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We consider the gravity dual of strongly coupled system at a Lifshitz-fixed point and
finite temperature, which was constructed in a recent work arXiv:0909.0263. We con-
struct an Abelian–Higgs model in that background and calculate condensation and con-
ductivity using holographic techniques. We find that condensation happens and DC
conductivity blows up when temperature turns below a critical value. We also study the
zero temperature limit of strongly coupled system at the Lifshitz-fixed point.
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1. Introduction

AdS/CFT correspondence1 is one of the most interesting results in the sense that it

opened a window of connecting the string theory to the QCD and condensed matter

systems. The connection between gauge theory and strings has a long history since

the appearance of string models of hadrons in 1960’s: for example, it has been

observed that the elementary excitations of a lattice gauge theory in the strong

coupling limit can be represented by strings formed by color-electric fluxes. It is
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also suggested that in a certain limit all the degrees of freedom in the gauge theory

should be represented by the flux lines (strings) instead of fields (see Refs. 3 and 2

and references therein). Therefore it is natural to expect an exact duality between

gauge fields and strings although its precise formulation was obtained only recently.

The semiclassic version of this duality can be stated as gauge/gravity duality and

such duality has become a powerful tool to understand the strongly coupled QCD

and the properties of quark–gluon plasma in heavy ion collisions at RHIC4–6,a as

well as the low energy hadron physics.

More recently, it has been attempted to use this correspondence to describe cer-

tain condensed matter systems such as the quantum Hall effect,8 Nernst effect,9–11

superconductor12,14,15 and fractional quantum Hall effect (FQHE).16 These phe-

nomena were suggested to have dual gravitational descriptions. As pointed out in

Refs. 17–19, there is a large class of interesting strongly correlated electronic and

atomic systems that can be created and studied in experiments and there are non-

relativistic systems which have Schrödinger symmetry.17–19 However, the dynamics

of such systems near a critical point is described by a relativistic conformal field

theory or sometimes more subtle scaling theory having Lifshitz symmetry.20

To describe the finite temperature version of such scaling system, four-

dimensional black hole solutions with asymptotically Lifshitz space–times were

investigated.21–25 The Lifshitz black holes in arbitrary dimensions were also found

in a different class of action.26 Recently an analytical solution in yet another action

was proposed for z = 2 in four dimensions.27 Additionally, Lifshitz black holes in

three-dimensional massive gravity and four-dimensional R2 gravity were also dis-

cussed.28,29 Embedding those black holes with the action in Ref. 20 into string

theory was addressed in Ref. 30.

In Ref. 12, a model of a strongly coupled system which shows superconductivity

was constructed based on holography, which is an Abelian–Higgs model in a warped

space–time. While the electrons in real materials are nonrelativistic, the model

in Ref. 12 is relativistic. Therefore it is natural to ask whether one can develop

a similar model with nonrelativistic kinematics,37 especially at Lifshitz-like fixed

point. One purpose of this paper is to answer this question. We find that there is

a critical temperature, like the relativistic case, below which a charged scalar field

condensate and the (DC) conductivity blows up. We also calculated the frequency

dependent conductivity.

This paper is organized as follows. In Sec. 2, we check thermodynamics of the

Lifshitz black hole and chemical potential background. In the following section, we

study the superconductive phases in the Lifshitz background. We obtain similar

results as in the usual AdS black hole background. In Sec. 4, we consider the zero

temperature limit of our system and we conclude there is no hard gap for the AC

conductivity.

aFor recent review, see Ref. 7.
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2. Gravity Dual of the Lifshitz Fixed Point

We begin with the equilibrium properties of the strongly coupled thermal field at

Lifshitz-like fixed point, by analyzing the Lifshitz black hole solutions.

2.1. Lifshitz black hole solutions

The Lifshitz scaling is defined by

t→ λzt , x→ λx , (1)

where z is called dynamical exponent. The metric with this symmetry was first

found in Ref. 20:

ds2 = L2

(

− dt2

r2z
+
dx2 + dy2

r2
+
dr2

r2

)

, (2)

where 0 < r < ∞ and L sets the scale for the radius of curvature. For z = 1,

this geometry is anti-de Sitter space–time. For z > 1, it is a candidate for the dual

gravity of a field theory with Lifshitz scaling.

The tidal forces diverge on the “horizon” at r → ∞ unless z = 1 and this implies

that the metric (2) has no global extension.31 To describe the physics of the dual

field theory at finite temperature, black hole solutions with asymptotical Lifshitz

metric (2) were studied in Refs. 21–25.

Recently, a 4D black hole solution which asymptotes to the Lifshitz space–time

(2) was constructed.27 The action is

S =
1

2

∫

d4x
√−g(R− 2Λ)

−
∫

d4x
√
−g

(

e−2φ

4
FµνF

µν +
m2

2
AµA

µ + (e−2φ − 1)

)

, (3)

where Λ = − z2+z+4
2 , m2 = 2z and F = dA. The gravitational constant and curva-

ture radius are set by 8πG4 = 1 and L = 1 respectively. With this convention the

equations of motion are

F 2 = −4 ,
1√−g∂µ

(√−ge−2φFµν
)

= m2Aν ,

Rµν = e−2φFµλF
λ
ν +m2AµAν + Λgµν +

(

2e−2φ − 1
)

gµν ,

(4)

and the black hole solution of this system isb

ds2 = −f(r) dt
2

r2z
+
dx2 + dy2

r2
+

dr2

r2f(r)
,

f(r) = 1− r2

r2H
, e−2φ = 1 +

r2

r2H
, A =

f(r)√
2r2

dt .

(5)

bThere is a factor 1/
√
2 missing in the expression (2.5) of the massive vector field in Ref. 27.
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In the rest of this paper, we will use this solution to discuss the transport and

superconductivity.

2.2. Thermodynamics

We first review the thermodynamics of this black hole proposed in Ref. 27. Our

calculational procedure follows.31 According to the AdS/CFT dictionary, the par-

tition function of the bulk theory is identified to that of the dual field theory. The

path integral over metrics is dominated by the saddle point g∗, and the partition

function is

Z = e−SE[g∗] , (6)

where SE [g∗] is the Euclidean action evaluated on the saddle. This action must

contain extrinsic boundary terms and intrinsic boundary terms in order to render

the finiteness of the on-shell action. This was already given in Ref. 27:

SE = −1

2

∫

d4x
√
g(R − 2Λ)

+

∫

d4x
√
g

(

e−2φ

4
F 2 +

m2

2
A2 +

(

e−2φ − 1
)

)

+

∫

r→0

d3x
√
γK − 1

2

∫

r→0

d3x
√
γ

(

− 27

8
+

7

2
φ+

7

2
φ2

)

− 1

2

∫

r→0

d3x
√
γ

((

17

2
+ 7φ

)

A2 +
13

2
A4

)

, (7)

where γ is the induced metric on the boundary r → 0 and K is the trace of the

extrinsic curvature. The Dirichlet boundary condition is imposed on the massive

vector field.c

A saddle is obtained by Wick rotating Eq. (5):

ds2∗ = f(r)
dτ2

r2z
+
dx2 + dy2

r2
+

dr2

r2f(r)
, A = −i f(r)√

2r2
dτ . (8)

The temperature of the system is

T =
1

β
=

1

2πrzH
, (9)

determined by the absence of the conical singularity at r = rH .

We can now evaluate the action (7):

SE [g∗] = −βLxLy
2r4H

= −2π2LxLyT , (10)

cThat is cN = 0 in the expression (3.3) in Ref. 27. We rewrote that expression into Euclidean
space and substitute the specific values of c0–c5. There is a minus sign difference of c1–c5 here
from those given in App. A of Ref. 27.
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and the free energy

F = −T logZ = TSE[g∗] = −LxLy
2r4H

= −2π2LxLyT
2 , (11)

as given in Ref. 27.

As a check, the entropy

S = −∂F
∂T

= 4π2LxLyT , (12)

coincides with the Bekenstein–Hawking entropy S = 2πA with the area of the event

horizon A = LxLy/r
2
H and the unit convention 8πG = 1.

The boundary stress tensor resulting from (7) isd

Tµν ≡ − 2√−γ
δS

δγµν

= Kµν −
(

17

2
+ 7φ+ 13A2

)

AµAν −Kγµν

+
1

2

(

− 27

8
+

7

2
φ+

7

2
φ2

)

γµν

+
1

2

((

17

2
+ 7φ

)

A2 +
13

2
A4

)

γµν , (13)

then the internal energy and pressure of boundary theory following27 are respec-

tively

E = −LxLy
√−γT tt =

LxLy
2r4H

,

P =
1

2
LxLy

√−γT ii = LxLy
√−γT xx =

LxLy
2r4H

.

(14)

Thus we have

E = P = −F =
1

2
TS . (15)

The first law of thermodynamics E + P = TS is satisfied as given in Ref. 27.

2.3. Finite chemical potential

Now we consider a probe gauge field fluctuation Aµ in the Lifshitz black hole

background. That means we need to add another Maxwell term to the original

action (3)e

S = −1

4

∫

d4x
√−gFµνFµν . (16)

dThere are also some minus sign differences between the expression we give and the one in (3.4)
of Ref. 27.
eIn this subsection and the rest of this paper, A and F should be distinguished with those in the
original action (3) where the vector field is not a gauge field. From now on, by Aµ and F we mean
the Maxwell fluctuation and its strength.
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For simplicity, we ignore the backreaction. It means that Aµ is a small perturbation

and the metric is still the same as (5). This vector field is expected to support a

charge current operator Jµ in the dual field. The equation of motion of Aµ is

1√−g ∂µ
(√−gFµν

)

= 0 . (17)

If we only consider the zero component of Aµ, A = φ(r)dt, then we have

φ′′ +
z − 1

r
φ′ = 0 . (18)

Near the boundary,

φ = φ(0) + φ(1)r
2−z , (19)

where φ(0) and φ(1) are chemical potential and charge density respectively in the

dual field theory if z < 2. In the special case z = 2,

A0 = µ0 − ρ log
r

r∗
. (20)

The coefficient ρ of the log term is precisely the charge density, which in grand

canonical ensemble, is defined as the derivative of the boundary action term with

respect to the chemical potential µ0 (see also Ref. 38 for related discussion).

3. Superconductivity

In this section, we will build an Abelian–Higgs model33,12 in the Lifshitz black hole

background and study the superconductive phase. We introduce a new U(1) gauge

field Aµ which is different from that in the action (6) and also introduce a complex

scalar ψ. We assume that the background response is negligible for simplicity.

3.1. Superconductive phases

Considering the Lagrangian density

L = −1

4
FµνFµν − |∇ψ − iAψ|2 − V (|ψ|) , (21)

we have equations of motion for A and ψ are respectively

1√−g ∂µ
(√−gFµν

)

= iq[ψ∗(∂ν − iqAν)ψ − ψ(∂ν + iqAν)ψ∗] , (22)

1√−g ∂µ
(√−g(∂µψ − iqAµψ)

)

− iqAµ(∂µψ − iqAµψ)−
ψ

2|ψ|V
′(|ψ|) = 0 . (23)

We will work in the probe limit, in which Aµ and ψ are taken to be small so that

their backreaction on the space–time metric can be ignored. The metric is still a

four-dimensional Lifshitz black hole with z = 2 in (5).
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Taking the ansatz A = φ(r)dt, ψ = ψ(r), these equations of motion reduce to

φ′′ +
z − 1

r
φ′ − 2ψ2

r2f(r)
φ = 0 , (24)

ψ′′ +

[

f ′(r)

f(r)
− z + 1

r

]

ψ′ +
r2z−2φ2

f2(r)
ψ − V ′(ψ)

2r2f(r)
= 0 , (25)

where ψ can be taken to be real which is allowed by the r-component of (22). For

simplicity we will specialize to a simple potential V (ψ) = m2|ψ|2 with m2 < 0 but

above the Breitenlohner–Freedman bound. Then near the boundary r → 0 the bulk

fields behave as

φ = µ+ ρr2−z + · · · , (26)

ψ = ψ(0)r
ν− + ψ(1)r

ν+ + · · · (27)

with ν± = z+2
2 ±

√

m2 +
(

z+2
2

)2
. At the horizon φ(rH) = 0 and (25) implies

ψ′(rH) = − m2

2rH
ψ(rH) . (28)

For z = 2, as we mentioned before, there is a Log singularity for the second term

on the right-hand side of (26). We will study the regularized on-shell action in the

following. Including φ(r) and ψ(r), the bulk action can be rewritten as

Sbulk = V3

∫

dr
√−g

[

− 1

2
grrgtt(∂rφ)

2 − grr(∂rψ)
2 − gttφ2ψ2 −m2ψ2

]

. (29)

After doing the above integral by part and using the equations of motion, we have

Son-shell = V3

[√
−gφ

(

− 1

2
grrgtt∂rφ

)
∣

∣

∣

∣

rH

rB

+
√−gψ(−grr∂rψ)

∣

∣

rH

rB
+

∫ rH

rB

√−ggttφ2ψ2

]

. (30)

Actually, the properties of boundary behaviors of all three terms in (30) heavily

depend on the parameter ν± related to m. In our discussion, the asymptotical

behaviors of the second and the third term in (30) are suppressed by ψ(r). Using

the asymptotical behaviors of φ(r) and ψ(r), with Eq. (26) replaced by

φ(r) = µ0 − ρ log
r

r∗
+ · · · , (31)

the action can be given by

S = Son-shell = V3

[

− 1

2
ρ

(

µ0 − ρ log
ǫ

r∗

)

+ · · ·
]

, (32)
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where r∗ was introduced in (20). Finally the regulated Euclidean total action of

boundary field theory is given by

S =
V2
T

(

− 1

2
ρµsc +

∫ rH

rB

√−ggttφ2cψ2
c

)

, (33)

where µsc = µ0. We need to integrate the classical solution φc and ψc. The free

energy is obtained by Legendre transformation:

Fsc = TS + µscρV2 = V2

(

1

2
ρµsc +

∫ rH

rB

√−ggttφ2cψ2
c

)

. (34)

For the normal state, the free energy is given by setting ψc = 0 in (33)

Fn = V2

(

1

2
ρµn

)

= V2

(

1

2
ρ2 log

rH
r∗

)

, (35)

where we use the horizon regularity condition A0(rH) = 0 and µn = ρ log rH
r∗

.

In the case with condensation, ν± is simplified to ν− = 1, ν+ = 3 with m2 = −3.

Note that
∫ rH
ǫ

√−ggttφ2cψ2
c has a finite value.

The condensate of the scalar operator O is encoded in the dual field ψ by

〈O〉 = ψ(1) (36)

with the boundary condition ψ(0) = 0. We can solve Eqs. (24) and (25) numerically

and finally get a condensation curve shown in Fig. 1. Near the critical temperature,

this curve is similar to that in BCS theory and that in z = 1 holographic super-

conductor.12 〈O〉 goes to a finite value as the temperature turns below a critical

value. By dimensional analysis, Tc ∼ µ.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

T

Tc

<O2>
2�3

Tc

Fig. 1. Condensation curve at z = 2, m2 = −3, 〈O2〉 = ψ(1).
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0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

T

Tc

DF

V

Fig. 2. Difference of free energy curve with and without condensation, ∆F = Fn − Fsc.

We plot the difference of free energy difference

∆F = Fn − Fsc = V2

(

1

2
ρ(µn − µsc) +

∫ rH

ǫ

√−ggttφ2cψ2
c

)

, (37)

where µn, µsc mean chemical potential at the normal and superconducting phase

respectively. Figure 2 demonstrates that the free energy for superconducting state

is lower below critical temperature.

3.2. Conductivity

In order to compute the electric conductivity, we follow the procedure in Ref. 31.

In this paper we work in the probe limit so that the fluctuation of the metric or

the massive gauge field is ignored. For the conductivity only fluctuation Ax(r) is

relevant and let us work in the zero spatial momentum limit. Together with the

background φ and the fluctuation Ax,

A = φ(r)dt +Ax(r)e
−iωt dx . (38)

From the Maxwell equation,

1√−g ∂µ
(√−gFµx

)

= 2ψ2Ax , (39)

we find

A′′

x +

[

f ′(r)

f(r)
− z − 1

r

]

A′

x +

[

ω2r2z−2

f2(r)
− 2ψ2

r2f(r)

]

Ax = 0 . (40)
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At the horizon we choose the infalling boundary condition,

Ax ∝ f(r)−iωr
z

H
/2 . (41)

Near the boundary, the field behaves as

Ax = Ax(0) +Ax(1)r
z + · · · , (42)

where Ax(0) gives the background electric field in the dual field theory Ex = iωAx(0)
and Ax(1) is related to the expectation of electric current Jx.

For the gauge field (38), the Maxwell action reduces to

S = −2

4

∫

d4x
√−g

[

grr(gxxA′ 2
x + gttφ′2)− gttgxxω2A2

x

]

, (43)

then the expectation value of the electric current can be obtained from this action,

〈Jx〉 = δSon-shell

δAx(0)
= − lim

r→0

δS

δ∂rAx
, (44)

with the notation ∂rAx = A′
x(r). Finally, we obtain

〈Jx〉 = lim
r→0

√−ggrr(gxxA′

x) = zAx(1) , (45)

which gives the conductivity

σ(ω) =
〈Jx〉
Ex

= − i

ω

zAx(1)

Ax(0)
. (46)

All left is to solve Eq. (40) in order to obtain the electric conductivity in (46). In

particular, we plot the conductivity at T < Tc. Near ω = 0, we observed a pole for

the imaginary part. It means that DC conductivity becomes a delta function when

condensation happens.

Apparently, there is a gap in Fig. 3. However, as pointed out in Ref. 39, it

may not be the genuine gap. One way to see this is to work out the real part

of the conductivity with low frequency at the zero temperature limit with full

backreaction to the gravity background. However, since the Lifshitz geometry we

0 50 100 150 200
0

5.´10-7

1.´10-6

1.5´10-6

2.´10-6

Ω

T

ReHΣL

0.0000 0.0005 0.0010 0.0015 0.0020
0

1

2

3

4

5

6

7

Ω

T

ImHΣL

Fig. 3. Conductivity at T < Tc. The temperature T = 0.512Tc, T = 0.155Tc and T = 0.090Tc
from up to down in left figure and opposite in the right one.
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used is not a pure gravity solution like RN black hole solution, which also depends on

a background scalar and vector. Together with the condensation field and Maxwell

field we used to describe the strongly coupled electrons, basically we have four

fields plus gravity coupled together. This complex system will bring us principle

difficulties even for numerical calculation.

In order to avoid this five fields (or more than five, since metric contains several

components even for some symmetry ansatz) coupled problem, we shall again use

the probe approximation to try to approach the zero temperature limit of the system

in the next section.

4. Zero Temperature Limit at z = 2

We shall consider the zero temperature limit explicitly. As we mentioned before,

solutions of equations of motion (24) and (25) heavily depends on the parameter

m2. When we take the zero temperature limit, equations of motion reduce to

φ′′ +
z − 1

r
φ′ − 2ψ2

r2
φ = 0 , (47)

ψ′′ − z + 1

r
ψ′ + r2z−2φ2ψ − m2ψ

r2
= 0 . (48)

Now the horizon localizes at r = ∞. In order to determine the leading order behavior

near r = ∞, we try the following ansatz:

φ = r−λ1 , ψ = ψ0 − ψ1r
−λ2 , (49)

where we assume that λ1 and λ2 both are not negative. Note that we have used

scaling symmetry to set the coefficient in φ to one. Using (47) and z = 2 we obtain

ψ2
0 =

λ21
2
. (50)

Note that (50) is also true for ψ0 = 0. Using the ansatz (49) and (48) we have the

equation near r = ∞
− ψ1λ2(λ2 − 2)r−λ2−2 +

(

ψ0 + ψ1r
−λ2

)

r2−2λ1 −m2r−2
(

ψ0 + ψ1r
−λ2

)

= 0 . (51)

There are several consistent boundary conditions we would like report as follows.

4.1. ψ0 = λ1 = 0

For ψ0 = λ1 = 0, by analyzing (51) we found that near r = ∞ we require

ψ1 = 0 . (52)

Then we have the trivial asymptotic solution for ψ. Actually it is easy to observe

that

φ = const , ψ = 0 (53)

is an exact solution for equations of motion (47) and (48). However, this solution

with ψ = 0 is not interesting because it gives no condensation.
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4.2. ψ0 = λ1 6= 0

In this case, (51) reduces to

− ψ1λ2(λ2 − 2)r−λ2−2 + ψ0r
2−2λ1 −m2r−2ψ0 = 0 . (54)

4.2.1. m2 6= 0

For nonvanishing m2, the only consistent boundary conditions is

m2 = 1 and λ1 = 2 . (55)

In this case, λ2 > 0.

4.2.2. m2 = 0

For vanishing m2, the only consistent boundary condition is

− λ2 − 2 = 2− 2λ1 and ψ1 =
λ1

λ2(λ2 − 2)
. (56)

4.3. Numerical result

From now on we focus on the m2 = 0 case and try to solve the system. In this case

the IR asymptotic solutions become

φ = r−λ1 , φ′ = −λ1r−λ1−1 , (57)

ψ =
λ1√
2
− λ1

(2λ1 − 4)(2λ1 − 6)
r4−2λ1 , ψ′ =

λ1
(2λ1 − 6)

r3−2λ1 . (58)

Let us turn to the UV boundary (r = 0) asymptotic behaviors. For normalizable

ψ(r → 0) we have

φ = µ+ ρr2−z + · · · , (59)

ψ = ψ(0)r
ν− + ψ(1)r

ν+ + · · · (60)

with ν± = z+2
2 ±

√

m2 +
(

z+2
2

)2
. For z = 2 and m2 = 0, the second term for

φ has a Log divergence and ν− = 0 as we mentioned before. Now we choose the

normalization condition ψ(0) = 0 as a UV boundary condition.

4.3.1. ψ solution

Now one can numerically integrate the IR solution to UV boundary and adjust λ1
so that the solution for ψ is normalizable. We shall show the numerical result for

ψ in Fig. 4. Using the shooting method, we found λ1 = 2.43308.
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Fig. 4. Solution of ψ at z = 2, m2 = 0, λ1 = 2.43308.

4.3.2. Conductivity at zero temperature limit

Consider the conductivity at zero temperature limit. The equation of motion for

Ax reduces to

A′′

x −
z − 1

r
A′

x +

[

ω2r2z−2 − 2ψ2

r2

]

Ax = 0 . (61)

For z = 2, the above equation can be rewritten as

A′′
x

r2
− A′

x

r3
+

[

ω2 − 2ψ2

r4

]

Ax = 0 . (62)

Using the new variable u = r2 we obtain the equation of motion

−A′′

x +
ψ2

2u2
Ax =

ω2

4
Ax . (63)

This is nothing but Schrödinger equation with energy ω2

4 . Compare with z = 1,

where one does not need to change the variable in order to obtain the Schrödinger

equation, for z = 2 we need a new variable u = r2. It is easy to see that condensation

field control the potential by V (u) = ψ2

2u2 . And a little algebra will show that

conductivity is related to reflection coefficient of the wave under the potential. In

another word, conductivity is proportional to the transmission coefficient T̃ . More

explicitly, the approximate Jeffreys–Wentzel–Kramers–Brillouin (JWKB) solution

for T̃ is

T̃ ∼ exp

{

− 1

~

∫ b

a

dr
√

V (r) − E

}

, (64)

where a < r < b is the region where V is higher than E.
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Following the analysis in Ref. 39, we shall ask whether there is a hard gap in

conductivity. The way to answer this question is to see whether the conductivity in

zero temperature limit vanishes or not. Let us focus on the condensation field both

for m2 = 1 and m2 = 0. For both of them, the potential
√

V (r) is integrable near

the boundary and vanishes near the horizon. That means transmission coefficient T̃

from (64) will be nonzero even at zero temperature. Therefore a nonzero tunneling

probability is always there. Due to the gap behavior for conductivity

Re[σ] ∼ e−∆/T , (65)

which means when T → 0, it will strictly be zero, and we conclude that there is no

hard gap.

Acknowledgments

We acknowledge Wei-Shui Xu, Li-Ming Cao, Yan Liu, Zhao-long Wang and Jian-

Feng Wu, Shuo Yang for useful discussions. Shan-Shan Xu would like to express

thanks to J. X. Lu for his encouragement. Y. Zhou shall thank his advisor Miao Li

for encouraging this work. The work of S.-J. Sin was supported by KOSEF Grant

R01-2007-000-10214-0 and also by NRF grant through CQUeST with grant number

2005-0049409.

References

1. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38,
1113 (1999)], arXiv:hep-th/9711200.

2. A. M. Polyakov, Int. J. Mod. Phys. A 17(S1), 119 (2002), arXiv:hep-th/0110196.
3. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
4. G. Policastro, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 87, 081601 (2001),

arXiv:hep-th/0104066.
5. S. J. Sin and I. Zahed, Phys. Lett. B 608, 265 (2005), arXiv:hep-th/0407215.
6. E. Shuryak, S.-J. Sin and I. Zahed, J. Korean Phys. Soc. 50, 384 (2007), arXiv:hep-

th/0511199.
7. D. Mateos, Class. Quantum Grav. 24, S713 (2007), arXiv:0709.1523.
8. S. A. Hartnoll and P. Kovtun, Phys. Rev. D 76, 066001 (2007), arXiv:0704.1160.
9. S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, Phys. Rev. B 76, 144502

(2007), arXiv:0706.3215.
10. S. A. Hartnoll and C. P. Herzog, Phys. Rev. D 76, 106012 (2007), arXiv:0706.3228.
11. S. A. Hartnoll and C. P. Herzog, Impure AdS/CFT, arXiv:0801.1693.
12. S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008),

arXiv:0803.3295.
13. S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, J. High Energy Phys. 0812, 015

(2008), arXiv:0810.1563.
14. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity

from gauge/gravity duality, arXiv:0903.1864.
15. G. T. Horowitz and M. M. Roberts, Phys. Rev. D 78, 126008 (2008), arXiv:0810.1077.
16. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via

holography: Chern–Simons, edge states, and hierarchy, arXiv:0901.0924.

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:4

61
7-

46
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
A

N
Y

A
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
05

/0
1/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



October 17, 2011 10:36 WSPC/139-IJMPA S0217751X11054632

Holographic Superconductor for a Lifshitz Fixed Point 4631

17. D. T. Son, Phys. Rev. D 78, 046003 (2008), arXiv:0804.3972.
18. A. Adams, K. Balasubramanian and J. McGreevy, J. High Energy Phys. 0811, 059

(2008), arXiv:0807.1111.
19. C. P. Herzog, M. Rangamani and S. F. Ross, J. High Energy Phys. 0811, 080 (2008),

arXiv:0807.1099.
20. S. Kachru, X. Liu and M. Mulligan, Phys. Rev. D 78, 106005 (2008), arXiv:0808.1725.
21. R. B. Mann, J. High Energy Phys. 0906, 075 (2009), arXiv:0905.1136.
22. G. Bertoldi, B. A. Burrington and A. Peet, Black holes in asymptotically Lifshitz

spacetimes with arbitrary critical exponent, arXiv:0905.3183.
23. G. Bertoldi, B. A. Burrington and A. W. Peet, Thermodynamics of black branes in

asymptotically Lifshitz spacetimes, arXiv:0907.4755.
24. U. H. Danielsson and L. Thorlacius, J. High Energy Phys. 0903, 070 (2009),

arXiv:0812.5088.
25. E. J. Brynjolfsson, U. H. Danielsson, L. Thorlacius and T. Zingg, Holographic super-

conductors with Lifshitz scaling, arXiv:0908.2611.
26. M. Taylor, Non-relativistic holography, arXiv:0812.0530.
27. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole,

arXiv:0909.0263.
28. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three

dimensions, arXiv:0909.1347.
29. R. G. Cai, Y. Liu and Y. W. Sun, A Lifshitz black hole in four dimensional R2 gravity,

arXiv:0909.2807.
30. W. Li, T. Nishioka and T. Takayanagi, Some no-go theorems for string duals of non-

relativistic Lifshitz-like theories, arXiv:0908.0363.
31. S. A. Hartnoll, Lectures on holographic methods for condensed matter physics,

arXiv:0903.3246.
32. D. T. Son and A. O. Starinets, J. High Energy Phys. 0209, 042 (2002), arXiv:hep-

th/0205051.
33. S. S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon,

arXiv:0801.2977.
34. N. Aizawa and V. K. Dobrev, arXiv:0906.0257.
35. R. A. Konoplya and A. Zhidenko, arXiv:0909.2138.
36. P. Koroteev and M. Libanov, J. High Energy Phys. 0802, 104 (2008), arXiv:0712.1136.
37. S. Pu, S. J. Sin and Y. Zhou, arXiv:0903.4185.
38. S. A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, J. High Energy Phys. 1004,

120 (2010), arXiv:0912.1061.
39. G. T. Horowitz and M. M. Roberts, J. High Energy Phys. 0911, 015 (2009),

arXiv:0908.3677.
40. E. J. Brynjolfsson, U. H. Danielsson, L. Thorlacius and T. Zingg, J. High Energy

Phys. 1008, 027 (2010), arXiv:1003.5361.
41. E. J. Brynjolfsson, U. H. Danielsson, L. Thorlacius and T. Zingg, arXiv:1004.5566.

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
1.

26
:4

61
7-

46
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
A

N
Y

A
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
05

/0
1/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


