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I. INTRODUCTION

The systematic derivation of a viable cosmological
model including a natural inflationary era in the con-
text of superstring theory has been a challenging prob-
lem. Particularly, in string cosmology, construction of
a bridge between a string-inspired brane-world scenario
based on a warped geometry and obtaining a supergrav-
ity solution including this warped geometry has been an
attractive subject. If such a supergravity solution sup-
ports nonvanishing fluxes and is consistent with moduli
stabilization, it is even more intriguing.

In this note, we explain slow-roll inflation in the sys-
tem of a D3-brane and an anti-D3-brane (D3) in the
Klebanov-Strassler (KS) background [1]. In Sec. II, we
briefly introduce the massless bosonic fields in the low-
energy limit of type IIB superstring theory and then sum-
marize the KS solution involving a warped geometry, a
deformed conifold, a constant axion-dilaton, and various
NS-NS and R-R form fields with nonvanishing fluxes. In
Sec. III, the effective field theoretic description of the
system of a D3-brane and a D3-brane is given, whose
action is the sum of a Dirac-Born-Infeld(DBI)-type term
and a Wess-Zumino(WZ)-type R-R coupling. In the KS
background, the homogeneous time evolution of the sep-
arated D3D3 shows a slow-roll inflation for a wide range
of parameter space. We conclude this paper with a dis-
cussion.
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II. KLEBANOV-STRASSLER SOLUTION

In this section, we briefly summarize the background
geometry and fluxes on which the system of a separated
D3-brane and a D3-brane lives. The specific form of the
(1+9)-dimensional spacetime under consideration is from
the KS solution with various fluxes and warp factors,
which is obtained by solving the supergravity equations
given in the low-energy limit of type IIB superstring the-
ory.

1. IIB Superstring Theory and Low Energy
Limit

In (1 + 9) dimensions, five superstring theories are
known: type IIB, type IIA, heterotic E8 × E8, heterotic
SO(32), and type I. We are interested in the type IIB su-
perstring theory involving only closed oriented strings,
whose characteristic mass scale is given by the string
tension 1/

√
α′ (the corresponding string length scale is

ls =
√

2πα′) and whose mutual interaction is propor-
tional to the square of string coupling g2

s .
When the string tension approaches infinity (α′ →∞),

all the massive modes of higher nodes decouple, and
we obtain type IIB supergravity in ten dimensions as
a low energy effective theory, which involves only mass-
less fields (zero modes) and quadratic derivatives. The
bosonic sector of the closed strings is composed of six
fields completing a N = 2 supergraviton multiplet, as
summarized in Table 1. In a subsequent subsection we
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Table 1. Massless bosonic fields in type IIB supergravity

Massless bosonic fields

Sector NS-NS R-R

Two-form Two-form
(self-dual)

Names Graviton Dilaton
field

Axion
field

Four-form

field

Fields Gµν Φ Bµν C Cµν Cµνρσ

(B2) (C2) (C4)

Degrees 35 1 28 1 28 35

Field Hµνρ Fµνρ Fµνρστ

Strengths (H3) (F3) (F5)

Role
Metric

Matter
(Geometry)

Fig. 1. Ten-dimensional spacetime given by the Klebanov-
Strassler solution.

deal with the classical equations of motion for type IIB
supergravity and obtain the KS solution.

2. Deformed Conifold and Klebanov-Strassler
Background

Superstring theories are given in (1+9) dimensions,
but the present Universe in which we live is (1+3) dimen-
sions. To be consistent with the observed Universe, six
spatial dimensions in a superstring theory should be un-
observable and a usual method is to assume that six spa-
tial dimensions are compactified. The ten-dimensional
coordinates that we use are given in Fig. 1.

In the IIB superstring theory under consideration, the
deformed conifold is utilized for the construction of a tip

Fig. 2. (Color online) From conifold with ε = 0 to de-
formed conifold with ε > 0.

of six compact dimensions, for which the metric is

ds2def =
1
2
ε

4
3K

[
1

3K3
(dρ2 + g2

5) + sinh2
(ρ

2

)
(g2

1 + g2
2)

+ cosh2
(ρ

2

)
(g2

3 + g2
4)
]
, (1)

where the function K is a decreasing function of the ra-
dial coordinate ρ,

K(ρ) =
(sinh 2ρ− 2ρ)

1
3

2
1
3 sinh ρ

≈

{(
2
3

) 1
3
(
1− ρ2

10

)
+ · · · as ρ→ 0

2
1
3 e−

ρ
3 + · · · as ρ→∞,

(2)

and gi’s (i = 1, ..., 5) stand for the fundamental one-
forms (vielbeins) of the five angular coordinates. In the
metric, ε is the deformation parameter that smooths the
singular S3 of (g3, g4, g5) at the tip of the conifold, as
schematically shown in Fig. 2.

Our (1+3)-dimensional spacetime is described by Xa’s
(a, b = 0, 1, 2, 3), and the metric Gab is assumed to be flat
for the KS solution, Gab = ηab. In synthesis, the ansatz
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Fig. 3. (Color online) From noncompact deformed conifold
to compact Calabi-Yau orientifold

of the (1+9)-dimensional metric is

ds2 = H− 1
2GabdX

adXb +H 1
2 ds2def , (3)

where H is a warp factor:

H(ρ) = 2
2
3 ε−

8
3 (gsMα′)2I(ρ). (4)

In the warp factor H, the constant M is the R-R three-
form flux and I(ρ) decreases exponentially for large ρ:

I(ρ) =
∫ ∞

ρ

dx
x cothx− 1

sinh2 x
(sinh 2x− 2x)

1
3 (5)

≈


I(0)− 2

(
1
6

) 4
3 ρ2 + · · · as ρ→ 0,

I(0) ≈ 0.71805
3 · 2− 1

3 ρe−
4
3 ρ + · · · as ρ→∞

. (6)

The KS solution involves various NS-NS and the R-R
form fluxes and their field configurations are given in
Table 2.

Since the deformed conifold is not compact along the
ρ-coordinate, the NS-NS 3-form flux from the NS-NS 2-
form field B2 is not explicitly given. In the phenomeno-
logical viewpoint of superstring theory, this ρ-direction
should also be compactified, which means that the large-
ρ region is chopped and is replaced by a compact geom-
etry. An appropriate known candidate is the compact
Calabi-Yau (CY) orientifold whose schematic shape is
shown in Fig. 3. The R-R 3-form flux lives along com-
pact A cycle (red line) and the NS-NS 3-form does along
a compactified B cycle (green line) in the compact CY
orientifold. This surgery is not important for describing
the cosmological evolution of the early Universe which
will be discussed in a subsequent section.

III. A PAIR OF D-BRANE AND D-BRANE IN
KS BACKGROUND

In addition to the perturbative degrees whose bosonic
fields are summarized in Table 1, type IIB superstring
theory also involves various branes as nonperturbative
degrees. They are p-dimensional Dirichlet branes (Dp-
branes), a 5-dimensional Neveu-Schwarz brane (NS5-
brane), and a fundamental string (F1) summarized in
the following: D(-1), D1, D3, D5, D7, NS5, and F1.

Though each D-brane is stable and supersymmetric, a
pair of a D-brane and an anti-D-brane (D-brane) does
not possess supersymmetry and becomes unstable [2].
Between the Dp-brane and the Dp-brane, open string
degrees live, whose low energy modes are a complex
tachyon field T = τeiχ (T̄ = τe−iχ) depicting insta-
bility, two gauge fields Aa

(n) living on each brane, and
two sets of transverse coordinates Xi

(n) representing the
positions of the Dp-brane and the D̄p-brane with dis-
tance `i = Xi

(1) −Xi
(2). The dynamics of the system of

a Dp-brane and a Dp-brane is described by an effective
action that consists of DBI-type term [3] and WZ-type
R-R coupling [4], respectively:

SDD̄ = −Tp

∫
dp+1ξ

[
V(1)(τ, `)e−Φ(X(1))

√
−detA(1)

+ V(2)(τ, `)e−Φ(X(2))
√
−detA(2)

]
,

(7)

SWZ = Tp

∫
V (τ)C ∧ Str eB2+2πα′F̃ . (8)

The DD potential in Eqs. (7) and (8) is based on the
tachyon potential of an unstable Dp-brane V (τ, `) as
V(n)(τ, `) = V (τ)

√
detQ(n) , and A(n) in the square

roots are two (1 + p)× (1 + p) matrices:

A(n)ab = P(n)ab

[
Eµν(X(n))−

τ2

2πα′ detQ(n)
Eµi(X(n))`i`jEjν(X(n))

]
+ 2πα′F(n)ab +

1
detQ(n)

×
{

2πα
2

(DaTDbT +DbTDaT ) +
i

2
[
Eai(X(n)) + ∂aX(n)jEji(X(n))

]
`i(TDbT − T̄DbT )

+
i

2
(TDaT − T̄DaT )`i

[
Eib(X(n))− Eij(X(n))∂bX(n)j

]}
. (9)

In the previous expression, P ab
(n)[· · · ] means pull-back of the closed string fields on the n-th brane, Eµν = Gµν +
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Table 2. NS-NS and R-R form fields and corresponding fluxes.

Field or field strength Solution

Dilaton Φ = Φ0

Axion C = 0

R-R three-form field strength F3 =
Mα′

2

{
g5 ∧ g3 ∧ g4 + d

[
F (g1 ∧ g3 + g2 ∧ g4)

]}
with F (ρ) =

sinh ρ− ρ

2 sinh ρ

NS-NS two-form field B2 =
gsMα′

2
(fg1 ∧ g2 + kg3 ∧ g4)

with f(ρ) =
ρ coth ρ− 1

2 sinh ρ
(cosh ρ− 1)

with k(ρ) =
ρ coth ρ− 1

2 sinh ρ
(cosh ρ + 1)

Self-dual R-R five-form field strength F̃5 = F5 + ∗F5, F5 = B2 ∧ F3

with l(ρ) = f(1− F ) + kF

Bµν raises and lowers the indices in the action, and

detQ(n) = 1 +
τ2

2πα
`i`jGij(X(n)). (10)

The field strength tensor of a U(1) gauge field on the

n-th brane is F ab
(n) = ∂aAb

(n) − ∂bAa
(n), and the co-

variant derivative of complex tachyon field is DaT =
∂aT − i(Aa

(1) − Aa
(2))T . In (8), Str denotes supertrace

and

F̃ =

(
F(1) − idΦ1 i3/2 [DT + iT (iΦ1 − iΦ2)]

i3/2
[
DT − iT̄ (iΦ1 − iΦ2)

]
F(2) − idΦ2

)
, (11)

where iΦn denotes the interior product by Φn regarded
as a vector in the transverse space.

Now, we introduce a D3-brane and a D3-brane in
the KS background. If we consider the toal action
SDD + SWZ, the potential terms of the D3-brane which
are inversely proportional to the warp factor, H−1(ρ(1)),
do not appear due to cancellation between the contribu-
tion from the DBI-type action in Eq. (7) (or the NS-NS
coupling) and that from the WZ-type action in Eq. (8)
(or the R-R coupling), while the contributions are added
up for the D̄3-brane, which is proportional to 2H−1(ρ(2)).
This means that the D3-brane experiences no net force
from the background, but the D3-brane does experience
the attractive force from the background. Resultantly, as
a natural initial configuration, the D3-brane is located at
the position of the warped throat while the D3-brane is
located at the tip of the deformed conifold as shown in
Fig. 4.

Here, we introduce the distance ` between the D3-
brane and the anti-D3-brane as

`i =

{
ρ(1) − ρ(2) ≡ ` for i = ρ

0 otherwise.
(12)

In order to study the cosmological implication of the DD
system, whose main topic is the realization of an infla-
tionary era, we choose the static gauge ξa = Xa, assume

Fig. 4. (Color online) D3 at ρ = ρ(1)0 & ls (blue color)

and D3 at ρ = ρ(2)0 ≈ 0 (red color) in a warped throat of the
deformed conifold.

the absence of nontrivial gauge fields, Aa
(n) = 0, and con-

sider homogeneous open string fields

τ = τ(t), χ = χ(t), ` = `(t). (13)

In the world-volume of the DD system we assume the
flat Robertson-Walker metric

ds2 = −dt2 + a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
,

(k = 0) ,
(14)
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instead of the (1+3)-dimensional Minkowski spacetime
in Eq. (3). In the 6-dimensional space of the deformed
conifold, we also read and substitute the string coupling
gs = eΦ0 , the trivial axion field C = 0, the nonvanishing
NS-NS 2-form field B2, the R-R 2-form field C2, and the
R-R 4-form field C4 from the self-dual R-R 5-form field
F̃5, as summarized in Table 2.

The dynamics of the closed string degrees in the weak
coupling limit is of order 1/g2

s but that of open string
degrees is of order Tp = g−1

s (2π)−p(α′)−
p+1
2 . Therefore,

the interaction between the Dp-brane and the Dp-brane
from the closed string degrees, which is a 1/gs correc-
tion, should be taken into account. When the transverse
distance is large enough (` > `c), the 1-loop correction
[5] provides O(1/`4) order corrections from gravitation
and R-R coupling, whose magnitudes and signatures are
exactly the same. As the distance between D and D
reaches a critical distance, the 1-loop amplitude diverges.
A natural assumption for the coincident DD (` = 0) is to
introduce a finite binding energy per unit area Eb. Inter-
polation of both limits suggests the following correction
to the tachyon potential in the last square bracket:

V(1)(τ, `) = V(2)(τ, `) = V (τ, `)

=
1

cosh(
√
π τ)

√
1 +

τ2`2

2πα′

[
1− Eb/2T3

1 + (`/`c)4

]
,

(15)

reflecting the gravitational and the R-R attractions be-
tween the D-brane and the D-brane. In Eq. (15), `c =(
2κ2

10T 2
3 /Eb

)1/4, where κ2
10 is ten-dimensional gravita-

tional constant.
In Fig. 4, the buoyant D3-brane starts to move to the

sunken D̄3-brane because of these attractive forces, but
they are weak enough due to the nontrivial warp factor.
We assume that ρ(2) is always sufficiently small. Fur-
thermore, to perform the numerical analysis, we set the
position of the anti D3-brane ρ(2) to be fixed at the tip
of the warped throat in the KS background, which nat-
urally gives ρ̇(2) = 0. Note that we consider only the
motion along the radial coordinate ρ and omit the dy-
namics of the angular variables (θ1, θ2, φ1, φ2, ψ) in the
deformed conifold for simplicity, which do not lose gen-
erality. In addition, we do not consider the dynamics of
the tachyon phase field χ(t) = 0.

To perform the numerical analysis for the slow-roll in-
flation in the DD system, we introduce the dimensionless
quantities

t

ls
, a, τ,

ρ(1)

ls
, T̃3 =

T3l
2
s

M2
P

, eb =
Eb
T3
,

`c
ls
, M, ε = exp

(
− πK
gsM

)
, (16)

where MP is the Planck mass and the deformation pa-
rameter ε is given by the R-R 3-form flux M and the

Fig. 5. (Color online) Tachyon potential with Eb = 0.5,
T3 = 1, `c = 1, and ρ(1)min = 3.18.

NS-NS 3-form flux K. An appropriate set of initial con-
ditions is

τ(0) = τ0, `(0) = `0, τ̇(0) = τ̇0, ˙̀(0) = ˙̀
0 (17)

because a(0) can always be fixed to be unity for k = 0
from the Einstein equations. An actual numerical anal-
ysis will be performed under a natural condition of no
initial time derivatives, τ̇0 = ˙̀

0 = 0. In the synthesis,
the expansion rate represented by the value of e-folding
is studied in the space of four dimensionless parameters,
(T̃3, eb, τ0, `0).

As shown in Fig. 5, the area shaded by thick-grey color
stands for the region of sufficient slow-roll inflation over
60 e-folding in the KS background. For comparison, the
area bounded by the dashed line represents the region
of the 60 e-folding condition in the flat background. As
the tension T3 increases, the initial distance `0 decreases,
and the initial tachyon amplitude τ0 increases.

IV. DISCUSSION

The KS solution has constant dilaton and axion con-
figuration, which is proven to be a dynamically-favorable
configuration [6], and other moduli, including the volume
moduli, can also be stabilized by adding D7-branes and
D3-branes [7]. Though we obtained a slow-roll inflation
model based on DD system in the IIB superstring thoery
[8], it suffered from huge supergravity corrections, so its
present form does not generate a natural inflationary era
[9].

When the fluxes are generated on the D3-brane and
are left in the present Universe, it may jeopardize the
cosmological model. As long as the dilaton moduli are
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fixed, they can sufficiently be diluted through the cos-
mological expansion [10]. Because this result is obtained
without R-R form fluxes, an intriguing research direction
may be the inclusion of fluxes both in the D-brane and
the compactified directions.
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