
Asymmetric dense matter in holographic QCD

Youngman Kim1,2,a, Yunseok Seo3,b, Ik Jae Shin1,c, and Sang-Jin Sin4,d

1 Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, Republic of Korea
2 Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-

784, Korea
3 Center for Quantum Spacetime, Sogang University, Seoul 121-742, Korea
4 Department of Physics, Hanyang University, Seoul 133-791, Korea

Abstract. We study asymmetric dense matter in holographic QCD. We construct asym-
metric dense matter by considering two quark flavor branes with different quark masses in
a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two
quarks with equal masses and observe that the symmetry energy increases with the total
charge showing the stiff dependence. This behavior is universal in the sense that the re-
sult is independent of parameters in the model. We also study strange (or hyperon) matter
with one light and one intermediate mass quarks. In addition to the vacuum properties of
asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss
our results in the light of in-medium kaon masses.

1 Introduction

Asymmetric dense matter is one of the most interesting topics in modern nuclear physics. In general,
Nature provides isospin asymmetric nuclear matter in the interior of a nucleus with unequal number of
protons and neutrons. In view of larger scale, neutron star is the well-known object we can find. This
asymmetric circumstance could also be realized in the heavy ion collisions with isotope.

The nuclear symmetry energy is a core quantity on studying the asymmetric nuclear matter. Even
though it has been studied long times, still it remains many things to understand. Furthermore, for the
supra-saturation region, there is no consensus in the community whether it shows stiff or soft density
dependence. For a review and a recent discussion about the symmetry energy, see [1–7].

Another interesting behavior in an asymmetric dense system is the splitting of hadron masses [8–
10]. In dense medium, the masses of mesons with different isospins behave in different ways. One of
the resultant example for this is K− condensation.

Here we will use the holographic QCD model to study these properties of asymmetric dense matter.
Recent developments based on the AdS/CFT correspondence give new tools to look into the strong
coupling regime [11–13]. Even though there exist many differences from reality, the effort which
applies this correspondence to QCD progresses attaining some successful results [14–16].

2 Model: D4/D6/D6 system

In dense matter, as the density increases, the transition occurs from the nuclear to strange matter. In
a low density regime, there exist only the light quarks (u and d) because the strange quark mass is
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much larger than that of light ones. As the density increases, however, the chemical potential of light
quarks also increases and becomes comparable to the mass of strange quark. Then it starts to pile up
the intermediate mass quarks (s). The existence of quarks with different masses can give asymmetry
in dense matter.

The model we will use here is a D4/D6/D6 system with compact D4 branes as baryon vertices
[17]. In usual D4/D6 system, according to the AdS/CFT dictionary, the distance between D4 and
probe D6 branes corresponds to the quark mass. To describe the system with two different masses, we
will put two distinguished D6 branes with different asymptotic heights. In this section, to understand
the structure of this model, we will briefly review the paper [17].

We start from the expression of the confining D4 background metric.

ds2 =

(U
R

)3/2
[−dt2 + dx2 + f (U)dx2

4] +

( R
U

)3/2[ dU2

f (U)
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4

]
=
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This is related to the black D4 brane by the double Wick rotation. Here the dimensionless coordinate
ξ is used. ( U

UKK

)3/2
=
ξ3/2

2

(
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1
ξ3

)
=
ξ3/2

2
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In the holographic QCD model, a baryon is expressed by instanton or compact D branes wrapping
on spherical volume through transverse directions [18]. In D4/D6/D6 the compact D4 brane could be
interpreted as baryon. To describe the compact D4 brane, the background metric (1) is rewritten as

ds2 =

(U
R

)3/2
[−dt2 + dx2 + f (U)dx2

4] + (R3U)1/2
(dξ2

ξ2 + dθ2 + sin2 θ dΩ2
3

)
. (4)

The world-volume coordinates of this compact D4 brane are (t, θ, θα) where θα’s are the angular coor-
dinates on S 3. The Dirac-Born-Infeld (DBI) action with Chern-Simons term for this brane is

SD4 = −µ4

∫
d5σ e−Φ

√
−det

(
P[Gpq] + T−1Fpq

)
+ µ4

∫
A(1) ∧ F4 . (5)

P[ ] denotes the pull-back to the world-volume of D4 brane. The Hamiltonian for baryonic D4 branes
comes from the Legendre transformed Lagrangian

HD4 = τ4

∫
dθ

√
(ξ2 + ξ′2)ω4/3

[
D(θ)2 + sin6 θ

]
, (6)

where τ4 = µ4Ω3R3UKK/(22/3gs) and ξ = ξ(θ) depends on only polar angle θ. D(θ) is the displacement
defined from the Lagrangian and solving the equation of motion (EOM) gives its form explicitly as

D(θ) = −2 + cos θ (3 − cos2 θ) . (7)

Now let’s turn to the focus on D6 branes. There exist the fundamental strings which is connected
between D4 baryon and D6 probe brane. The end points of these strings on D6 branes play the role of
the source of U(1) gauge field on the branes. The spherical part of the background metric (1) could be
rewritten.

ds2 =

(U
R

)3/2
[−dt2 + dx2 + f (U)dx2

4] +

( R
U

)3/2(U
ξ

)2
(dr2 + r2dΩ2

2 + dy2 + y2dφ2) (8)
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The D6 brane spans through the coordinates (t, x, r, θa) where θa is the angular coordinate on S 2. The
DBI action for D6 branes is

SD6 = −µ6

∫
d7σ e−Φ

√
−det

(
P[Gpq] + T−1Fpq

)
. (9)

Also the Hamiltonian is given through the Legendre transformation as

HD6 = τ6

∫
dr

√(
1 + (y′)2

)
ω4/3

(
ω8/3r4 + Q̃2

)
(10)

where τ6 = µ6Ω2V3U3
KK/(4gs) and the dimensionless quantity Q̃ is related to the number of fundamen-

tal string Q by Q̃ = QUKK/(25/3πα′τ6). The tension of the fundamental string is always bigger than
that of the brane. So the string itself shrinks and D4 and D6 branes are touched at a cusp eventually.
In order that the configurations become stable, pulling down- and pushing up- force at the cusp should
be the same. This is called the force balancing condition (FBC). The force at the cusp is obtained from
the derivative of the HamiltonianH with respect to the position of the cusp ξc (or Uc).

F ≡
∂H

∂Uc

∣∣∣∣ other values are fixed
(11)

Then the FBC is expressed as
Q
Nc

FD4 = F+
D6(Q+) + F−D6(Q−) (12)

where Q+ = α̃Q and Q− = (1 − α̃)Q. The super-(or sub-)script character +/− denote the quantities
of upper and lower branes respectively. α̃ plays the role of the asymmetry parameter; α̃ = 0 or 1
means the maximally asymmetric state and α̃ = 1/2 corresponds to symmetric one. For a given total
charge Q, there are a lot of embedding configurations which satisfy the FBC. The stable configuration
is determined as one which gives the minimum energy. The total energy is given as the sum of the
Hamiltonians of D4 baryonic vertices and two D6 branes.

Etot =
Q
Nc
HD4 +H+

D6(Q+) +H−D6(Q−) (13)

Fig. 1 is one example of our results [17]. In low density region, the fundamental string is attached only
to the lower brane (α̃ = 0). As the density increases, it starts to touch the upper brane. For very large
density, as expected, α̃ is close to 1/2. Extremely dense matter does not distinguish the quarks with
different masses, so becomes symmetric.

3 Symmetry energy

The nuclear symmetry energy is defined as the energy per nucleon which is needed to change the
symmetric nuclear matter (Np = Nn) to the pure neutron matter (Np = 0 ). The usual asymmetric
factor α ≡ (Np − Nn)/(Np + Nn) is useful to describe the symmetry energy. In general the energy per
nucleon can be approximately written as

E(ρ, α) = E(ρ, 0) + Esym(ρ)α2 + O(α4) , (14)

where

Esym(ρ) ≡
1
2
∂2E
∂α2

∣∣∣∣
α=0

(15)

is the symmetry energy and ρ is the nucleon number density.
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Fig. 1. Density dependence of α̃. In low density (Q̃ < Q̃c), the only lower brane is considered (α̃ = 0). As the
density increases, the upper brane also touches D4 brane (α̃ , 0). Here the transition occurs at Q̃c = 4.2.

The total energy Etot in our model is given in eq. (13). If we take the configuration with same mass
(m+ =m−), then symmetry energy can be expressed explicitly as

Esym(Q̃) =
2τ6

NB

∫
dr

√
1 + (y′)2Q̃2ω10/3r4

(Q̃2 + 4ω8/3r4)3/2
. (16)

Here NB = Q/Nc is the number of baryons and we use the embedding y(r) obtained from the EOM with
a condition m+ = m−. To calculate the symmetry energy in our model, we use the relation α̃ = (1−α)/2.
The experimental results for the symmetry energy are summed up as

Esym(ρ) = c
( ρ
ρ0

)γ
, (17)

where ρ0 is the normal nuclear density. In low density regime, 0.3 . ρ/ρ0 . 1, for example, c '
31.6 MeV and γ = 0.5 ∼ 0.7 [5]. In our calculations, with the choice of λ = 6 and MKK = 1.04 GeV,
γ ' 0.5 and c ' 27 MeV. The value of c depends on the parameter, while γ is rather universal. Here we
have used the quarks with same masses, for simplicity. Our result is shown in Fig. 2. For more detailed
description, see [19].

4 Meson mass in asymmetric matter

In holographic QCD, the mesons correspond to the excitation mode of strings whose both end points
are attached at the branes. These modes can be described as the fluctuations of branes. To see the
behavior of the meson mass in asymmetric dense matter, the fluctuations of the probe branes obtained
in [17] are considered.

We start from the non-Abelian DBI action [20].

S nA
D6 = −µ6

∫
d7σ STr

[
e−Φ

√
−det

(
P[Gpq + Gpa(Q−1− δ)abGbq] + T−1Fpq

)√
det Qa

b

]
(18)

STr means the symmetrized trace for flavor indices and is introduced to avoid the ordering-ambiguity
[21]. The matrix Qa

b is defined as

Qa
b ≡ δ

a
b + iT [Xa, Xc]Gcb (19)
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Fig. 2. Density dependence of the symmetry energy Esym. Solid line is the symmetry energy from the model. The
dotted one is for Esym = c

√
ρ/ρ0 . For illustration purpose, we take λ = 6 and MKK = 1.04 GeV. The result is

fitted to the curve with c ∼ 27 MeV.

where Xa’s are the coordinates transverse to D6 branes. We will take an ansatz of diagonal embeddings
[22]. Then, with the diagonal background metric Gmn, the above action is expanded up to O(X4) as

S nA
D6 = −µ6

∫
d7σ STr

[
e−Φ

√
−det

{
Gpq + T−1Fpq + DpXaDqXb

(
Gab − iT [Xc, Xd]GacGdb

)}
×

(
1 +

T 2

4
[Xa, Xb]Gbc[Xc, Xd]Gda

)]
.(20)

For simplicity we will consider the case of N f = 2. Then all fields are expressed by 2 × 2-matrices. In
this case Pauli matrices is useful.

M = M0τ
0 + Miτ

i =
1
2

(
M0 + M3 M1 − iM2
M1 + iM2 M0 − M3

)
=

(
M+ M12
M21 M−

)
(21)

We will use the classical solutions that have been obtained in Sec. 2. As stated, the fluctuations are
considered as the holographic duals of mesons.

Xy = y + xy , Xφ = 0 + ϕ and A = Ā + α (22)

We can easily check that the field ϕ, which is interpreted as Goldstone boson, decouples from the
others. Let’s focus only on this fluctuation. Then the DBI action is expanded up to quadratic order for
ϕ as

Sϕ = −µ6

∫
d7σ STr

[
e−Φ

√
−det(a(0))

(
1 +

1
2

tr[(a(0))−1a(2)] +
T 2

4
[Xa, Xb]Gbc[Xc, Xd]Gda

)]
, (23)

where a(0) is the induced background metric itself with 0th order fluctuation and

a(2)
pq = Gφφ(∂pϕ + i[Āp, ϕ])(∂qϕ + i[Āq, ϕ])

− iTGyyGφφ

{
∂py(∂qϕ + i[Āq, ϕ]) − (∂pϕ + i[Āp, ϕ])∂qy

}
[y, ϕ] . (24)

Then, after taking a symmetrized trace, we can read off the Lagrangian for this field ϕ up to quadratic
order [23].

L(2)
ϕ±

=
1
2

[
F̄D−1{Grr + Gyy(y′)2}Gφφ

]
y±

(ϕ̇±)2 +
1
2

[
F̄D−1GttGφφ

]
y±

(ϕ±′)2 (25)
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L(2)
ϕint
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F̄D−1{Grr + Gyy(y′)2}Gφφ

]
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+
[
F̄D−1{Grr + Gyy(y′)2}Gφφ

]
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)
× { ˙ϕ12 ˙ϕ21 + iA3(ϕ12 ˙ϕ21 − ϕ̇12ϕ21) + (A3)2ϕ12ϕ21}

−
iy3

2

([
F̄D−1GyyGφφA′y′

]
y+

+ [F̄D−1GyyGφφA′y′
]
y−

)
(ϕ12ϕ̇21 − ˙ϕ12ϕ21 − 2iA3ϕ12ϕ21)

+
1
2

([
F̄D−1GttGφφ

]
y+

+
[
F̄D−1GttGφφ

]
y−

)
ϕ12
′ϕ21

′

+
(y3)2

2

([
T 2F̄GyyGφφ

]
y+

+
[
T 2F̄GyyGφφ

]
y−

)
ϕ12ϕ21

=
1
2
P { ˙ϕ12 ˙ϕ21 + iA3(ϕ12 ˙ϕ21 − ϕ̇12ϕ21) + (A3)2ϕ12ϕ21}

−
iy3

2
Q (ϕ12ϕ̇21 − ˙ϕ12ϕ21 − 2iA3ϕ12ϕ21) +

1
2
Rϕ12

′ϕ21
′ +

(y3)2

2
Sϕ12ϕ21 (26)

Here we introduced the common expression F̄ as

F̄ ≡ e−Φ
√
−det(a(0)) (27)

and the dotted and primed variables correspond to the time- and radial- derivatived one respectively.
The EOMs for ϕ+ and ϕ− are trivial. The quadratic Lagrangian of each field contains only single

embedding solution y+ or y−, and so its EOM is very similar to that of the single brane case.

0 = P±ϕ̈± + R±ϕ
′′
± + R′±ϕ

′
± (28)

If we decompose ϕ as
ϕ(t, r) = e−iωtΦ(r) , (29)

then above equation can be written as

0 = R±Φ
′′
± + R′±Φ

′
± − ω

2
±P±Φ± . (30)

The off-diagonal components, on the other hand, are more complicated. Those depend on both brane
configurations naturally.

0 = P ¨ϕ12 + 2i(A3P − y3Q) ˙ϕ12 + Rϕ′′12 + R′ϕ′12 + {−(A3)2P + 2y3A3Q − (y3)2S}ϕ12

0 = P ¨ϕ21 − 2i(A3P − y3Q) ˙ϕ21 + Rϕ′′21 + R′ϕ′21 + {−(A3)2P + 2y3A3Q − (y3)2S}ϕ21 (31)

These equations are also decomposed as

0 = RΦ′′12 + R′Φ′12 − {(ω12 − A3)2P + 2y3(ω12 − A3)Q + (y3)2S}Φ12

0 = RΦ′′21 + R′Φ′21 − {(ω21 + A3)2P − 2y3(ω21 + A3)Q + (y3)2S}Φ21 . (32)

We solve these EOMs numerically and the results for ϕ12 and ϕ21 are given in Fig. 3 [23]. In low
density, the masses of ϕ12 and ϕ21 split due to the effect of the isospin chemical potential in A3. As the
density increases, the density effect becomes dominant and so both masses start to decrease. Beyond
the critical value Q̃c, the effect of asymmetry in A3 is smaller than that of the density, and the difference
between two modes is negligible.

Since these off-diagonal component modes correspond to the meson made up of two quarks with
different masses, they can be considered as K±. The mass behavior of our model is in agreement with
the results in [24].

5 Summary

We calculated some quantities using the holographic QCD model to study the some properties of
asymmetric dense matter. One of the typical quantities of asymmetric matter is the nuclear symmetry
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Fig. 3. The mass spectrum of the (pseudo-)scalar mesons, ϕ12 and ϕ21

energy. The behavior of symmetry energy obtained in D4/D6/D6 model is similar to the experimental
results at least below the nuclear matter density ρ0 [19]. Another interesting behavior we can see in
dense matter is hadron mass splitting. Mesons composed of the quarks with different masses can be
represented by the fluctuation of D branes with different asymptotic heights. We can also find similar
mass splitting in the asymmetric matter in this model [23]. The holographic QCD might be helpful to
catch main feature of the physics of asymmetric matter.
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