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We consider quark-gluon plasma with chemical potential and study renormaliza-

tion group flows of transport coefficients in the framework of gauge/gravity duality.

We first study them using the flow equations and compare the results with hydrody-

namic results by calculating the Green functions on the arbitrary slice. Two results

match exactly. Transport coefficients at arbitrary scale is ontained by calculating hy-

drodynamics Green functions. When either momentum or charge vanishes, transport

coefficients decouple from each other.

I. INTRODUCTION

In the application of AdS/CFT [1], calculations are usually done on the holographic screen

at infinity. However, according to the renormalization group (RG) ideas [2–4], those are the

UV fixed point values which can not be reached by experiments performed at the finite

energy scale. Therefore we need to run them down to the scale where one actually performs

the experiment by the renormalization group flow. Recent studies of Wilsonian approach [6,

7] to holographic RG flow of transport coefficients [5] in the framework of gauge/gravity

duality suggest that those apparently different approaches of sliding membrane [9], Wilsonian

fluid/gravity [8] and holographic Wilsonian renormalization group (HWRG)[6, 7, 11] are

equivalent [5]. Some of the transport coefficients such as shear viscosity η, AC conductivity

and diffusion constant D have non-trivial radial flows so that they interpolate the horizon

values [17] and the boundary values [14] smoothly. The holographic Wilsonian RG is also

useful to understand the low energy effective theory for holographic liquid [12, 13, 18].

Since the discussions so far has been mostly for zero charge cases, one natural question

is how to extend it to the case with finite chemical potentials. Unlike the zero charge case,

metric fluctuation and Maxwell fluctuation will mix in charged black hole background. In

general, the mixing effect of metric and Maxwell fluctuations in charged black hole is of

essential importance, since it is the reason why transverse vector modes of Maxwell fields

can diffuse and longitudinal Maxwell modes can have sound modes in the presence of the

charge. Part of the answer has been given in [8] where the cutoff dependence of diffusion

constant for the shear part of metric perturbations was calculated. The authors achieved it

without explicit decoupling procedure by taking a specific scaling which, somehow, effectively

decouples the mixed modes. However, it is not clear how to understand why it happens and
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what scaling limit should be taken for other (i.g. sound) modes.

In this paper, we first establish the flow equations of transport coefficients in the presence

of chemical potential and numerically integrate the flow equations. We then calculate trans-

port coefficients directly by hydrodynamic calculation on the holographic screen at finite

radial position and compare the two results. We will find complete agreement.

This paper is organized as follows. In section II, we will briefly review the holographic RG

flow of transport coefficients. We also derive the running diffusion constant in zero charged

black hole from sliding membrane which reproduces the previous result in [8] obtained by

scaling method. In section III, we set up the charged black hole medium and focus on mixing

structure of metric and Maxwell perturbations. We emphasize on organizing the coupled

equations of motion. In section IV, we first write down the decoupled flow equation for

both electric conductivity and “conductivity” for momentum current at zero momentum.

And then we worked out the “conductivity” for momentum current in diffusion scaling limit

following [8]. We write down the complete mixed flow equations for electric conductivity,

momentum current “conductivity” and mixing parameter in the end of this section. In

section V, we use the hydrodynamical method to calculate the Green functions at finite

screen r = rc. We obtained the transport coefficients from Green functions by Kubo formula

and we found complete agreement with the results from flow equations in section IV. We

conclude in last section.

II. HOLOGRAPHIC RENORMALIZATION GROUP AND RUNNING

TRANSPORT COEFFICIENTS: A REVIEW

In this section, we shall discuss a few approaches to RG flow of transport coefficients and

discuss the equivalence between them: They are sliding membrane paradigm [9], Wilsonian

fluid/gravity [8] and Holographic Wilsonian RG [6, 7]. The radial flow for transport coeffi-

cients can be derived from holographic Wilsonian RG equation. It can also be derived from

the classical equation of motion. The idea of membrane paradigm is to consider a mem-

brane action [10] coming from the boundary action at sketched horizon. Similarly sliding

membrane [9] paradigm uses the boundary action at arbitrary slice. From that action, one

can obtain the retarded Green function by solving the equation of motion perturbatively in

hydrodynamic regime. The linear response theory then gives the transport coefficients. The

Green functions and transport coefficients satisfy the same radial evolution coming from

holographic Wilsonian effective action SB, which in turn can be obtained from integrating

out UV geometry directly [5, 7]. SB can also be treated as a boundary action at cutoff slice

and it induces multi-trace deformations for IR dynamics [6, 7]. For more discussions about

the essential multi-trace deformations see [23, 24]. If one define the linear level transport

coefficient at cut off slice, then the Hamilton-Jacobi equation for the effective action can

directly give radial flow of them. These flows are exactly the same as those coming from

equations of motion as explicitly shown in [5].
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Technically, sliding membrane paradigm is more convenient than holographic Wilsonian

RG simply because the former starts from equation of motion while the latter is conceptually

more satisfactory. We shall mostly use the former in this paper.

We briefly review the sliding membrane paradigm [9] below. We derive the cutoff

dependent diffusion constant, which is also calculated from the Wilsonian approach of

Fluid/Gravity [8]. We show that the result from the sliding membrane paradigm repro-

duces that in [8] to demonstrate the equivalence of sliding membrane paradigm [9] and

Wilsonian approach of Fluid/Gravity [8]. We start with standard Maxwell action

S = −
∫
dd+1x

√
−g 1

4g2
eff(r)

FMNF
MN , (1)

with the background metric

ds2 = −gttdt2 + grrdr
2 + giidx

idxi . (2)

Defining Jµ and G by

Jµ = − 1

g2
eff

√
−gF rµ , G =

√
−g/g2

eff , (3)

equations of motion can be written as 1

∂tJ
t + ∂zJ

z = 0 , (4)

∂rJ
t +Ggttgzz∂zFzt = 0 , (5)

∂rJ
z −Ggttgzz∂tFzt = 0 , (6)

where z is the momentum direction and we focus on the longitudinal mode first. The Bianchi

identities are given by:

− grrgzz
G

∂tJ
z − grrgtt

G
∂zJ

t + ∂rFzt = 0 . (7)

Using the definition of the conductivity σ = Jz/Ez = Jz/Fzt, we have

∂rσ =
∂rJ

zFzt − Jz∂r(Fzt)
F 2
zt

, σ2 =
(Jz)2

(Fzt)2
. (8)

We want to replace all the ∂r terms in above equation using equations of motion. Taking

use of (4), (6) and (7), all the currents and fields disappear and finally we have the flow for

conductivity [9]

∂rσ

iω
= g2

effσ
2

[
1√

−ggrrgzz
− k2

ω2

1√
−ggrrgtt

]
− 1

g2
eff

√
−ggttgzz . (9)

1 Here we follow the notation in [9].
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Before doing explicit analysis for this conductivity flow we should mention that there are two

important scaling limits for the frequency dependent flow equations: one is ω ∼ k2 << 1

and the other is k = 0, ω << 1. In the diffusion scaling regime ω ∼ k2 << 1, we have

following solution of (9) for conductivity :

1

σ(rc)
=

1

σH
− k2

iω

1

f0

,
1

f0

=

∫ rc

rH

g2
eff√

−ggrrgtt
. (10)

Since the (complex) conductivity at arbitrary slice and the green function is related by

σij(kµ, rc) = −G
ij
R(kµ, rc)

iω
, (11)

we can write the Green function at cutoff surface in terms of horizon conductivity σH

Gii
R(kµ, rc) =

ω2σH
iω −D(rc)k2

, (12)

where D(rc) = σH/f0 is the cutoff dependent diffusion constant. Substituting into (10), we

have2

1

σ(rc)
=

1

σH
− k2

iω

D(rc)

σH
. (15)

In the orthonormal frame, we have the normalized momentum as follows

ω → ωc ≡
ω
√
gtt

, k → kc ≡
k
√
gii

. (16)

Using these new variables we can rewrite (10) as

1

σ(rc)
=

1

σH
− k2

c

iωc

D̂(rc)

σH
, (17)

where D̂(rc) is given by

D̂(rc) ≡ D(rc)
gii√
gtt

. (18)

Defining the local temperature by Tc = TH√
gtt

, and a dimensionless diffusion constant by

D̄c ≡ D̂Tc, we have
D̄c

Tc
=

σHgii
f0
√
gtt

. (19)

2 Remember that in this formula, the conductivity is defined using

σ(zc) =
J i

Ei
=

√
−gF ri

−Fti
. (13)

For a physical observer hovering at zc surface we want to use the following normalizations

σ(zc)→ σ̂(zc) ≡
σ(zc)

(gii)
d−3
2

. (14)
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This is precisely the result obtained in [8], supporting the equivalence of two approaches.

So far we considered only chargeless case. It is known that presence of charge introduces

non-trivial mixing between modes. We will consider what happens for the flow of charged

black hole below.

III. MODE MIXING IN CHARGED ADS BLACK HOLE

In order to describe low energy physics of various strongly coupled systems, we need dif-

ferent IR deformations for the d+1 dimensional AdS background. Consider a d dimensional

holographic system with finite charge density. The minimal d+ 1 bulk action is

S =

∫
dd+1x

√
−g
[

1

2κ2

(
R +

d(d− 1)

L2

)
− 1

4g2
F 2

]
, (20)

where Newton constant GN = κ2/8π and g is the Maxwell coupling. Maxwell and Einstein

equations are given by

∂µ(
√
−gF µν) = 0, (21)

1

κ2

(
Rµν −

1

2
gµνR− gµν

d (d− 1)

2L2

)
=

1

2g2

(
2FµρF

ρ
ν −

gµν
2
FρσF

ρσ
)
. (22)

The charged black hole solution for this action is

ds2 =
r2

L2

(
−f(r)dt2 + dxidxi

)
+
L2

r2

dr2

f(r)
, (23)

Āt = µ

(
1− rd−2

0

rd−2

)
, f(r) = 1 + αQ2 r

2d−2
0

r2d−2
− (1 + αQ2)

rd0
rd

. (24)

where α = L2κ2

(d−1)(d−2)g2
is a dimensionless coupling. Chemical potential µ is related to Q by

Q = µ(d−2)
r0

and the horizon r0 is the largest root of f(r) = 0.

A. Modes in RN-AdS

We consider the perturbations

gµν → gµν + δgµν , Aµ → Aµ + δAµ , (25)

around the background gµν and Aµ, which are given in (23) and (24). One can use back-

ground metric raise and lower tensor indices. The linearized gravity fluctuations can be

decomposed into tensor, vector and scalar type [15, 16]. We will consider the first two types

and leave the last one elsewhere. In the charged black hole background, vector part of metric

perturbation and transverse Maxwell perturbation will couple. We can organize the the for-

mer such that its action and equations look like that of longitudinal Maxwell perturbation.

For more details about the action of linearized fluctuations in RN-AdS, see [21, 22].
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1. Tensor Mode δgxy

By symmetry argument or by direct analysis one can find that off-diagonal perturbation

φ ≡ δgxy decouples from all other perturbations. Thus it satisfies the same equation of

motion to that for a minimally coupled massless scalar:

∂µ(
√
−g∂µφ) = 0 . (26)

This evolution for φ will give the flow of correlation of the corresponding operator T yx . Notice

that if we work in d = 3, we should take k → 0 limit since we only have two spatial directions.

2. Vector Modes δgxz , δg
x
t , δg

x
r , δAx

Picking up a momentum parallel to z direction, we can only have d − 2 transverse di-

mension left. One can observe that the shear mode of metric perturbations of components

gxz, gxt, gxr which behave similarly as Maxwell field az, at, ar [9, 17] defined by

az ≡ δgxz , at ≡ δgxt , ar ≡ δgxr . (27)

In terms of these variables, finally the vector part off shell action in d + 1 dimensional

RN-AdS can be written as follows:3

S =

∫
dd+1x

√
−g
(
− 1

4g2
F µνFµν −

1

4g2
eff(r)

fµνfµν +
1

g2
atA

′
xĀ
′
t

)
. (28)

Here we have used j and f to denote the current and strength for the aµ:

jµ = − 1

g2
eff(r)

√
−gf rµ , fµν = ∂µaν − ∂νaµ , (29)

and J and F to denote the current and strength for Aµ. Consider first the chargeless case,

equations of motion for shear part metric fluctuations can be written as

∂tj
t + ∂zj

z = 0 (30)

∂rj
t +Ggttgzz∂zfzt = 0 (31)

∂rj
z −Ggttgzz∂tfzt = 0 , (32)

where the effective determinant and the effective coupling are

G =
√
−g/g2

eff(r) ,
1

g2
eff(r)

=
gxx
2κ2

. (33)

3 We derive this action up to total derivative terms, which are irrelevant to equations of motion. See

Appendix A for details.
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For the charged-AdS black hole, we introduce the new charge density which is defined as

j̃t = jt − 1

g2

√
−gĀ′tAx . (34)

The equations of motion takes the same form as chargeless case,

∂tj̃t + ∂zj
z = 0 (35)

∂r j̃t +Ggttgzz∂zfzt = 0 (36)

∂rj
z −Ggttgzz∂tfzt = 0 , (37)

but jt is replaced by j̃t, while the Bianchi identity holds as before

− grrgzz
G

∂tj
z − grrgtt

G
∂zj

t + ∂rfzt = 0 . (38)

Defining Jx and J̃x by

Jx = − 1

g2

√
−ggrrgxx∂rAx , J̃x = Jx +

1

g2

√
−gĀ′tat (39)

the equation of motion for Ax can be written as

− ∂rJ̃x +
1

g2

√
−ggxx(−gtt∂tFtx + gzz∂zFzx) = 0 . (40)

3. Vector Mode Ax at kz = 0

From (40) and (36), one can see that Ax decouples from at in the kz → 0 limit:

∂r(
√
−ggrrgxx∂rAx)−

1

g2

√
−gg2

eff(Ā′t)
2Ax + ω2

√
−ggxxgttAx = 0 . (41)

The relevant on-shell action for Ax at boundary r = rc can be written as

Son-shell =

∫
r=rc

J̃xAx . (42)

IV. FLOWS OF TRANSPORT COEFFICIENTS

We shall establish the transport coefficient flows for the charged black hole in this section.

A. Shear Viscosity Flow and Scalar Response

Since tensor mode decouples from all other perturbations, it behaves as a massless scalar

perturbation even in the charged black hole background. Following the sliding membrane

argument [9], it is useful to define a cutoff dependent scalar response function

Gφ(rc, kµ) =
−
√
−ggrr∂rφ

2κ2φ(rc, kµ)
. (43)
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And we define

η(rc, kµ) :=
Gφ(rc, kµ)

iω
(44)

which satisfies a flow equation evolving equation of motion at k = 0:

∂rcη(rc, ω) = iω

(
2κ2η2(rc, ω)√
−ggrr

−
√
−ggtt

2κ2

)
. (45)

It is manifest from above equation that in the zero frequency limit, η(rc) is independent of

rc. Its value is request to be

η(rc) = η(r0) =
1

16πG

(r0

L

)d−1

, (46)

by the horizon regularity. Since the entropy density is s = 1
4G

(
r0
L

)d−1
, the ratio η/s does

not run. In the next section we will see that this is consistent with the direct calculation of

η(rc) using the holographic hydrodynamics at the finite holographic screen.4

B. Electric conductivity flow at the zero momentum

Now we shall consider the conductivity flow coming from Ax perturbation with zero

momentum. From (42) one can obtain the conjugate momentum for Ax(r) at r = rc

ΠAx(rc) =
δSon-shell

δ Ax
= Jx +

1

g2

√
−gĀ′tat . (47)

Notice that this is nothing but the shifted current J̃x which was introduced previously

to simplify the equation of motion. As explained in [19], the first and second term in right

hand side of (47) should be related to electric conductivity and thermal-electric conductivity

respectively. Notice that the on-shell action is the integral over the membrane at r = rc and

the conjugate momentum eq.(47) is also defined at rc > r0. In the limit of zero momentum,

Ax decouples and we can define electric conductivity by

σA(ω, rc) :=
Jx

iωAx
. (48)

One can quickly rewrite the equation of motion (41) as flow equation for σA:

∂rcσA
−iω

+
g2σ2

A√
−ggrrgxx

+
g2

eff

√
−g(Ā′t)

2

g2ω2
− 1

g2

√
−ggxxgtt = 0 . (49)

Due to the regularity condition at the horizon, we need

σH ≡ σA(r0) =
1

g2

(r0

L

)d−3

, (50)

4 In reference [8], the entropy density is defined to be proportional to one over embedded volume of the

cutoff membrane and η is also defined that η/s does not run. As a consequence both their entropy density

and viscosity run. Also both vanish at the infinity.
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which is consistent with horizon conductivity evaluated in [9]. In order to see the solutions

explicitly, we plot the conductivity flows with different black hole charges in d = 3 in Figure

1.

d=3, extremal

d=3, nonextremal

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

1�r

R
eHΣ

L

d=3, extremal

d=3, nonextremal

0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

1�r

Im
HΣ

L

FIG. 1: r flow of AC conductivity, with d = 3 RN-AdS black hole background. Here we normalize

r such that the horizon localizes at r = 1.

A few remarks are in order for these flow solutions.

• Zero Charge Limit: Remember that the charge density in the boundary theory is

related to the chemical potential by

ρ = µrd−2
0 /g2 . (51)

When µ = 0 chargeless case, the d = 3 conductivity is independent of the cutoff

position. The flow solution for d = 3 is trivial while there are nontrivial flow solutions

for d 6= 3 [5]. When d 6= 3 there is a fixed point at boundary but not at horizon.

This is because near the boundary metric is aysmptotically AdS and scale invariance

is there. This scale invariance is lost when two fluctuating modes mix in the RN-AdS

black hole case.

• Extremal Limit: As shown in Figure 1, when the charged AdS black hole becomes

extremal, one can find a fixed point from flow of conductivity near the horizon due

to the appearance of AdS2 near the horizon. This fixed point will disappear in non-

extremal case. One should notice that there is no fixed point for the conductivity near

the boundary both for extremal and non-extremal case. The evolution equation for

σA loses scale invariance near the infinite boundary in the presence of charge due to

the mix of at, Ax modes.

• Check against Boundary Result: In order to check the consistence with previous results

calculated at infinite boundary r =∞, we plot the boundary AC conductivity in Figure

2, which is precisely consistent with the results in [19]. The Q dependent term in the

flow equation clearly give the origin for the divergence of the imaginary part of the

conductivity in the zero frequency limit.
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• Conductivity Minimum: It is interesting to observe that there is a window of pa-

rameters ω and µ where the real part of conductivity curve in radial direction has a

minimum as shown in Figure 1. The minimum of the conductivity pick up a certain

scale r∗ and we show the charge dependence of that scale in Figure 2.

ReΣHΩL

ImΣHΩL

1 2 3 4 5

0.0

0.5

1.0

1.5

Ω

Σ

0.0 0.5 1.0 1.5

0.20

0.25

0.30

0.35

0.40

Μ^2

L
oc

al
iz

at
io

n
Sc

al
e

1�
r*

FIG. 2: Left: Frequency dependence of boundary AC conductivity, with d = 3 RN-AdS black

hole background . As a check for our flow solutions, the boundary AC conductivity is precisely

consistent with the results in [19]. Right: Chemical potential dependence of scale r∗ with minimal

conductivity in d = 3 RN-AdS, where µ is dimensionless chemical potential.

C. RG flow of ‘Conductivity’ of momentum current flow at zero momentum

Since the metric perturbation aµ mimic the Maxwell system, we can define the “conduc-

tivity” for the mode az = hxz by

σh :=
jz

fzt
. (52)

At kz = 0, since aµ modes are decoupled with Ax, we can obtain the decoupled flow of σh
as follow

∂rσh
−iω

+ σ2
h

grrgzz
G
−Ggttgzz = 0 . (53)

This flow equation has the same form as the longitudinal conductivity flow in zero charge

case although the metric components contain Q dependence. As a consistent check, this flow

equation is exactly the same as shear viscosity flow in (45), because when kz = 0, there is no

polarization direction and σh is nothing but shear viscosity by definition. We will explain

more about the physical mean of σh in next subsection.

D. RG flow of ‘Conductivity’ of momentum current in diffusion region

Since shear parts of metric perturbations behaves as longitudinal Maxwell field with a r

dependent effective coupling, we shall work out the “conductivity” flow in diffusion region.
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In order to handle the equations of motion: (35)∼(38), we write them in momentum space

and take the diffusion scaling following [8]

∂t ∼ ε2 , ∂z ∼ ε (54)

fzt ∼ ε3
(
fzt

(0) + εfzt
(1) + . . .

)
. (55)

First consider the in-falling boundary condition, which requires jz linearly related to fzt
near the horizon. This condition requires us to scale jz as same power of fzt:

jz ∼ ε3
(
jz(0) + εjz(1) + . . .

)
. (56)

Through the charge conservation equation we obtain

j̃t ∼ ε2
(
j̃t

(0)
+ εj̃t

(1)
+ . . .

)
, (57)

and we can also obtain

jt ∼ ε2
(
jt

(0)
+ εjt

(1)
+ . . .

)
, (58)

since there is no different scaling between jt and j̃t. Now we want to take ε→ 0 limit, and

only the lowest orders of fields are left. From (36) and (37) we obtain

∂r j̃t
(0)

= 0 , ∂rj
z(0) = 0 . (59)

Requiring charge conservation, we have

jz(0) = j̃t
(0) k

ω
. (60)

From (38), we have

∂rf
(0)
zt =

grrgtt
G

∂zj
t(0)

. (61)

It means we have the solution for f
(0)
zt

f
(0)
zt (r) = f

(0)
zt (r0) + 2κ2

∫ r

r0

dr
g2∂zj

t(0)
(r)√

−ggrrgttgxx
. (62)

Following the usual definitions in sliding membrane for chargeless case, we define the con-

ductivity by current and electric field as

σh(rc) :=
jz(0)(rc)

f
(0)
zt (rc)

=
k

ω

j̃t
(0)

(rc)

f
(0)
zt (rc)

. (63)

Remember

j̃t
(0)

= jt
(0) − 1

g2

√
−gA(0)

x Ā′t (64)

is a constant. By taking the scaling limit we have the simplified equation of motion for A
(0)
x :

∂r(
1

g2

√
−ggrrgxx∂rA(0)

x ) = g2
effĀ

′
tj
t(0)

(r) . (65)
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The solution for A
(0)
x can be solved explicitly as shown in [8].

Since jz(0) is a constant in radial direction, after having the solution for A
(0)
x , (62) can be

rewritten as
1

σh(rc)
=

1

σh(r0)
− k2

c

iωc

D̄h(rc)/Tc
σh(r0)

, (66)

where the horizon value is

σh(r0) =
1

16πGN

(r0

L

)d−1

. (67)

This is exactly the “conductivity” flow for shear part of metric fluctuations. This is our main

result in this subsection. After taking the scaling limit following [8], we have the analytical

result for RG flow of “conductivity” of momentum current.

As a byproduct, we obtain the D̄h as

D̄h(rc) =
1

4π

(d− 2)(1− αQ2) + 2

(1 + αQ2)d− 2(d− 1)αQ2(r0/rc)d−2
, (68)

which is charge dependent diffusion constant. Notice that we have used the solution for Ax
to obtain the D̄h. This result was first obtained in [8], where the diffusion constant is derived

from Fick’s law, while here we find that this diffusion constant is included in conductivity

flow for momentum current without any boundary condition for f
(0)
zt in (62).

Now we will explain the physical mean of the “conductivity” σh. Notice that az ≡ δgxz
corresponds to boundary operator T zx . At zero frequency retarded Green function of T zx is

exactly the same as T yx since there is no special polarization direction. Thus the transport

coefficient given by az ≡ δgxz will correspond to longitudinal momentum dependent viscosity.

This can be confirmed at the horizon, since σh at horizon is nothing but [9]

σh(r0) =
s

4π
, (69)

which equals to shear viscosity. This is consistent with η/s = 1
4π

. One should note that

transport coefficients at the horizon are all frequency independent.

E. Mixed RG Flow Equations

We shall discuss the mixed flows coming from coupled equations of motion without any

scaling limit. Consider again the coupled equations of motion: (35) - (38) and (40). By

defining

σh =
jz

fzt
, σA =

Jx

iωAx
, α :=

jz

Ax
(70)

we can derive the following flow equation for them as follows

∂rσh
−iω

+ σ2
h

[
grrgzz
G
− grrgtt

G

(
−k

2

ω2
+

1

g2

√
−ggttgrrĀ′t

k

ωα

)]
−Ggttgzz = 0 , (71)
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∂rσA
−iω

+
g2σ2

A√
−ggrrgxx

+
g2

effĀ
′
t

ω2

(
kα

ω
+

1

g2

√
−gĀ′t

)
+

1

g2

√
−ggxx

(
−gtt + gzz

k2

ω2

)
= 0 , (72)

∂rα

−iω
= α

(
Ggttgzz

σh
− g2σA√
−ggxxgrr

)
. (73)

One can easily observe that when Q = 0, all mixing effects disappear and (71) and (72)

will reduce to longitudinal and transverse form of conductivity flow for chargeless case [9]

respectively. Eqs. (71), (72) and (73) give the mixed RG flow.

V. HYDRODYNAMICS AT THE FINITE HOLOGRAPHIC SCREEN

In this section, we study the RG flow of transport coefficients by calculating the Green

functions at finite screen r = rc. We consider the shear mode in the 5 dimensional RN-AdS

background. This hydrodynamics problem is considered in [21] for rc → ∞ case. We use

the following gauge

ar = 0 , Ar = 0 (74)

and introduce following coordinate and notations:

u =
r2

0

r2
, a = αQ2 , b =

L2

2r0

. (75)

In terms of the rescaled vector B(u) = Ax(u)/µ, the equations of motion are given by

0 = at
′′ − 1

u
at
′ − b2

uf

(
ωkaz + k2at

)
− 3auB′, (76a)

0 = kfaz
′ + ωat

′ − 3aωuB, (76b)

0 = az
′′ +

(u−1f)′

u−1f
az
′ +

b2

uf 2

(
ω2az + ωkat

)
, (76c)

0 = B′′ +
f ′

f
B′ +

b2

uf 2

(
ω2 − k2f

)
B − 1

f
at
′. (76d)

Notice that B and at couples which is the source of the complication. To handle the problem,

we introduce the master fields [25],

Φ± =
1

u
at
′ − 3aB +

C±
u
B, (77)

with C± given by

C± = (1 + a)±
√

(1 + a)2 + 3ab2k2.

The decoupled differential equations satisfied by the master fields are

0 = Φ±
′′ +

(u2f)′

u2f
Φ±
′ +

b2

uf 2

(
ω2 − k2f

)
Φ± −

C±
f

Φ±. (78)
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We expand the master fields in the hydrodynamic regime in following way:5

Φ+ = g(u)C̃(1 + bωF+1(u) + b2k2G+2(u) + b2ω2F+2(u) + · · · ) (79)

Φ− = C(1 + bωF−1(u) + b2k2G−2(u)b2ω2F−2(u) + · · · ), (80)

where the factor singular near the boundary is explicitly taken out for Φ+ and it is given by

g(u) =
1

u
− 3a

2(1 + a)
. (81)

In this regime, the equations of motion are solved by imposing the ingoing boundary condi-

tion at the horizon in [21]. Here, we collect a few terms which will be relevant later

F ′+1(u) = i
(2− a)2

4(1 + a)2

1

u2f(u)g2(u)
, (82)

F ′−1(u) =
i

u2f(u)
, (83)

G′−2(u) = − 1

2(1 + a)u2
. (84)

The constants C and C̃ are integration constants and fixed by imposing the boundary

conditions. It is convenient to define a gauge invariant field Z by

kat(u) + ωaz(u) = Z. (85)

The gauge field B(u) can be expressed in terms of master fields as

B =
1

C+ − C−
u
(

Φ+ − Φ−

)
. (86)

Using (76a) and (77), we obtain

u2Φ′± − C±uB′ =
b2

f
kZ − C±B. (87)

With (86), l.h.s. of (87) can be expressed in terms of master fields Φ±. Requiring (87) at

u = uc we can determine C and C̃ in terms of the boundary values of Z and B at u = uc :

C =
α(uc)b

2kZc − β(uc)f(uc)Bc

ucg(uc)(−iω +D(uc)k2)b
, (88)

C̃ =
α̃(uc)b

2kZc − β̃(uc)f(uc)Bc

ucg(uc)(−iω +D(uc)k2)b
, (89)

5 Here, the definition of F+1(u) is related to the F̃1(u) in [21] as

bF+1(u) = F̃1(u)− i

4πT
log(1− u),

and similarly for F−1(u), etc.
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where denominators are expressions up to O(ω2) and O(k3), and D(uc) is given by

D(uc) =
bf(uc)

2(1 + a)ucg(uc)
=

bf(uc)

2(1 + a)− 3auc
. (90)

The coefficients α, β, α̃ and β̃ are given in terms of the solutions at u = uc as

α(uc) = −ucg(uc)
(
1 + bωF+1(uc) + b2k2G+2(uc)

)
+ · · · (91)

β(uc) =
3ab2k2

2(1 + a)
+ · · · (92)

α̃(uc) = −ibω +
b2k2

2(1 + a)
+ · · · (93)

β̃(uc) = 2(1 + a)ibω − b2k2 · · · . (94)

Now we calculate the Green functions at u = uc. We start from the Einstein-Hilbert

action with Gibbons-Hawking terms and counter terms [26] for the gravity part 6

Sgravity = SEH + SG.H + Sc.t , (95)

where the Gibbons-Hawking terms and counter terms can be expressed in terms of (trace

of) the extrinsic curvature K and induced metric γµν as

SEH = − 1

16πG

∫
dd+1x

√
−gR ,

SG.H = − 1

8πG

∫
ddx
√
−γK ,

Sc.t =
1

8πG

∫
ddx
√
−γ 3

L
. (96)

Both Gibbons-Hawking term and counter terms are defined as the hypersurface at u = uc.

After perturbing the action and integrating out the classic solution of perturbations, finally

we obtain the boundary action for the shear modes, which are given by

So.sgravity =
L3

32κ2b4

∫
d4x

[
1

u
ata
′
t −

3

u2

(
1− 1√

f(u)

)
atat

− f(u)

u
aza

′
z +

1

u2

(
3f(u)− 3

√
f(u)− uf ′(u)

)
azaz

]
, (97)

So.sgauge =
L3

32κ2b4

∫
d4x [−3af(u)BB′ + 3aBat] . (98)

Once we have C , C̃ in terms of boundary values, by the definitions of master fields we can

6 We use this action in order to keep consistence with previous results when uc → 0.
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express first derivatives of at, az and B in terms of boundary values at u = uc as follows:

a′t(uc) =
αt(uc)b

2kZc − βt(uc)f(uc)Bc

ucg(uc)(−iω +D(uc)k2)b
(99)

a′z(uc) =
αz(uc)b

2kZc − βz(uc)f(uc)Bc

ucg(uc)(−iω +D(uc)k2)b
(100)

B′(uc) =
αB(uc)b

2kZc − βB(uc)f(uc)Bc

ucg(uc)(−iω +D(uc)k2)b
, (101)

where the coefficients are explicitly given by

αt(uc) = −u2
cg(uc)

[
1 + bω(F+1(uc) + F−1(uc))) + b2k2(G+2(uc) +G−2(uc))

]
+ · · · , (102)

βB(uc) = − 3aibω

2(1 + a)f(uc)
+ · · · , (103)

where . . . denotes higher frequency and high momentum terms. Notice that we only write

down two coefficients in above equations for later use and leave other coefficients in Appendix

B. With the help of above results, the Green functions at slice u = uc can be read off from

on shell action

Gxt xt =
L3

16κ2b4

{
αt(uc)b

2k2

u2
cg(uc) (−iω +D(uc)k2) b

− 3

u2
c

(
1− 1√

f(uc)

)}
, (104)

Gxz xz =
L3

16κ2b4

{
αt(uc)b

2ω2

u2
cg(uc) (−iω +D(uc)k2) b

+
1

u2
c

(
3f(uc)− 3

√
f(uc)− ucf ′(uc)

)}
,

(105)

Gxt xz =
L3

16κ2b4

2αt(uc)b
2kω

u2
cg(uc) (−iω +D(uc)k2) b

, (106)

Gxt x =
L3

32κ2b4µ

{
−βt(uc)f(uc)− 3aucf(uc)αB(uc)b

2k2

u2
cg(uc) (−iω +D(uc)k2) b

+ 3a

}
, (107)

Gxz x =
L3

32κ2b4µ

βz(uc)f
2(uc)− 3aucf(uc)αBb

2kω

u2
cg(uc) (−iω +D(uc)k2) b

, (108)

Gxx =
L3

16κ2b4µ2

3af 2(uc)βB(uc)

ucg(uc) (−iω +D(uc)k2) b
. (109)

A. Cut off dependence of diffusion constant

One can easily observe a universal diffusion constant depending on the cutoff position

from all the Green functions:

D(uc) =
bf(uc)

2(1 + a)ucg(uc)
=

bf(uc)

2(1 + a)− 3auc
. (110)

Change to orthonormal frame, one can obtain

D̂(uc) = D(uc)
gzz√
gtt

. (111)
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Together with a normalization with local temperature, one can obtain the dimensionless

diffusion constant

D̄c = D̂(uc)Tc = D(uc)TH

(
gzz
gtt

)
=

1

4π

2− a
2(1 + a)− 3au

. (112)

This is nothing but D̄h in (68). The above result was first obtained in [8] by taking a certain

scaling for the equations of motion. Here we show that this diffusion pole appears in all the

cut-off dependent Green functions.

B. Shear viscosity

The shear viscosity is calculated by using Kubo formula

η(rc) = − lim
ω→0

ImGxy xy(ω, k = 0, rc)

ω
. (113)

For k = 0, z-direction can be treated equivalently to y-direction, since there is no polarization

direction, and we have

Gxy xy(ω, k = 0, rc) = Gxz xz(ω, k = 0, rc) = −i L3

16κ2b3
ω +O(ω2). (114)

Then the shear viscosity becomes

η(rc) =
1

16πGN

(r0

L

)3

, (115)

which is constant independent of cut-off. This is consistent with the result from flow equation

(46).

C. Cut off dependence of DC conductivity

The conductivity can be calculated form the O(ω) term of the Green function Gxx.

Generally it contains the O(ω2) terms of the master fields and have a complicated expression.

Taking into account the O(ω2) terms, it becomes

Gxx =
L3

16κ2b4µ2

3af 2(uc)βB(uc)

ucg(uc)
(
−iω +D(uc)k2 − u2

cf(uc)(F ′−2 + F ′+1F
′
−1)
)
b
, (116)

where βB(uc) also have the O(ω2) corrections as

βB(uc) = − 3aibω

2(1 + a)f(uc)
+ b2ω2u2

[
(ug(u))′ F ′−2(u) + (ug(u)F+1)′ F ′−1(u)

]
(117)
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For k → 0, the expression of Gxx is simplified and given by

Gxx =
3af(uc)L

3

16κ2b4µ2

(
(ucg(uc))

′

ucg(uc)
+ bωF ′+1(uc)

)
+O(ω2)

=
3af(uc)L

3

16κ2b4µ2

(
(ucg(uc))

′

ucg(uc)
+ ibω

(2− a)2

4(1 + a)2

1

u2
cf(uc)g2(uc)

)
+O(ω2) . (118)

The real part electric conductivity is explicitly given by Kubo formula

σcDC =
1

g2

r0

L

(2− a)2

4(1 + a)2

1

u2
cg(uc)2

, (119)

where g is the gauge coupling. At the horizon, σDC is

σH =
1

g2

r0

L
=

1

g2

πL

2
(T +

√
T 2 + µ2/3π2), (120)

which is consistent with eq.(58) in [9] in the limit where charge or chemical potential goes

to 0. This horizon value is related to the membrane conductivity σ̂H = J imb/Ê
i [9] by

σ̂H =

√
gttgrr√
−g

gii · σH =
1

g2
. (121)

One can also check that as one goes to the boundary (uc → 0), DC conductivity is reduced

to

σDC =
1

g2

r0

L

(2− a)2

4(1 + a)2
, (122)

which precisely agrees with previous result in [21].

Finally we can check the consistency of flow equation of AC conductivity by comparing

its numerical value in the limit of zero frequency with that of DC conductivity calculated

here. The result is plotted in figure 3.

VI. CONCLUSION AND DISCUSSION

In this paper, we present a method to work out the RG flows for transport coefficients

for quark gluon plasma at finite chemical potential with charged AdS black hole dual. Due

to the mixing effect between Maxwell and metric perturbations, we need to solve the cou-

pled equations of motion, which is usually difficult. We organize the system as two coupled

Maxwell systems and define two conductivities for each of them. With a parameter charac-

terizing the mixing effect, we write down the mixed flow equations. These mixed RG flow

equations will be simplified in certain limits. These flow equations will characterize how the

transport coefficients will change as energy scale changes.

We explicitly give the flow equations for conductivity and shear viscosity. In order to

check these results analytically we use hydrodynamic method to calculate the Green function
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FIG. 3: Checking consistency between flows of DC conductivities: Left: Plot of equation (119)

from hydrodynamics. Right: comparing the hydrodynamic result and flow equation result. We

can see they are explicitly same with each other.

at finite cut-off slice r = rc. We impose equations of motion at r = rc, which is guaranteed

by RG invariance of bulk action at classical level [5]. Then the Green function can be read

off from the on-shell action at r = rc. We extended the usual counter term to arbitrary

slice in order to have consistent result when rc → ∞. By using Kubo formula we obtain

the analytical results of RG flow formulas for transport coefficients and we found complete

agreements with that from flow equations.
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Appendix A: Derivation of bulk action

Starting from Einstein-Hilbert action, we calculate the bulk action for vector perturba-

tions az, at, ar, Ax in the 5D RN-AdS background.

S =

∫
d5x

[
A1a

′
ta
′
t +A2a

′
za
′
z +DA′xA

′
x+EatA

′
x +

(
1

2
B1atat

)′
+

(
1

2
B2azaz

)′
+ · · ·

]
. (A1)
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Here all the prime denotes the r derivative and · · · represent the terms with ∂t, ∂z. The

coefficients are given by

A1 =
1

2κ2

r5

2L5
, A2 =

1

2κ2

−fr5

2L5
(A2)

B1 =
1

2κ2

r4

L5

(
−2 +

rf ′

f

)
, B2 =

1

2κ2

2r4f

L5
(A3)

D =
1

g2

−r3f

2L3
, E =

1

g2

r3Ā′t
L3

. (A4)

Notice that the total derivative terms can be deleted for the purpose of the equations of

motion. One can evaluate equations of motion from the action for at, az, Ax:

A1a
′′
t + A′1a

′
t + EA′x = 0 (A5)

A2a
′′
z + A′2a

′
z = 0 (A6)

(DA′x + Eat)
′ = 0. (A7)

However we should calculate the final on-shell action by adding proper local counter terms,

as we did in section V. We conclude that the mixed bulk action can be written equivalently

as two Maxwell actions plus the only mixing term EatA
′
x.

Appendix B: Coefficients for a′t, a
′
z and B′

The coefficients for a′t, a
′
z and B′ are given by

αt(uc) = −u2
cg(uc)

[
1 + bω(F+1(uc) + F−1(uc))) + b2k2(G+2(uc) +G−2(uc))

]
+ · · · , (B1)

αz(uc) = − ω

kf(uc)
αt(uc) (B2)

αB(uc) = −u
2g′(uc)

2(1 + a)
+
bu2

cw
(
g(uc)

(
F ′−1(uc)− F ′+1(uc)

)
− (F−1(uc) + F+1(uc))g

′(uc)
)

2(a+ 1)

+
b2k2u2

c

(
g(uc)

(
G′−2(uc)−G′+2(uc)

)
− (G−2(uc) +G+2(uc))g

′(uc)
)

2(a+ 1)

+
3au2

cg
′(uc)b

2k2

4(1 + a)3
+ · · · , (B3)

βt(uc) = ibω
3au2

cg(uc)

f(uc)
+ · · · , (B4)

βz(uc) = −3aucb
2kω

2(1 + a)
+ · · · , (B5)

βB(uc) = − 3aibω

2(1 + a)f(uc)
+ · · · . (B6)
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