensemble, we can determine
the physical phase by comparing free energy. Since we
need to determine the configuration in a fixed value of the
charge, we need the Legendre-transformed action which
we call Hamiltonian, although it is not the time-translation
generator. The other one is the grand canonical ensemble
where chemical potential is a control parameter. In this
case, we have to calculate grand potential which is a value
of the DBI action.

A. Canonical ensemble

To determine the physical solution in a canonical en-
semble, we have to compare free energies of two phases.
Free energy of the quark phase is given by integrating
Hamiltonian (4.3) density for the embeddings,

F quarkðQ̂Þ ¼ �7
Z 1

�min

d�Ĥ D7ðQ̂Þjquark phase; (5.1)

where Ĥ D7 ¼ H D7=�7 (we introduce it for conve-
nience). Here, we regularized free energy by subtracting
energy of a flat D7-brane.
On the other hand, the baryon phase needs a compact

D5-brane, called the baryon vertex operator. Since each D5
should have Nc quarks, their number is related to the quark
number by NB¼Q=Nc. The total free energy in baryon
phase can be obtained by adding energy of the D5-brane to
that of the D7-brane:

F baryonðQ̂Þ ¼ �7
Z

d�Ĥ D7ðQÞjbaryon phase

þ Q

NC

�5
Z

d�Ĥ D5

¼ �7

�Z
d�Ĥ D7ðQ̂Þjbaryon phase

þ 2

3�
Q̂
Z

d�Ĥ D5

�
: (5.2)

By comparing the value of Eqs. (5.1) and (5.2), we can
determine which phase is physically favored. As we dis-
cussed in the previous section, there are two phases in the
quark phase, which is true also in the massless quark case.
One is the quark phase with broken chiral symmetry, and
the other one is a phase with chiral symmetry restored. The
density dependences of free energy in the massless quark
case are drawn in Fig. 14. In the figure, we plotted ~F which
is defined as ~F ¼ F� �ðTÞQ to visualize the difference of
the free energies of different phases. One should notice that
all the free energies monotonically increase as functions of
density, although the figure does not show it due to the
subtraction of �ðTÞQ.
At low temperature, the free energy of the baryon phase

is always lower than that of the quark phase for all density
regions, see Fig. 14(a). It means that the baryon phase is
physical at low temperature. As temperature increases,
the free-energy lines change drastically; see Fig. 14(b).
At temperature �t ¼ 0:16, the free energy of the baryon
phase is lowest in the low density region. As density
increase, there is phase transition between the baryon
phase and quark phase with broken chiral symmetry (first
vertical line in Fig. 14(b)). After the baryon-to-quark phase
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FIG. 13 (color online). D7-brane embeddings for �T ¼ 0:8, ~Q ¼ 5 with (a) mq ¼ 0 (b) mq ¼ 1.
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transition, there is another phase transition between
quark phases: from broken to restored chiral-symmetry
quark phase. At higher temperature, the free energy of
the quark phase is always smaller than that of the baryon
phase. But there is a phase transition from chiral-symmetry
broken phase to chiral-symmetry restored phase at a cer-
tain density. See Figs. 14(c) and 14(d). The chiral phase
transition between two quark phases coincides with the
result of the previous section, Fig. 10. Of course, at high
enough temperature, the chiral-symmetry restored quark
phase is the only physical phase. These are summarized in
the phase diagram drawn in Fig. 15.

This phase diagram has a rich structure. At low tem-
perature, the baryon phase is always a physical one in all
density regions. And chiral symmetry is always broken in
this phase. However, as we increase temperature, phase
transition appears differently depending on density. At low
density, as temperature increases, the baryon phase
changes into the quark phase, but chiral symmetry is still
broken. If we increase temperature more, then there is
chiral-symmetry restoration transition in the quark phase.
On the other hand, at high density, as we increase tempera-
ture, the baryon/quark phase transition and chiral phase
transition appear at the same time.

We find that the baryon/quark phase transition tem-
perature decreases as density increases. However, the

decreasing rate is too slow so that phase-transition
temperature looks like a constant in the figure. The value
of q also affects phase transition. As q increases, both
phase boundaries move up to a larger temperature and
larger density region maintaining the overall shape. See
Fig. 15(b). Notice that our phase diagram is very similar to
the ones for the Sakai-Sugimoto model studied in
Ref. [27], where the baryon phase should be replaced by
the soliton geometry. Notice that in our model, there is no
Hawking-Page transition since there is no scale other than
the temperature and the dilaton contribution is precisely
canceled by that of the axion. Our baryon phase is still in
the black-hole geometry; therefore, the dynamic origin is
very different.
In the case of mq � 0, chiral symmetry is explicitly

broken so that we might expect that there is only the
baryon/quark phase transition. However, as we discussed
in the previous section, there is another phase transition in
the quark phase. Look at the short line at the upper-left
region of the phase diagram in Fig. 16. It is for mq ¼ 1.

As we decrease the quark mass, the end point of the
phase boundary extends to a higher density and lower
temperature region so that when mq ! 0, we recover the

phase diagram drawn in Fig. 15. Actually, the line becomes
long very fast when mq gets to the near-zero value.

Contrarily, for q ¼ 0, the line for the transition from
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FIG. 14 (color online). Density dependence of free energy for the massless quark case with q ¼ 15. To visualize the difference of
free energy, we plotted ~F which is defined as ~F ¼ F� �ðTÞQ for some �ðTÞ. The solid line is for the baryon phase, red dotted line is
for the chiral-symmetry restored quark phase, and the dashed purple line is for the quark phase with chiral symmetry broken. The
vertical dotted line denotes the phase transition point.
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black-hole embedding to another black-hole embedding
exists only in a very small density region, and it disappears
when mq goes to zero. Therefore, this is a very character-

istic feature caused by the gluon condensation q.

B. Relation between chemical potential and density

Equations of state which are the relations between ther-
modynamically conjugate variables like chemical poten-
tial/density, quark mass/chiral condensation, etc., play
an important role to understand phase structure. In this
section, we will discuss the equation of state describing
the relation between chemical potential and density.
Thermodynamically chemical potential is defined as the
derivative of free energy with respect to density,

� ¼ @F
@Q

: (5.3)

In the quark phase, we can get

�quark ¼
@F quark

@Q
¼ 1

2��0
Z 1

�min

@Ĥ D7

@Q̂

¼
Z 1

�min

d�@�At ¼ Atð1Þ � Atð�minÞ:
(5.4)

In this case, Atð�minÞ ¼ 0 because �min is the black-hole
horizon. It is consistentwith the usual definition of chemical

potential (tale of At field) from AdS/CFT correspondence.
On the other hand, the free energy of the baryon phase
contains mass of the baryon vertex, and chemical potential
should have mass of the source.

�baryon ¼
@F baryon

@Q

¼ 1

2��0
Z 1

�min

@Ĥ D7

@Q̂
þ 1

2��0
2

3�

Z
d�Ĥ D5

¼ Atð1Þ�Atð�minÞþ 1

Nc

Z
d�H D5:

(5.5)

Eq. (5.5) is the baryon mass divided by Nc, which is the
constituent quark mass. Therefore, the chemical potential
containsmass of the source. In the quark phase, the source is
the fundamental strings. For the black-hole embedding, the
D7-brane touches the black-hole horizon, and the funda-
mental strings are replaced by deformation of the D7-brane.
Therefore, the energy of fundamental strings is contained
in that of the D7-brane. That is why there is no source term
[the analogue of the last term in the Eq. (5.5)] in the
chemical potential of the quark phase. The density depen-
dences of chemical potential for mq ¼ 0 embedding are

drawn in Fig. 17. We can see that chemical potentials
monotonically increase as density increases for any phases.
Therefore, there is no thermodynamical instability in the
mq ¼ 0 case.

The free energy and chemical potential with finite quark
mass as functions of density are drawn inFig. 18. Figure 18(a)
shows density dependence of free energy at finite tem-
perature with q ¼ 50 and mq ¼ 1. At a certain density,

there is phase transition in the quark phase. In usual AdS
Schwartzschild background without q, there is a thermo-
dynamical instability associated with the negative slope
branch of the �-Q diagram. But in Fig. 18(b), we can see
that chemical potential increases at low density, and phase
transition happens before chemical potential begin to
decrease. Therefore, chemical potential for the physical
state always increases monotonically as density increases
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FIG. 15 (color online). Density dependence of phase transition temperature between the quark phase and baryon phase (a) with
q ¼ 15, (b) with q ¼ 50.
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(@�=@Q> 0); hence, there is no thermodynamical
instability.

As temperature decreases, both quark phase and baryon
phase exist, and the shape of chemical potential is mono-
tonic as a function of the density in both phases which is
similar to Fig. 17.

C. Grand canonical ensemble

In this section, we will discuss the system with grand
canonical ensemble. Grand potential is thermodynamically
defined as

� ¼ F ��Q: (5.6)

From the definition of Hamiltonian density and number
density, grand potential for the quark phase can be
written as

�quark¼F quark��quarkQ

¼
Z

~F
@LD7

@ ~F
jquarkphase�

Z
LD7jquarkphase�

Z
~F ~Q

¼�
Z
LD7jquarkphase: (5.7)

The last term in Eq. (5.7) is nothing but the value of on-
shell DBI action for the black-hole phase. It is obvious
because ‘‘Hamiltonian density’’ is defined by Legendre
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FIG. 17 (color online). Density dependence of the chemical potential for mq ¼ 0. The red dotted line denotes chemical potential for
the quark phase with chiral symmetry, and the purple dashed line is for the quark phase with broken chiral symmetry. The solid line
denotes the baryon phase.
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transformation of DBI action. Grand potential for the
baryon phase becomes

�baryon ¼ F baryon ��baryonQ

¼
Z

H D7jbaryon phase þ Q

Nc

Z
H D5

�
�Z

~F ~Qþ Q

Nc

Z
H D5

�

¼ �
Z

LD7jbaryon phase: (5.8)

We can see that the energy of source in free energy
canceled by one in chemical potential, finial form of grand
potential is the value of DBI action of the D7-brane for the
baryon phase. Notice that the D5 part does not contribute to
grand potential.

In the massless quark case (mq ¼ 0), the grand poten-

tials of the quark and baryon phases are drawn in Fig. 19. In
each case of that figure, chemical potential starts from a
nonzero value, as one can see in Fig. 17. It implies that if
the chemical potential is not large enough compared to the
energy of particle, no particle can be created. Therefore,
the system remains as a vacuum until chemical potential
reaches to the energy of the particle in the system.
Therefore, the value of the chemical potential should be
identified as the constituent quark mass. Naturally, the
difference in the chemical potential in the baryon phase
and that in the realized quark phase (between the two quark
phases) can be identified as the binding energy. The
density dependence of the quark mass is plotted in Fig. 19.

The phase transition point can be identified precisely as the
point where the binding energy is 0. This point is of course
the point where baryons melt. The melting point in the
temperature-density plane is nothing but our phase
diagram.
From Fig. 19, one can easily read off the critical chemi-

cal potential value points as one increases the temperature.
In the case of finite quark mass, chiral symmetry is

always broken similarly to the canonical ensemble. We
have only two phases: the baryon phase and quark phase.
However, we find that the density dependence of chemical
potential and the chemical potential dependence of grand
potential behave similarly to the massless case except in
the absence of chiral phase transition. The phase structure
based on the above discussion is drawn in Fig. 20. Similar
to the phase diagram in the canonical ensemble, the tem-
perature of the phase transition between the quark and
baryon phase is almost constant. We also find the transition
in the quark phase in the small density region, but this line
is not shown in this diagram.

D. Chiral condensation

One of the most important observables in QCD is the
chiral condensation and its density dependence. It mea-
sures the dynamical mechanism for creating the mass of
the hadrons. Figure 21 shows the density dependence of the
chiral condensation. In the baryon phase, chiral symmetry
is always broken, and there is a quark phase where chiral
symmetry is broken. Our result shows that chiral conden-
sation is increasing in the baryon phase and decreasing in
the relevant quark phase.
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FIG. 19 (color online). Chemical potential dependence of grand potential (mq ¼ 0 and q ¼ 15). The red dotted line denotes grand
potential for the chiral-symmetry restored quark phase. The purple dashed line is for the quark phase without chiral symmetry, and the
solid line is for the baryon phase
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VI. SUMMARYAND DISCUSSION

In this paper, we study the phase structure of a holo-
graphic QCD based on a D3/D-instanton background. The
phase transition here is for confinement/deconfinement of
quarks, not the gluons. While the Hawking-Page transition
in usual AdS/CFT correspondence describes the dynamics
of the gluon, the confinement/deconfinement phase transi-
tion of quarks is determined from the interaction between
the geometry and the compact brane dynamics. Namely, it
is a question of existence of the baryon vertex. The D3/
D-instanton background has quasiconfining nature as
defined in the introduction. In the zero-quark-mass case,

there is a chiral transition in the quark phase. The number
of D-instanton, identified as the expectation value of gluon
condensation, played an essential role in breaking the
chiral symmetry. The phase boundary depends on the value
of q.
A few remarks are in order:
The first one is on the assumption that there is no

Hawking-Page transition. The main reason is that the
geometric transition should be discussed in the Einstein
frame, where dilaton action is cancelled by that of the
axion; therefore, we cannot find any effect of the dilaton
condensation scale in the bulk free-energy level. In addi-
tion, it is completely the same as the D3-brane without
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FIG. 21 (color online). Density dependence of the value of chiral condensation h �qqi for the massless quark case with q ¼ 15.
The thick line indicates the physical phase from free energy, and there is phase transition along the vertical dashed line.
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D-instanton. However, all the probe D-brane dynamics is
affected by the presence of the dilaton factor. That is why
we get a nontrivial result. This is an interesting and subtle
point, and in the main sections, we just assumed that there
is no Hawking-Page transition.

The second one is about the role of the Chern-Simons
term. In Ref. [7], the authors introduced the Chern-Simons
term such that it cancels out the dilaton effect of the brane-
embedding dynamics. However, we could not find a solu-
tion with such behavior. We found that the Chern-Simons
term is a total derivative so that it can contribute to the
charge but not to the equation of motion. This allows us the
nontrivial effect of the gluon condensation on the embed-
ding of the D7-brane as well as on that of D5.

The third one is that due to the probe nature of the
embedding dynamics, our calculation is not trusted in
the extreme high-density regime. One needs to take care
of the backreaction of probe branes to the geometry.

The fourth is the Euclidean nature and duality in such a
background. For the Euclidean configuration, there is no
state/geometry correspondence. However, gauge-gravity
duality is still there. The correspondence of the D-instanton
in type IIB and Yang-Mills theory instantons was discussed
in Ref. [28] as well as many other papers. The relation of
AdS/CFT and multi-instanton gauge theory is considered
in well-known works of Dorey et al. [29]. So, the gauge-
theory dual of the uniform distribution of such a
D-instanton is not hard to imagine, and it should be the
Yang-Mills theory with uniform distribution of instanton
charge.

The fifth is the infrared singularity. The background has
the IR singularity since the dilaton factor has log singu-
larity at the horizon. Usually, one needs to prevent any
D-brane probe to approach such a singular region. Also,
this makes the bulk action divergent, and wewould need an
IR cut off. However, in our background, both the bulk
gravity action as well as the DBI action are regular at the
horizon. There is no divergence. There are reasons for this:
i) The finite-temperature version has a regular horizon, and
the essential singularity is hidden in the horizon. ii) The
finiteness of the bulk action is partly due to the super-
symmetric construction of the action and the ansatz
Eq. (3.1) by which the action of dilaton is cancelled pre-
cisely by that of the axion. iii) The finiteness of the probe-
brane action is due to the detailed structure of DBI action.
Looking at Eq. (4.7), the log divergence of dilaton factor
e� is cancelled by the presence of the !� factor, which is
canceled by the zero !�. The thermodynamics is based on
the calculation of the DBI action for the actual configura-
tion of the probe brane. Speaking more physically, the
background acts net repulsive force to the D-brane which
performs a dynamic censorship and gives finite values of
DBI action.

In the background with q ¼ 0, the meson spectral func-
tion does not have this interesting feature. But due to the

repulsive nature of the force acting on the probe brane,
there is some reason to expect nontrivial spectral behavior
in this case. It would be very interesting to calculate the
meson spectrum in the chiral-symmetry broken quark
phase.
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APPENDIX A: CHERN-SIMONS TERM

On a probe D7-brane, the 8-form field, which is the
Hodge dual of the axion, can interact with the D7-brane
world volume through the CS term. This coupling does not
affect the equation of motion. Here, we give an explicit
check for this in the zero-temperature case.
In the limit T ! 0, Eq. (2.2) becomes

ds ¼ e�=2

�
r2

R2
ð�dt2 þ d~x2Þ þ R2

r2
ðdr2 þ r2d�2

5Þ
�
;

e� ¼ 1þ q

r4
; � ¼ �e�� þ �1:

(A1)

We are interested in the interaction between the dual field
of the axion and probe D7-brane. We change the metric
into the direction along and perpendicular to the D7-brane,

ds ¼ e�=2

�
r2

R2
ð�dt2 þ d~x2Þ þ R2

r2
ðd�2 þ �2d�2

3

þ dy2 þ y2d	2Þ
�
; (A2)

where r2 ¼ �2 þ y2. To get the dual field, we introduce
vierbein

e~t ¼ e�=4 r

R
dt; e~xi ¼ e�=4 r

R
dxi;

e~� ¼ e�=4 R

r
d�; e

~�3 ¼ e�=4 R

r
�d�3;

e~y ¼ e�=4 R

r
dy; e

~	 ¼ e�=4 R

r
yd	;

(A3)

where tilde denotes a flat index. The field strength for the
axion field is

Fð1Þ ¼ d� ¼ @�

@r
dr ¼ e�� @�

@�
d�þ e�� @�

@y
dy

¼ e�5�=4 @�

@�

r

R
e~� þ e�5�=4 @�

@y

r

R
e~y:

(A4)

The Hodge dual of this field strength is
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Fð9Þ ¼ 1

9!
e�5�=4 @�

@�

r

R

~�

~t~xi ~�3~y ~	
e~t ^ e~xi ^ e

~�3 ^ e~y ^ e
~	 þ 1

9!
e�5�=4 @�

@y

r

R
~y
~t~xi ~�3 ~� ~	

e~t ^ e~xi ^ e~� ^ e
~�3 ^ e

~	

¼ e�
@�

@�
�3ydt ^ d ~x ^ d�3 ^ dy ^ d	� e�

@�

@y
�3ydt ^ d ~x ^ d�3 ^ d� ^ d	

¼ @e�

@�
�3ydt ^ d ~x ^ d�3 ^ dy ^ d	� @e�

@y
�3ydt ^ d ~x ^ d�3 ^ d� ^ d	; (A5)

where we are using the convention

~t~xi ~� ~�3~y ~	 ¼ þ1: (A6)

By substituting e�, we get

Fð9Þ ¼ � 4q�4y

ð�2 þ y2Þ3 dt ^ d ~x ^ d�3 ^ dy ^ d	

þ 4q�3y2

ð�2 þ y2Þ3 dt ^ d ~x ^ d�3 ^ d� ^ d	: (A7)

Now, we want to get the 8-form potential such that

Fð9Þ ¼ dCð8Þ: (A8)

Assuming

Cð8Þ ¼ fð�; y;	Þdt ^ d ~x ^ d�3 ^ dy

þ gð�; y; 	Þdt ^ d ~x ^ d�3 ^ d�; (A9)

we get

dCð8Þ ¼ @f

@	
dt ^ d ~x ^ d�3 ^ dy ^ d	

� @f

@�
dt ^ d ~x ^ d�3 ^ d� ^ dy

þ @g

@	
dt ^ d ~x ^ d�3 ^ d� ^ d	

þ @g

@y
dt ^ d ~x ^ d�3 ^ d� ^ dy: (A10)

By comparing Eq. (A7), we get the condition for fð�; y;	Þ
and gð�; y;	Þ as follows:
@f

@	
¼ � 4q�4y

ð�2 þ y2Þ3 ;
@g

@	
¼ 4q�3y2

ð�2 þ y2Þ3 ;
@f

@�
� @g

@y
¼ 0: (A11)

By integrating f and g with respect to 	, we get

fð�; y; 	Þ ¼ � 4q�4y

ð�2 þ y2Þ3 ð	þ	1Þ

gð�; y;	Þ ¼ 4q�3y2

ð�2 þ y2Þ3 ð	þ	2Þ;
(A12)

but from the last condition of Eq. (A11), we get 	1 ¼
	2 ¼ 	0. Finally, the 8-form potential can be written

Cð8Þ ¼ � 4q�4y

ð�2 þ y2Þ3 ð	þ	0Þdt^ d ~x^ d�3 ^ dy

þ 4q�3y2

ð�2 þ y2Þ3 ð	þ	0Þdt^ d ~x^ d�3 ^ d�: (A13)

If we fix the location of the D7-brane along the	 direction
at 	 ¼ 	�, then Eq. (A13) becomes a total derivative, i.e.

Cð8Þ ¼ � 4q�4y

ð�2 þ y2Þ3 ð	� þ	0Þdt ^ d ~x ^ d�3 ^ dy

þ 4q�3y2

ð�2 þ y2Þ3 ð	� þ	0Þdt ^ d ~x ^ d�3 ^ d�

¼ ð	� þ	0Þd
�

q�4

ð�2 þ y2Þ2 dt ^ d ~x ^ d�3

�
; (A14)

so that Cð8Þ is a pure gauge whose field strength is zero.
Furthermore, we can always choose 	0 ¼ �	� þ 2�,
then the Chern-Simons term in Eq. (3.3) becomes

SCS ¼ �7

Z
d8
ð2�Þd

�
q�4

ð�2 þ y2Þ2 dt ^ d ~x ^ d�3

�

¼ ð2�Þ�7V4�3

q�4

ð�2 þ y2Þ2 j�¼1 ¼ qð2�Þ�7V4�3

¼ 1

2
NDð�1Þ: (A15)

It is nothing but the half of the D-instanton number calcu-
lated in Eq. [6]. This is completely satisfactory since the
D7-brane world volume can capture the flux of the upper
hemisphere. Since the Chern-Simons action is locally a
total derivative term, it does not contribute to the equation
of motion.

APPENDIX B: HAMILTONIAN DENSITY OF THE
BARYON VERTEX

We start from the action for the D5-brane with the
Chern-Simons term (4.7),

SD5 ¼ SDBI þSCS

¼��5

Z
e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðgþ 2��0FÞ

q
þ�5

Z
Að1Þ ^Gð5Þ

¼ �5
Z

dtd�sin4�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

!2�
!þ

ð�2 þ�02Þ� ~F2

s
þ 4 ~At

�

¼
Z

dtd�LD5; (B1)
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where

�5 ¼ �5�4R
4rT; ~F ¼ 2��0Ft�; ~At ¼ 2��0At:

(B2)

We denote LD5 as Lagrangian density. The displacement
can be obtained by a derivative of Lagrangian density with
respect to A0

t,

Dð�Þ � � @LD5

@A0
t

¼ �2��0�5
sin4� ~Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e� !2�
!þ

ð�2 þ �02Þ � ~F2
q :

(B3)

Then, the equation of motion for the gauge filed can be
written as

@�D̂ð�Þ ¼ �4sin4�; (B4)

where D̂ð�Þ � Dð�Þ
2��0�5

. This equation plays a constraint in

the action; then, the action of the D5-brane becomes

SD5 ¼ SDBI þ �5
Z

dtd�4sin4� ~At

¼ SDBI � �5
Z

dtd�ð@�D̂ð�ÞÞ ~At

¼ SDBI � �5
Z

dtd�D̂ ~F;

(B5)

where we take integration by part in the last procedure.
This is nothing but the Legendre transformation of DBI
action of the D5-brane. After substituting Eq. (B3) in the
action, we define the Hamiltonian density (4.9) as follows:

SD5 ¼ ��5
Z

dtd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

2

!2�
!þ

ð�02 þ �2Þ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D̂ð�Þ2 þ sin8�
q

� �
Z

dtd�H D5: (B6)

The definition of Hamiltonian density is consistent with
one of probe D7-brane, and integration of this with the on-
shell solution gives free energy of the D5-brane. Next, by
integrating Eq. (B4), we get

D̂ð�Þ ¼ 3

2
ð��� �Þ þ 3

2
sin� cos�þ sin3� cos�; (B7)

where the integration constant � determines the number of
fundamental strings on each pole, i.e. �Nc strings are
attached to the south pole and ð1� �ÞNc strings to north
pole of the D5-brane. Here, we assume that all the funda-
mental strings are attached on the north pole, and we set
� ¼ 0.

APPENDIX C: FORCE-BALANCE CONDITION

In this section, we derive the force-balance condition
(4.11). In our mode, the end points of fundamental strings
play a role of source of theUð1Þ gauge field. Because of the
tension of the fundamental string, there can exist cusps
on probe-brane world volume. By calculating force at the
cusp of each brane, we can estimate the behavior of probe
branes.
The force at the cusp can be obtained by taking small

variations of ‘‘on-shell’’ free energy with respect to Uc,

Fc ¼ �F on-shell
�Uc

; (C1)

where Uc is the position of the cusp and the free energy is
the integration of Hamiltonian density of the probe brane,

F ¼
Z

d�H on-shell: (C2)

The Hamiltonian density is a function ofU andU0. We can
write the variation as follows:

�H on-shell ¼ �H ðU;U0;�Þon-shell ¼ @H on-shell
@U

�Uþ @H on-shell
@U0 �U0

¼ @H on-shell
@U

�Uþ d

d�

�
@H on-shell

@U0 �U

�
� d

d�

�
@H on-shell

@U0

�
�U

¼ d

d�

�
@H on-shell

@U0 �U

�
þ

�
@H on-shell

@U
� d

d�

�
@H on-shell

@U0

��
�U ¼ d

d�

�
@H on-shell

@U0 �U

�
:

(C3)

Finally, the force at the cusp is

Fc ¼
Z

d�
�H on-shell

�Uc

¼
Z

d�
d

d�

�
@H on-shell

@U0
�U

�Uc

�

¼ @H on-shell
@U0

��������U¼Uc
: (C4)

The force at the cusp of the single D5-brane can be
calculated from Eq. (C4),

FD5 ¼ NcTF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

2

!2�
!þ

s
�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �02p
���������¼�c

; (C5)

where TF1 is the tension of fundamental string 1=2��0 and
�c is the position of the cusp of the D5-brane. With a same
manner, we can get the force at the cusp of the probe D7-
brane,
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FD7 ¼ TF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�

2

!2�
!þ

s
Q _yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _y2

p
��������y ¼ yc; (C6)

where yc is the position of the D7-brane at the cusp (� ¼ 0)
and Q is total number of the Uð1Þ source. The force at the
cusp of D5 and D7 is always smaller than the fore of
fundamental strings. Then, strings pull each brane until
the length of the string becomes zero and force between

two branes is balanced. We can get the condition of slope
of the D7-brane from the force-balance condition.

0 ¼ FD7ðQÞ þ NBFD5

¼ FD7ðQÞ þ Q

Nc

FD5

!

_yc ¼ �0
c

�c

:

(C7)
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