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We revisit holographic mesons in the D4/D6 model to study holographic light vector mesons
and the properties of heavy quarkonium in a confining phase. To treat light mesons and the
heavy quarkonium on the same footing, we use the same compactification scale, MKK , in both
systems. We observe that like scalar and pseudo-scalar mesons, the vector meson mass is linearly
proportional to the square root of the quark mass when the quark mass is large. With MKK fixed
by the light meson masses, we calculate the mass of the heavy quarkonium in a confining phase. In
order to describe the heavy quarkonium in the D4/D6 model, we consider the classical open string
configuration.

PACS numbers: 11.25.Tq, 12.38.Mh
Keywords: Gauge/gravity duality,Heavy quarkonium
DOI: 10.3938/jkps.59.2984

I. INTRODUCTION

The properties of the heavy quarkonium both at zero
and at finite temperature have been intensively studied
(see Ref. 1 for a review). At zero temperature, the char-
monium spectrum reflects detailed information about
confinement and quark-antiquark potentials in Quan-
tumChromoDynamics(QCD) [2]. At finite temperature,
melting of heavy quarkonia could be a signal for the for-
mation of a Quark-Gluon Plasma(QGP) in a relativis-
tic heavy ion collision [3]. Moreover, lattice calculations
suggest that the charmonium states will survive at fi-
nite temperature up to about 1.6 to 2 times the crit-
ical temperature Tc [4, 5]. This suggests that analyz-
ing the charmonium data from heavy ion collisions in-
evitably requires detailed information about the proper-
ties of charmonium states in a QGP. Therefore, a very
important theoretical challenge is to develop a consis-
tent non-perturbative QCD picture for the heavy quark
system both below and above the QCD phase transition
temperature. In this respect, a promising attempt would
be holographic QCD via Anti De Sitter/Conformal Field
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Theory (AdS/CFT) [6].
In a stringy D4/D6 model, scalar and pseudo-scalar

bound states have been studied at zero and finite tem-
perature in Refs. 7 and 8. In a more phenomenologi-
cal approach, the bottom-up model, the mass spectrum
of a charmonium and its dissociation temperature have
been investigated [9–11]. However, we note that in the
bottom-up model, different infrared scales are introduced
to describe light mesons and heavy quarkonia. For exam-
ple, in the hard wall model, the location of the infrared
cutoff zm varies from light mesons to heavy quarko-
nia: 1/zm ' 320 MeV [12, 13] for the light meson and
1/zm ' 1315 MeV [9] for the charmonium.

In this paper we study the spectrum of the light vector
meson and heavy quarkonium by using the D4/D6 model
[7] in a confining phase. To treat the light mesons and
heavy quarkonium on the same footing, we use the same
compactification scale MKK in both systems. For the
light vector meson, the spectrum was discussed in the
D4/D8/D̄8 model [14] where the chiral symmetry and
its breaking are realized geometrically. However, in the
Sakai-Sugimoto model [14], it is quite difficult to include
the quark mass. Therefore, it is still of worth to study the
spectrum of vector mesons in the D4/D6 model and to
study the effect of the quark mass. We observe that light
scalar and pseudo-scalar mesons [7], the vector meson
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Table 1. The brane configuration, the background D4 and
the probe D6.

Boundary S1 r( S2) S2 D6⊥

0 1 2 3 τ z ψ1 ψ2 r φ

D4 • • • • •
D6 • • • • • • •

mass is proportional to the square root of the quark mass
M2

v ∼ mq for large quark masses. Then, we consider a
spinning string in a confined phase [20] and calculate the
energy of a long string attached on D6 branes in a D4
background to calculate the mass spectrum of the heavy
quarkonium.

II. D4/D6 MODEL

We briefly summarize a pioneering holographic QCD
model, the D4/D6 system [7]. The model contains Nc

D4 branes and Nf flavor D6 branes, its configuration is
given in Table 1.

In the probe limit, the Nc D4 branes are replaced by
their supergravity background, and the Nf D6 branes are
treated as probes. In this model, mesons of a QCD-like
gauge theory are described by the fluctuations of the D6
brane in the D4 background. The geometry of confining
D4 brane reads

ds2 =
(
U

L

)3/2

(ηµνdx
µdxν + f(U)dτ2)

+
(
L

U

)3/2(
dU2

f(U)
+ U2dΩ2

4

)
,

eφ = gs

(
U

L

)3/4

,

F4 = dC3 =
2πNc

V4
ε4,

f(U) = 1− U3
KK

U3
, (1)

where the string coupling constant gs and the period of
τ are given by

gs =
g2

Y M

2πMKK ls
, δτ ≡ 4π

3
L3/2

U
1/2
KK

. (2)

The parameter L is given by the string coupling constant
gs and the string length ls, L3 = πgsNcl

3
s , the compact-

ification scale MKK reads

MKK =
2π
δτ

=
3
2
U

1/2
KK

L3/2
, (3)

and the gauge theory parameters are converted by using

the string parameters

L3 =
1
2
g2

Y MNcl
2
s

MKK
,

gs =
1
2π

g2
Y M

MKK ls
,

UKK =
2
9
g2

Y MNcMKK l
2
s . (4)

By introducing K(ρ), the metric is simplified to

ds2 =
(
U

L

)3/2

ηµνdx
µdxν

+K(ρ)[dz2 + z2dΩ2
2 + dr2 + r2dφ2] , (5)

where

K(ρ) ≡ L3/2U
1/2

ρ2
, U(ρ) = ρ

(
1 +

U3
KK

4ρ3

)2/3

,

with ρ2 = z2 + r2. (6)

The position of the D6 brane is described by r(z) with φ
= 0 and τ = constant. Then, the induced metric on D6
is

ds2D6 =
(
U

L

)3/2

ηµνdx
µdxν+K(ρ)

[
(1+ṙ2)dz2+z2dΩ2

2

]
.

(7)

Now the action for D6 brane becomes

SD6 = −T6

∫
d7σe−φ

√
−det(g + 2πα′F ),

where TD6 =
1

(2π)6l7s
. (8)

By using the well-known identity

det

(
A B

C D

)
= detA · det(D − CA−1B) (9)

up to quadratic order in fields, we obtain

L0 = −T6

gs

√
h

(
1 +

U3
KK

4ρ3

)2

z2
√

1 + ṙ2

×
[
1 +

1
4
(FµνF

µν + 2FzµF
zµ)
]
, (10)

where Fµν = ∂µAν − ∂νAµ.

III. MESON SPECTROSCOPY

In this section, we compute the vector meson masses
by considering gauge field fluctuations on the D6 brane.
Although we have two different scales of meson masses,
light mesons and heavy quarkonia, the origin of the dif-
ference lies in the quark mass rather than the interaction.
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There, we need to introduce only a single interaction
scale MKK . This scale is to be matched with the gauge
theory scale ; ΛQCD, hence, it is encoded in the back-
ground geometry while the quark masses are encoded in
the geometry of the probe branes.

1. Embedding

We first find a D6 embedding geometry by solving the
equation of motion for r(z). From the DBI action in Eq.
(10), we obtain the equation of motion for r(z) to be

∂z

[(
1 +

U3
KK

4ρ3

)2

z2 ṙ√
1 + ṙ2

]

= −3
2
U3

KK

ρ5

(
1 +

U3
KK

4ρ3

)
z2r
√

1 + ṙ2. (11)

With the following dimensionless variables

z → UKKz, r → UKKr, ρ→ UKKρ , (12)

we rewrite Eq. (11) as

∂z

[(
1 +

1
4ρ3

)2

z2 ṙ√
1 + ṙ2

]

= −3
2

1
ρ5

(
1 +

1
4ρ3

)
z2r
√

1 + ṙ2. (13)

For large z, we can solve the equation of motion for r(z)
to obtain the asymptotic solution as

r(z) ∼ r∞ +
c

z
(14)

where r∞ and c are related to the quark mass and the
chiral condensate respectively (see Ref. 7 for details).

2. Scalar and Pseudo-scalar Fluctuations

We start with scalar and pseudo-scalar fluctuations.
Though these were extensively studied in Ref. [7], we
include them for completeness, not to improve the results
in Ref. 7. The transverse fluctuation of the D6 brane is
given by

r(xµ, z) = rv(z) + δr(xµ), φ(xµ, z) = δφ(xµ, z) , (15)

where rv(z) is the solution of the embedding equation.
Inserting Eq. (15) into the induced metric in Eq. (7)
and the DBI action in Eq. (10), we obtain the induced
metric

ds2 =
(
U

L

)3/2

ηµνdx
µdxν

+K[(1 + ṙ2v)dz2 + z2dΩ2
2] + 2Kṙv∂aδrdzdx

a

+K[∂aδr∂bδr + r2v∂aδφ∂bδφ]dxadxb , (16)

where a and b run from 0 to z and the DBI action, up
to quadratic order, is

L = L0 −
1
2
TD6U

3
KKz

2
√
h
√

1 + ṙ2v

[
U3

ρ3
v(1 + ṙ2v)

(
(∂zδr)2

1 + ṙ2v
+ r2v(∂zδφ)2

)
+

L3U2

UKKρ5
v

(
∂µδr∂

µδr

1 + ṙ2v
+ r2v∂µφ∂

µφ

)
− 3

2ρ7
v

((
1 +

1
4ρ3

v

)
(z2 − 4r2v)− 3r2v

4ρ3
v

)
(δr)2 − 3rv ṙv

2ρ5
v

(
1 +

1
4ρ3

v

)
∂z(δr2)
1 + ṙ2v

]
. (17)

Now we arrive at the linearized equation of motion for
pseudo-scalar;

0 = ∂z

(
z2r2v√
1 + ṙ2v

(
1 +

1
4ρ3

)2

∂zφ

)

+
r2vz

2
√

1 + ṙ2v
ρ5

v

U2
9M2

φ

4M2
KK

φ(z), (18)

and for the scalar,

0 = ∂z

[
z2

(1 + ṙ2v)3/2

(
1 +

1
4ρ3

)2

∂zδr

]

+
z2U2

ρ5
v

√
1 + ṙ2v

9M2
δr

4M2
KK

δr

+
3z2
√

1 + ṙ2v
2ρ7

v

((
1 +

1
4ρ3

v

)
(z2 − 4r2v)− 3r2v

4ρ3
v

)
δr

−∂z

(
3z2

2ρ5
v

rv ṙv√
1 + ṙ2v

(
1 +

1
4ρ3

v

))
δr. (19)

These equations are numerically solved to get meson
masses with proper boundary conditions [7].
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3. Gauge Field Fluctuations

Now, we move on to the gauge field fluctuation. The
relevant part of the Lagrangian density for the gauge
field is given by

L ∼ −1
4

(
1 +

U3
KK

4ρ3

)2

z2
√

1 + ṙ2v

(
L

U

)3/2

×

[(
L

U

)3/2

ηµνηρσFµρFνσ + 2
ηµνFzµFνz

K(ρ)(1 + ṙ2v)

]
, (20)

where rv is the embedding solution. We decompose the
gauge fields in terms of the orthonormal basis ψn, φn as

Aµ(xµ, z) =
∑

n

B(n)
µ (xµ)ψn(z),

Az(xµ, z) =
∑

n

ϕ(n)(xµ)φn(z) . (21)

Then, the field strength takes the following form:

Fµν(xµ, z) =
∑

n

F (n)
µν (xµ)ψn(z),

F (n)
µν (xµ) = ∂µB

(n)
ν (xµ)− ∂νB

(n)
µ (xµ) ,

Fµz(xµ, z) =
∑

n

(
∂µϕ

(n)(x)φn(z)

− ∂zψn(z)B(n)
µ

)
. (22)

With the decomposition, the quadratic part of the La-
grangian for the Bµ field reads

LB ∼ −
√
g0

4

∑
m,n

[(
R

U

)3/2

F (n)
µν F

(n)µνψmψn

+
2

K(ρ)(1 + ṙ2v)
ψ̇mψ̇nBµB

µ

]
, (23)

where
√
g0 =

(
1 + U3

KK

4ρ3

)2

z2
√

1 + ṙ2v
(

L
U

)3/2
. To recover

the canonical kinetic term of the gauge field in 4D, we
impose the normalization condition for the wave function
ψ(z) as

(2πα′)2T̃6

∫
dz
√
g0

(
R

U

)3/2

ψmψn = δmn, (24)

where T̃6 = −T6V2/gs and V2 =
∫
dΩ2

√
g66g77. We will

impose a similar condition for φ(z).
The wave function ψ(z) satisfies the following mode

equation derived from the quadratic action

∂z

(
√
g0

∂zψn

K(ρ)(1 + ṙ2v)

)
= −√g0

(
L

U

)3/2

m2
nψn, (25)

where m2
n = −q2. Then, we obtain

(2πα′)2T̃6

∫
dz
√
g0

1
K(ρ)(1 + ṙ2v)

ψ̇mψ̇n = m2
nδmn, (26)

where mn is the eigenvalue. From Eqs. (24) and (26),
we now have

SD6 = −N
∫
d4x

∞∑
n=1

(
1
4
F (m)

µν F (n)µν +
1
2
m2

nB
(n)
µ B(n)µ

)
.

(27)

We rescale the coordinate by UKK to obtain

∂z

(
√
g0

∂zψn

K(ρ)(1 + ṙ2v)

)
= −

√
g0

U3/2

9
4
m2

n

M2
KK

ψn . (28)

To solve this equation, we impose two boundary condi-
tions: at the IR, either ψn(0) or ψ̇n(0) = 0, and at the
UV, ψn ∼ zα with α ≤ 1/2 from the normalizability
condition in Eq. (24).

Now we consider φn. The normalization of φn is sim-
ilar to Eq. (26) :

(2πα′)2T̃6

∫
dz
√
g0

1
K(ρ)(1 + ṙ2v)

φmφn = δmn . (29)

As explained below and also in Ref. 14, once we set the
field as φn = ψ̇n/mn for n ≥ 1, it can be gauged away as
a part of the Bµ field. However, the zero mode, which is
orthogonal to the other modes, is exceptional :

(φ0, φn) =
(2πα′)2

mn
T̃6

∫
dz
√
g0

1
K(ρ)(1 + ṙ2v)

φ0ψ̇n

= 0 (for n ≥ 1) . (30)

If we take φ0 = CK(ρ)(1 + ṙ2v)/
√
g0,

(φ0, φn) =
∫ ∞

0

dz ψ̇n = ψn(∞)− ψn(0)

= 0 (for n ≥ 1). (31)

Then, the constant C is given by

1 = (φ0, φ0) → C

=
(

(2πα′)2T̃6

∫
dz
K(ρ)(1 + ṙ2v)

√
g0

)−1/2

. (32)

The field strength is written as

Fµz(xµ, z) = ∂µϕ
0(x)φ0(z)

+
∑

n

(
m−1

n ∂µϕ
(n)(x)−B(n)

µ

)
ψ̇n(z) . (33)

By a gauge transformation, Bµ absorbs ∂µϕ
(n):

B(n)
µ → B(n)

µ +m−1
n ∂µϕ

(n)(x) , (34)
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therefore, the action in Eq. (23) becomes

SD6 =
∫
d4x

[
1
2
∂µϕ

0∂µϕ0

+
∞∑

n=1

(
1
4
F (m)

µν F (n)µν +
1
2
m2

nB
(n)
µ B(n)µ

)]
. (35)

Note that for the heavy quarkonium system,

C =

(
(2πα′)2T̃6

∫ ∞

0

dz

√
1 + ṙ2v
z2

(
1 +

1
4ρ3

)−2/3
)−1/2

=
(

(2πα′)2T̃6

∫ ∞

0

dz
1
z2

)−1/2

=

(
(2πα′)2T̃6

1
z

∣∣∣∣0
∞

)−1/2

= 0 , (36)

so ϕ0 = 0 due to Eq. (32). To impose the UV boundary
condition for ψn more precisely, we consider the mode
equation, Eq. (28), at large z ;

∂z(z2∂zψn) = −m
2
n

z
ψn . (37)

With ψn ∼ zα, we obtain α(α−3) = 0. Since the normal-
izability condition dictates α ≤ 1/2, we should choose α
= 0.

4. Numerical Results

We solve the mode equations for scalar, pseudo-scalar,
and gauge field fluctuations numerically. We first com-
pute the mass of light mesons to fix the model parameters
rl
∞ and MKK . Because the D4/D6 model has no non-

Abelian chiral symmetry except for U(1)A, the pseudo-
scalar meson in this model corresponds to η′ in QCD
[7]. In QCD, however, U(1)A symmetry is explicitly bro-
ken by the axial anomaly, and the observed mass of η′,
mη′ = 958 MeV, is much larger than the pion or kaon
mass. Note that some portion of the η′ mass comes from
the anomaly effect, which scales as Nf/Nc. Because we
are working in the large Nc limit, we may use the mass
of η′ with the anomaly contribution turned-off, so we use
a non-anomalous η′ mass to obtain a rough number for
the model input. To this end, we use the mass relation
for the Goldstone boson obtained in chiral perturbation
theory at large Nc [16]:

m2
π =

2mqΣ
f2

π

, m2
η′ =

2Σ(2mq +ms)
3f2

π

+
6τ
f2

π

, (38)

where mu = md ≡ mq. The term with τ is from the
axial anomaly. Now we take τ = 0 to estimate the
η′ mass from the non-anomalous contribution. With
mq = 7 MeV, ms = 150 MeV, fπ = 93 MeV, and
Σ = (230 MeV)3, we obtain mπ ∼ 140 MeV and

Table 2. Light meson masses to fix the free parameters,
MKK and r∞, in the model.

Mode Input (MeV) M/MKK M (MeV)

Ps (η′) 390 0.375 390

Rs (σ) 0.918 954

V (ρ) 770 0.741 770

m′
η ∼ 390 MeV. Note that the mass of the qq̄ bound

state, such as the ρ meson mass, stays almost constant
as we increase Nc: for instance, the light meson mass
at large Nc is extensively studied in a unitarized chiral
perturbation theory [17] and in lattice QCD [18].

We use the ρ-meson mass and η′ mass in the large
Nc limit as inputs to fix r∞ = 0.191 and MKK = 1.039
GeV. Our fitting results are summarized in Table 2. As
observed in Ref. 7, for large r∞, the meson mass becomes
degenerate and increases monotonically with increasing
r∞. This is simply because the equations of motion for
scalar, pseudo-scalar and vector for a heavy quark sys-
tem, r∞ � UKK , are degenerated. To see these more
explicitly, we expand the equations of motion of fluc-
tuations as r∞ goes to infinity. Then, we rescale the
coordinate z = y r∞, which means that both r∞ and z
are very large, but their ratio is finite :

1
y2
∂y(y2∂yΨ)+

1
r∞

(
3

2MKK

)2
M2

(1 + y2)3/2
Ψ = 0, (39)

where Ψ can be a real scalar δr, a pseudo-scalar φ, or a
vector ψ, and y is a rescaled coordinate y = z/r∞. In
Eq. (39), the meson mass scales as

M2 ∼ r∞M
2
KK ∼ mqMKK

λ
,

where mq =
UKKr∞

2πl2s
=
r∞
9π

g2
Y MNcMKK =

r∞
9π

MKKλ , (40)

with λ = g2
Y MNc being the t’ Hooft coupling. This

means that for the heavy quark system, the fluctuat-

ing field has mass proportional to
√

mqMKK

λ . This is a
bit at odds with heavy quarkonia in QCD because we
would expect the mass of heavy quarkonium in QCD to
be proportional to the heavy quark mass not its square
root. Because of this aspect, we will study the heavy
quarkonium system based on the spinning string picture
in the next section. As discussed in Ref. 7, the reason for
the degeneracy is supersymmetry restoration. All of the
fluctuating fields are in the same supermultiplet and for
small mq limit, supersymmetry is broken so their masses
split. However, for the large quark mass or large sepa-
ration between D4 and D6, the embedding is nearly flat,
so the D6 brane restores supersymmetry.
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Fig. 1. A classical string configuration ending on a D6
brane.

IV. ROTATING STRING AS A MESON

We believe that almost all of the heavy quarkonium
mass comes from the string connecting two quarks. Here,
we calculate the energy of a long string attached on D6
branes in the D4 background to see another aspect of the
holographic meson mass [20] and to calculate the mass
spectrum of the heavy quarkonium.

A confining flux tube or a confining string in QCD can
be realized holographically as a long string in a certain
background. The image of a long string, which is identi-
fied with the confining flux tube of gauge theory, in the
bulk is projected on a holographic screen, R4, where our
gauge theory is living.

By solving the classical equation of motion for the
string derived from the Nambu-Goto action, we obtain a
classical string configuration, (Fig. 1), and using the so-
lution, we compute the energy and the angular momen-
tum of an open string. In this section, we first review

the work of Ref. 20 on spinning strings in the confining
D4/D6 model. Then we use their result to study the
mass of the heavy quarkonium.

To describe a meson as a bound state of a quark and
an anti-quark placed at the endpoints of a rotating open
string, we begin with the Nambu Goto action with a
proper ansatz:

SNG =
1

2πl2s

∫
dσdτ

√
X ′2Ẋ2 − (X ′ · Ẋ)2,

where Xµ′ = ∂σX
µ, Ẋµ = ∂τX

µ

X0 = eτ, θ = ewτ, R = R(σ),
r = r(σ), z = z(σ) , (41)

with Xµ being the string coordinate in four dimensional
target space-time and X ′ · Ẋ = X ′

µẊ
µ. Here, we choose

the string coordinate R as one of the D4 brane’s world-
volume coordinates :

dXµdXµ = −(dX0)2 + dR2 +R2dθ2 + (dX3)2. (42)

The endpoint of this open string is attached on D6, so
the boundary conditions are given by

0 =
(
∂σX

0 = ∂σθ = ∂σR = ∂σz
)
|σ=0,π,

r(σ) = r(z(σ))|σ=−π/2,π/2 . (43)

Then, the Nambu-Goto action for the rotating string be-
comes

S = −Ts

∫
dσdτ

√√√√(U
L

)3(
(∂τX0)2 −R2(∂τθ)2

)(
(∂σR)2 +K

(
U

L

)−3/2

(∂σρ)2
)
, (44)

where ρ2 = r2 + z2. When z = 0, the range of ρ is from
ρ0 = UKK/41/3, at which the confining core is located,
to ρf = r∞. We will take z = 0 to see the long string
configuration clearly, which is also energetically favored.
After re-scaling of variables,

ρ → UKKρ, U → UKKU,

R →

√
L3

UKK
R =

3
2

R

MKK
,

w → 2
3
MKKw, σ → UKKσ , (45)

we obtain

S = −TsUKK

∫
dσdτ

√
U3e2

(
1− w2R2

)(
(∂σR)2 +

(∂σρ)2

Uρ2

)
. (46)

The equation of motion derived from this action is

d

dR

[
UE√

Uρ2 + ρ̇2

ρ̇

ρ

]
=

E
ρ2
√
Uρ2 + ρ̇2

[
∂U

∂ρ

(
3
2
Uρ2 + ρ̇2

)
ρ− Uρ̇2

]
, (47)

where “dot” denotes R-derivative. Note that we take the world sheet coordinate σ as R and E = e
√

1− w2R2.
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Since there are no explicit X0 and θ dependences, we
have two constants of motion :

E = TsUKK

∫
dR

U
√
U + ρ̇2/ρ2

√
1− w2R2

,

J = TsUKK

√
L3

UKK

∫
dR

wR2U
√
U + ρ̇2/ρ2

√
1− w2R2

. (48)

We identify E (J) as the energy (angular momentum)
of the spinning string. Notice that the solution of Eq.
(47) has two separable regions that we will consider
separately below: ρ̇→ ∞ or 0.

Vertical string
In the first region (ρ̇ → ∞), a vertically extended

string, the equation is simplified to

d

dR

(
UE
ρ

)
=
(
dU

dρ
− U

ρ

)
E ρ̇
ρ
. (49)

This means Ṙ → 0, so R = R0. The corresponding
energy and angular momentum are given as

EI =
2mq√

1− w2R2
0

,

JI =
2mqwR

2
0√

1− w2R2
0

3
2MKK

,(
UKK

L

)3/2

=
2
3
MKKUKK . (50)

The mass of the dynamical quark is

mq = TsUKK

∫ ρZ

ρf

dρ
√
g00gρρ = TsUKK

∫ ρz

ρf

dρ
U

ρ

= TsUKK

[
x

(
1 +

1
4x3

)2/3
(

4x3
2F1

[
1
3 ,

2
3 ,

5
3 ,−4x3

]
(1 + 4x3)2/3

− 1

)]x=ρf

x=ρ0

(51)

Horizontal string
In the second region ρ̇ → 0, (ρ = ρ0, U0 =1 ) , hori-

zontally extended, Eq. (47) reads

d

dR

(√
UE ρ̇
ρ2

)
=

3
2
∂U

∂ρ

√
U

ρ
E . (52)

From these, we obatin

EII = TgUKK
2
w

arcsin(wR0),

JII = 2Tg
3UKK

2MKK

1
2w2

(
arcsin(wR0)

− wR0

√
1− w2R2

0

)
. (53)

These two regions are combined by the sewing condition.

After re-scaling,

1− w2R2
0 =

w2R2
0mq

TgR0

2
3
MKK (54)

Let us define Tg, an effective string tension, as

Tg = Ts

(
UKK

L

)3/2

=
1

2πl2s

(
UKK

L

)3/2

=
2λ
27π

M2
KK .

(55)

An effective string slope is given by α̃′ = 1
2πTg

. Here we
identify the quark mass from the D6 fluctuation with the
one from open string dynamics. Now, the total energy
and angular momentum are given by

E = EI + EII =
2mq√

1− w2R2
0

+ TgUKK
2
w

arcsin(wR0)

J = JI + JII =
2mqwR

2
0√

1− w2R2
0

3
2MKK

+ 2Tg
3UKK

2MKK

1
2w2

(
arcsin(wR0)− wR0

√
1− w2R2

0

)
(56)

We rewrite the total energy and angular momentum
as [20]

E =
2TgUKK

w

(
arcsinx+

1
x

√
1− x2

)
,

J =
3

2MKK

TgUKK

w2

(
arcsinx+ x

√
1− x2

)
, (57)

where x = wR0 is the speed of the string’s endpoint.
Note that TsUKK = λMKK

9π . By using the constraint in
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Eq. (54), we find

E =
2mq

√
1 + q

q

2
3
UKKMKK

(
arcsin

1√
1 + q

+
√
q

)
J =

m2
q(1 + q)
Tgq2

2
3
UKKMKK

×
(

arcsin
1√

1 + q
+

3
2

√
q

1 + q

)
(58)

where q = 2MKK

3
mq

TgR0
.

From Eq. (57), we get the Regge trajectory

J = α̃′1E
2,

where α̃′1 =
27

4λM2
KK

=
1

2πTg
= α̃′

when x → 1 (59)

The subscript 1 of α′1 means α′ for x→ 1, which eventu-
ally equals the effective string slope α′. From the exper-
imental data, 1/α′uu = 1.2 GeV2, 1/α′cc = 3.2 GeV2 and
1/α′bb = 4.2 GeV2 [21,22]. In addition, the limit x→ 1,
means, mq → 0. In this limit, we have

J = n =
λ

12w2
, E(J = n) =

2
√

3
9

√
λMKK

√
n . (60)

For the large quark mass, we expand Eq. (58) in large q
to obtain

E ∼ 2
3
UKKMKK

(
2mq +

9
2MKK

TgR0 +O(1/mq)
)
,

J ∼ 2
3
UKKMKK

×

(
mq

MKK
R0 +

√
mq

MKK

√
27
8
TgR3

0

M2
KK

+O(1)

)
. (61)

By varying w, we obtain the energy (mass) spectrum
of mesons. Now we consider a charmonium J/ψ as an
example for phenomenological applications of spinning
strings. Requiring Bohr-Sommerfeld quantization, we
obtain the quantization condition

J = n~ = n, n is integer . (62)

Here we take natural units, c = ~ =1. We take the value
of MKK fixed by the η′ mass, MKK = 1.039 GeV. We
summarize our results in Tables 3 and 4, where we take
the mass of the heavy quarkonium from Ref. 21.

We choose λ =11.5 to fit the slope of the Regge trajec-
tory. We also calculate the inter-quark distance in heavy
quarkonia, R0. The sewing condition gives the relation
between the inter-quark distance R0 and w,

R0 =

√
9T 2

g +M2
KKm

2
qw

2 −MKKmqw

3Tgw

=
9π
2λ

1
w

√(2λ
9π

)2

+
(
mqw

MKK

)2

− mqw

MKK

 . (63)

Table 3. Charmonium mass and size.

Charmonium : mc
q = 1.2 GeV

J E (GeV) Mexp(GeV) 2R0

J = 1 3.15 3.096 0.34 fm

J = 2 3.57 3.686 0.53 fm

J = 3 3.92 4.04 0.68 fm

J = 4 4.22 4.415 0.81 fm

Table 4. Bottomium mass and size.

Bottomium : mb
q= 4.4 GeV

J E (GeV) Mexp(GeV) 2R0

J = 1 9.5 9.46 0.23 fm

J = 2 9.79 10.02 0.36 fm

J = 3 10.03 10.36 0.47 fm

J = 4 10.25 10.58 0.58 fm

V. REMARKS

As in Eq. (40) and Eq. (57), the energies from the fluc-
tuation and the long (or spinning) string have different
scalings of λ and MKK . For the fluctuation, mass is pro-
portional to Efl = (mqMKK/λ)1/2 or

√
r∞ MKK while

for the spinning string, it is given by Elong = λMKK .
In AdS/CFT, the t’ Hooft coupling λ is assumed to be
very large, and in this limit, the long string and fluc-
tuation spectra are different from each other by a fac-
tor of λ. These two totally different classes of energy
spectra originate from the intrinsic difference of the two
approaches; a long string is a classical object that can
be viewed as solitonic state while fluctuating modes are
local fields on a classical background. Note that fluctu-
ating modes do not have correct Regge behavior while a
long string does. This is because higher modes of fluc-
tuating fields come from the Kaluza-Klein mode of the
compactified scale MKK while the spectrum of a long
string comes from its classical configuration. Therefore,
we may argue that these two different approaches de-
scribe two different physical systems: one is for the light
meson, and the other is for the heavy quarkonium. For
large λ, a long string is not relevant to describe the light
mesons because its mass is too heavy in units of MKK .

It is still a generic problem in holographic QCD mod-
els to describe both the light and the heavy quarkonium
state simultaneously in a single model. In this work, we
try to analyze them in a unified manner. We describe
two different systems by using different string configu-
rations with the same MKK in a D4/D6 model: one is
fluctuating field on the brane, and the other is the clas-
sical configuration of an open string.



-2992- Journal of the Korean Physical Society, Vol. 59, No. 5, November 2011

VI. SUMMARY

We re-analyzed the D4/D6 model to study holographic
light vector mesons and the properties of the heavy
quarkonium in a confining phase. To treat the light
mesons and heavy quarkonium on the same footing, we
used the same compactification scale MKK in both sys-
tems. In a confined phase, we observed that the meson
spectroscopy of the light meson and heavy quarkonium
could be described with a single MKK . We found that
like scalar and pseudo-scalar mesons, the vector meson
mass is linearly proportional to the square root of the
quark mass when the quark mass is large. With MKK

fixed by the light meson masses, we calculated the mass
of the heavy quarkonium in a confining phase. In order
to describe the heavy quarkonium in the D4/D6 model,
we considered a classical open string configuration.

Certainly there are many things to be improved for our
study to be closer to QCD. We list some of them here.
Surely, chiral symmetry should be the first one. As is
well known, non-Abelian chiral symmetry is essential to
understand light mesons, and it is also important for a
heavy-light system due to the light quark. The second
thing is how to include the heavy-light meson in this
picture with correct chiral symmetry and heavy quark
spin symmetry.
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