
ar
X

iv
:1

10
4.

23
62

v1
  [

he
p-

ph
] 

 1
3 

A
pr

 2
01

1

The Dropping of In-Medium Hadron Mass in Holographic QCD

Kwanghyun Joa, Mannque Rhoa,b, Yunseok Seoc and Sang-Jin Sina

(a)Department of Physics, Hanyang University, Seoul 133-791, Korea,
(b)Institut de Physique Theorique, CEA Saclay, F-91191 GIf-sur-Yvette, France

(c)Center for Quantum Spacetime (CQUeST), Sogang University, Seoul 127-742, Korea

(November 20, 2018)

Abstract

We study the baryon density dependence of the vector meson spectrum using the D4/D6
system together with the compact D4 baryon vertex. We find that the vector meson mass
decreases almost linearly in density at low density for small quark mass, but saturates to a
finite non-zero value for large density. We also compute the density dependence of the η′
mass and the η′ velocity. We find that in medium, our model is consistent with the GMOR
relation up to a few times the normal nuclear density. We compare our hQCD predictions
with predictions made based on hidden local gauge theory that is constructed to model QCD.
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1 Introduction

If light-quark hadron masses are dynamically generated by the spontaneous breaking of chiral
symmetry as it is commonly accepted in QCD, then it should be possible to “unbreak” the
symmetry by dialing such external conditions as temperature and/or baryonic density. This
means that the mass should change as the quark condensate – that is the order parameter of
chiral symmetry – changes when the the external background such as temperature and/or bary-
onic density is dialled. This phenomenon that reflects the vacuum change in strong-interaction
physics is one of the main lines of research in nuclear and particle physics.

In the case of temperature, the great progress in lattice QCD calculations together with
recent experiments at relativistic heavy-ion colliders has enabled one to start understanding
what is happening at high temperature. However the situation is totally different for dense
baryonic matter such as one expects to encounter in compact stars. Because of the famous sign
problem, lattice methods cannot access cold baryonic matter at high density. While there are
a large number of models anchored on phenomenological or effective field theory approaches
available in the literature, there are no known reliable tools to address the density that exceeds
the normal nuclear matter density n0 ≃ 0.16 fm−3. Thus the density regime involved in compact
stars is theoretically a wide-open area. On the experimental side, the forthcoming accelerators
(such as FAIR/GSI, J-PARC etc.) will probe higher densities, but it will be sometime before
results will become available to help guide the theoretical efforts.

It is the objective of this paper to approach the hadron-mass problem by a holographic
dual method along the line of recent developments in using gravity/gauge duality in top down
approach [1, 2]. The advantage of the holographic approach is that it can handle – albeit in
certain limits – the strong-coupling aspects of gauge theory relevant for dense matter in terms of
weak coupling bulk gravity solutions. The logical procedure would then be the following. First
one checks that the hQCD model so constructed correctly postdicts the observables probed by
nuclear physics experiments, which means up to the normal nuclear matter density n0. It turns
out that this is not an easy task as we will see. Once the first step is taken, then one could
proceed to make predictions beyond the normal density n0 in as yet un-probed regime. The
dense system we shall holographically realize is the confining D4 with the compact baryonic D4
brane geometry discussed in [3, 4].

The reason for resorting to the D4D6 model is because it can accommodate the quark mass
geometrically and we can discuss the condensate 〈ψ̄ψ〉, that we call “chiral condensate”(CC).
Note, however, that since the quark in this model is not a Weyl fermion at zero quark mass limit,
chirality is not defined. Thus it is perhaps more proper to call it “scalar density” of fermion
rather than chiral condensate given that the symmetry involved is not the axial symmetry but
rahter the rotational symmetry of the brane embedding. Nevertheless one may think of it in
terms of chiral symmetry [1, 5], because, based on it, one can still obtain the Gell-Mann-Oakes-
Renner relation, which is one of the signposts of chiral symmetry in hadron physics.

The plan of this paper is as follows. In Section 2, we describe what has been predicted
in the boundary (gauge) sector and where the theory stands vis-à-vis with confrontation with
nature. This will be done anchored on an effective field theory of strong interactions that is
considered to at least partially represent QCD. It will be referred to as “BR scaling” standing
for a circle of related ideas addressing the issue of chiral symmetry in dense medium. The
setup of brane embeddings figuring in our holographic approach to dense matter is given in
Section 3. In Section 4, we apply the formalism to in-medium spectra of the pseudoscalar and
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transverse vector mesons that we are concerned with. Numerical analysis of the mass vs. density
relation is made in Section 5. In Sections 6 and 7, we calculate the pion velocity and dispersion
relation. Comparison with the predictions made by the class of approaches in line with Brown-
Rho scaling is given in Section 8 with concluding remarks. Several details left out in the main
text are relegated to Appendix.

2 In-Medium Scaling In “QCD-Motivated” Approach

In order to streamline our line of reasoning and specify what we are going to compare with, we
first describe the presently available approach to the in-medium mass problem from a “QCD-
motivated” angle1. As mentioned above, there are no model-independent gauge theory (QCD)
tools for dense matter (except at the extreme – perhaps physically irrelevant – density regime
where perturbative QCD is applicable). What we will compare with is a scaling relation that
combines different lines of reasoning anchored on the notion of hidden local symmetry (HLS for
short) [6] combined with chiral perturbation. Specifically the approach we will focus on is what
we shall refer to as “Brown-Rho scaling approach” (BRSA for short) [7].

Originally, the BRSA to how hadron masses behave as the vacuum structure changes
at increasing density was derived from the skyrmion model implemented with a scalar meson,
dilaton, associated with the QCD trace anomaly [7]. It can be given a simpler interpretation in
terms of the constituent quark model to which the skyrmion description should be equivalent
in the large Nc limit in matter-free space and presumably in medium. In the modern version
based on large Nc considerations [8], the constituent quark model should work not only for
very low energy but also for intermediate energy in which deconfinement and spontaneously
broken chiral symmetry co-exist. In the large Nc limit, the constituent quark mass mQ and
the constituent axial-vector coupling constant gA are independent of Nc, and baryons (mesons)
are loosely bound three-quark (two-quark) states. In [8], the Nc-independent mQ is a given
quantity in the matter-free vacuum, and there is nothing one can say from the analysis how
mQ will behave in dense medium. The assumption we make here is that being dynamically
generated by chiral symmetry breaking, mQ will vanish when chiral symmetry is “unbroken,”
i.e., when the quark condensation 〈q̄q〉 → 0. Suppose further that the condensate can be driven
to drop as density is increased, going to zero (in the chiral limit) at a critical density nc. Thus
mQ will continue to drop as density increases.

Now the constituent quark is a quasiparticle in the sense of many-body theory. If one
applies the quasiparicle picture to ANc quark systems where A > 1 for nuclei and nuclear
matter, the issue of how hadron masses behave in A > 1 systems would crucially depend on how
the quasiparticle mass behaves in medium. Thus in the naivest scheme where the quasiparticle
picture is assumed to apply not just to a single hadron but also to many-nucleon systems, the
ratio of the masses in medium (with density n) denoted with the asterisk should scale

m∗
M (n)/mM ≈ m∗

B(n)/mB ≡ Φ(n) (1)

with the number of constituent quarks involved in the hadrons dropping out. Here the subscript
M denotes light-quark mesons other than the pion and B light-quark baryons, i.e., nucleons.

1This is a bit misleading terminology if not a misnomer in that the circle of reasoning involved is not directly
backed by QCD-proper calculations. It is based on various yet-to-be confirmed results inferred from effective field
theories that are supposed to model QCD. We shall adhere to that terminology to distinguish it from hQCD
approaches.
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This is identical to the scaling proposed by Brown and Rho a long time ago [7] based on a
dilaton-implemented skyrmion model. Even if the constituent quark mass is independent of Nc

in the vacuum, it is not known how it behaves in Nc in medium and how it depends on the quark
condensate 〈q̄q〉 as the condensate goes toward zero in the chiral limit as the chiral restoration
is approached. Typically Φ(n) = 1 − Cn/n0 with C = 0.1 ∼ 0.3 [9]. One can offer a plausible
argument that the scaling factor Φ(n) at low density is related to the pion decay constant in
medium

Φ(n)BR ≈ f∗π(n)/fπ. (2)

However it is not really known what happens at a density greater than that of normal nuclear
matter, except near the critical density for chiral phase transition for which hidden local sym-
metry theory [6] makes a simple prediction. In this (HLS) model – which provides a field theory
support to BR scaling, local gauge symmetry plays an important role in giving the scaling

m∗
ρ(n)/mρ ∼ 〈q̄q〉∗(n)/〈q̄q〉 as n→ nc. (3)

This would imply that the vector meson mass goes to zero at the chiral transition. To distinguish
this from the BRS prediction, we shall call this “VM” prediction.2 One of the motivations of
this work is to test the relations (1), (2) and (3) using holographic QCD.

In comparing the hQCD prediction that we are making with the BR/VM prediction
(1)-(3), we should clarify how the scaling behaviors could be assessed. In order to be able
to say which scaling is correct and which is not, one should know how the scalings appear in
physical observables. For instance, in the BRS approach, the scaling figures in nuclear physics as
parameters of the effective Lagrangian used in nuclear forces and in correlation functions. Only
when the quasiparticle picture is a very good approximation will the scaling appear in a simple
transparent form. Otherwise it will be compounded with complex many-body dynamics and it
will not be an easy task to single out the “basic” quantity that is addressed here. With respect
to the present situation in confronting nature, one can say that the scaling (1) is consistent
with – though not confirmed by – a variety of nuclear observables but there is nothing yet to
support or refute the scaling (3). To address this scaling in hQCD is the purpose of this paper.
Ultimately it will be up to experiments to establish the correct scaling relation and confirm or
falsify the predictions of our model.

3 Computational setup: D4 and D6 and the Baryon vertex

In this section, we detail our strategy in addressing dense matter. We will focus on the low
temperature, highly dense system, holographically realized as the confining D4 with the compact
baryonic D4 brane geometry [3, 4]. The non-supersymmetric, confining D4 brane background
with Euclidean signature, is given by

ds2 =

(

U

R

)3/2
(

ηµνdx
µdxν + f(U)dx24

)

+

(

R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)

eφ = gs

(

U

R

)3/4

, F4 =
2πNc

Ω4
ǫ4, f(U) = 1−

(UKK
U

)3
, R3 = πgsNcl

3
s . (4)

2VM stands for the vector manifestation fixed point in hidden local symmetry theory [6].
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This background is related to the geometry with Lorentzian signature by the double Wick
rotation

x4 ←→ t, t←→ x4, U0 ←→ UKK. (5)

The Kaluza-Klein mass is defined as the compactified radius of the x4 direction: MKK = 3
2
U

1/2
KK

R3/2 .
And the bulk parameters (UKK , gs, R) are related to the gauge theory parameters (MKK , gYM ,
λ) as

gs =
λ

2πlsNcMKK
, UKK =

2

9
λMKK l

2
s , R3 =

λl2s
2MKK

, λ = g2YMNc. (6)

By introducing a dimensionless coordinate ξ as dU2

f(U) =
(

U
ξ

)2
dξ2, the bulk geometry is rewritten

ds2 =

(

U

R

)3/2
(

dt2 + d~x2 + f(U)dx24
)

+

(

R

U

)3/2(U

ξ

)2
(

dξ2 + ξ2dΩ2
4

)

, (7)

and U , ξ are related

(

U

UKK

)3/2

=
1

2

(

(

ξ

ξ0

)3/2

+

(

ξ0
ξ

)3/2
)

, f =

(

1− (ξ/ξ0)
−3

1 + (ξ/ξ0)−3

)2

=
ω2
−

ω2
+

U =
UKK

41/3
ξ

ξ0

(

1 +

(

ξ0
ξ

)3
)2/3

= ξ ω
2/3
+ , ξ0 =

UKK

41/3
. (8)

Boundary S1 r(S4) S4

coordinate x0 x1 x2 x3 x4 U (∼ ξ) θ ψ1 ψ2 ψ3

Backgr D4 • • • • •
Baryonic D4 • • • • •

Boundary S1 R3 R2

coordinate x0 x1 x2 x3 x4 ρ θ1 θ2 y φ

Flavor D6 • • • • • • •

Table 1: The brane profile : the background D4, the compact D4 and the probe D6

3.1 The compact D4 baryon vertex

In confining phase, the baryon vertex is a D4 brane wrapping on S4, see Table 1. For the
computational convenience, we expand the internal S4 as R1 × S3. The background metric (7)
takes the form

ds2 =

(

U

R

)3/2
(

dt2 + fdx24 + d~x2
)

+R3/2
√
U

(

dξ2

ξ2
+ dθ2 + sin2 θdΩ2

3

)

, (9)

The induced metric on the compact D4 brane is

ds2D4 =

(

U

R

)3/2

dt2 +R3/2
√
U

[(

1 +
ξ′2

ξ2

)

dθ2 + sin2 θdΩ2
3

]

, (10)
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and ξ′ = ∂ξ/∂θ. The DBI action for a single D4 brane on which Nc fundamental string is
attached is

SD4 = −µ4
∫

e−φ
√

det(g + 2πα′F ) + µ4

∫

A(1) ∧G(4)

= τ4

∫

dtdθ sin3 θ

[

−
√

ω
4/3
+ (ξ2 + ξ′2)− F̃ 2 + 3Ãt

]

=

∫

dtLD4, (11)

where

τ4 = µ4Ω3g
−1
s R3UKK

22/3
=

NcUKK
28/3(2πl2s)

, µ4 =
1

(2π)4l5s

Ãt =
2πα′

ξ0
At F̃ =

2πα′

ξ0
Ftθ. (12)

Since it reduces the number of equations to be solved, we introduce the Legendre transformed
‘Hamiltonian’

HD4 = F̃
∂LD4

∂F̃
− LD4

= τ4

∫

dθ

√

ω
4/3
+ (ξ2 + ξ′2)

√

D(θ)2 + sin6 θ, (13)

where the dimensionless displacement, D(θ), is defined by

∂LD4

∂F̃
≡ −D(θ) =

sin3 θF̃
√

(ω2
−/ω

2/3
+ )(ξ2 + ξ′2)− F̃ 2

. (14)

Then the equation of motion for the gauge field is

∂θD(θ) = −3 sin3 θ, (15)

from which by integrating, we get the solution D(θ)

D(θ) = 2(2ν − 1) + 3(cos θ − 1

3
cos3 θ), (16)

where the integration constant ν determines the number of fundamental strings. Note that νNc

strings are attached at the south pole (θ = 0) and (1 − ν)Nc strings at the north pole (θ = π).
Here we set ν = 0 and then impose smooth boundary conditions (ξ′(0) = 0 and ξ(0) = ξ0) at
the south pole, which means there is no string at the south pole or equivalently all fundamental
strings are attached at the north pole. Note that the numerical solutions of baryon D4 are
parameterized by the initial value, ξ0.

We considered a single compact D4 brane with Nc fundamental strings attached at the
north pole. The tensions of D4 and fundamental strings are balanced to have a stable config-
uration. Assume that all fundamental strings are dangled at the same point3, a cusp at the

3If we take a D4-D6 system with a confining background and consider the baryon vertex as compact D4, both
D4 and D6 get deformed due to the interaction between them through the fundamental string (F1). When the
strings and D-branes are in contact, the length of the F1 tends to be zero while the D-branes are deformed to
replace them for the minimum energy configuration. Therefore the strings connecting D4 and D6 have zero length
and D4 and D6 are in contact at a point.
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north pole of D4, and the location of the cusp is Uc. The force from the D4 brane tension can
be obtained by varying the Hamiltonian of the D4 brane with respect to Uc while keeping other
variables constant;

FD4 =
∂H
∂Uc

∣

∣

∣

∣

∣

fix other values

= NcTF

(

1 + ξ−3
c

1− ξ−3
c

)

ξ′c
√

ξ2c + ξ′2c
, (17)

where TF = 22/3τ4
NcUKK

is the tension of the fundamental strings. To have a stable configuration, the
system needs something to support the compact D4 because the tension of fundamental string
is always greater or equal to the D4 brane tension. That something is probe D6 brane.

3.2 Probe D6 brane

Now, we put the probe D6 brane where the other endpoints of fundamental strings are attached.
The string endpoints can be understood as point charges on D6 brane with At being the gauge
potential that couples to this point source. Then the bulk metric (7) can be written as

ds2 =

(

U

R

)3/2
(

dt2 + d~x2 + f(U)dx24
)

+

(

R

U

)3/2(U

ξ

)2
(

dρ2 + ρ2dΩ2
2 + dy2 + y2dφ2

)

, (18)

where the D6 brane world volume coordinates are (t, ~x, ρ, θα). We assume that the only function
that depends on ρ is y(ρ), with the transverse direction φ set to zero. The induced metric on
D6 brane is

ds2D6 =

(

U

R

)3/2

(dt2 + d~x2) +

(

R

U

)3/2(U

ξ

)2
[

(1 + ẏ2)dρ2 + ρ2dΩ2
2

]

, (19)

where

ẏ = ∂y/∂ρ, R3 =
1

2

λl2s
MKK

, gs =
1

2π

λ

NcMKK ls
, UKK =

2

9
λMKK l

2
s . (20)

The DBI action for Nf D6 brane is

SD6 =

∫

dtLD6 = −Nfµ6

∫

e−φ
√

det(g + 2πα′F )

= −τ6
∫

dtdρρ2ω
4/3
+

√

ω
4/3
+ (1 + ẏ2)− F̃ 2, (21)

where

τ6 = Nfµ6V3Ω2g
−1
s ξ30 , µ6 =

1

(2π)6l7s
, F̃ =

2πα′Ftρ
ξ0

. (22)

To see more clearly the dimensionality of the Lagrangian and other quantities, we introduce the
dimensionless coordinates (ξ̃, Ũ , ρ̃, ỹ) rescaled by ξ0, UKK ,

U = UKKŨ , ξ = ξ0ξ̃, y = ξ0ỹ, ρ = ξ0ρ̃. (23)

Hereafter we shall drop the tilde in all dimensionless variables unless ambiguous. We define the
constant of motion Q and its dimensionless partner Q̃ from the equation of motion for F̃ :

∂LD6

∂F̃
=

ρ2ω
4/3
+ F̃

√

ω
4/3
+ (1 + ẏ2)− F̃ 2

≡ Q̃. (24)
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This Q represents the number of point sources (number of fundamental strings) and is
related to Q̃ by

Q̃ =
ξ0Q

2πα′τ6
=

λMKK

41/39π τ6
Q. (25)

To compare our model with the real world, we identify the number of fundamental strings Q
with the number of quarks. Then the baryon density nB is expressed in terms of Q

nB =
NB

V3
=

Q

NCV3
=

321/3

81(2π)3
λM3

KKQ̃ = 0.138 λ

(

MKK

1.04 GeV

)3

Q̃ n0, (26)

with the normal nuclear density given by n0 = 0.16 fm−3 = 1.28 × 10−3 GeV3. We note that
from [1], the validity of the solution Eq.(19) is guaranteed if the following condition is satisfied,

λ

N2
c

≪ 1

λ
≪ 1. (27)

And this condition is rewritten as

λ

N2
c

≪ 1

λ
←→ (9UKKMKK)

1/3

(

R

ls

)2

≫ 1,

1

λ
≪ 1 ←→ Nc

21/4
≫ λ (28)

where we have used Eq. (20). It means λ should be larger than 1 but less than Nc. Therefore if
we take Nc=3, the ’t Hooft coupling λ cannot be greater than 2.5 for the validity of the solution.

The “Hamiltonian”4 can be obtained by Legendre transformation;

HD6 = F̃
∂SD6

∂F̃
− SD6

= τ6

∫

dρ

√

ω
4/3
+

(

Q̃2 + ρ4ω
8/3
+

)

√

1 + ẏ2

= τ6

∫

dρV (ρ)
√

1 + ẏ2. (29)

The equation of motion for the embedding y(ρ) is

ÿ

1 + ẏ2
− ẏ2

(1 + ẏ2)2
+

ẏ

1 + ẏ2
∂ log V

∂ρ
− ∂ log V

∂y
= 0, (30)

and the Gauss-law constraint gives

F̃ =
Q̃ω

2/3
+

√

1 + ẏ2
√

Q̃2 + ρ4ω
8/3
+

. (31)

We can solve Eq. (30) if the boundary condition is given. In the Q̃ 6= 0 case, there are funda-
mental strings which connect the baryonic D4 brane with the probe D6 brane. In this case, the

4This is not the energy of the system but a kind of on-shell action. Instead of solving the equation of motion
for At, we use Eq. (24), the constant of motion, which is the solution of At.
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tension of D4 and D6 branes should be balanced so the D6 embedding ẏ(0) has a finite value
so as to have an angle at the tip. This angle is determined by the force balance condition : the
force at the cusp of the probe D6 brane is obtained as

F̂D6 =
∂HD6

∂Uc

∣

∣

∣

∣

∣

fix others

=
Q

2πα′

(

1 + ξ−3
c

1− ξ−3
c

)

ẏc
√

1 + ẏ2c
. (32)

The whole configuration (compact D4+F1+D6) is stationary if there is a condition to balance
the forces between them. The number of baryonic D4 is Q/Nc since the flux from NC strings
should be canceled by a single D4 brane; the ratio between the number of fundamental strings
Q and NC is the number of baryonic D4. The condition which makes the system stationary
(ρ = 0, yc = ξc, the subscript c denotes the position of the cusp) is:

FD6 =
Q

Nc
FD4, (33)

which is the “force balance condition” (FBC), and is simplified as

ẏc =
ξ′c
yc
. (34)

With this, the value of ẏc that satisfies the FBC is uniquely determined for given values of ξo

2 4 6
Ρ

-1.0

-0.5

0.5

1.0

1.5
yv

Figure 1: Left:The embedding solution of baryonic D4 and probe D6 with y∞ = 0.1 and Q̃ =
10−4(thick,blue), 6.7(thin,green), 16.7(dashed,black).

and mq. The embedding solutions of D4 and D6 are drawn in Fig. 1 for a fixed yv(∞) with
varying Q̃. It is not clear why three embeddings have the same y∞, but we draw the figure only
for small ρ because of the lack of the space. As we can see, at the cusp, y(ρ=0), the slope of D6
brane is different for each different Q̃ even for the same y∞.

4 Pseudoscalar and Transverse Vector Meson

As was considered in [1], the mesons are identified as fluctuating fields on flavor brane. Since
we have a non-trivial background, the fluctuations living on the background with a non-trivial
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vacuum are

y(ρ, xµ) = yv(ρ) + ǫ δy(ρ, xµ), φ(ρ, xµ) = ǫ δφ(ρ, xµ)

At(ρ, x
µ) = Āt(ρ) + ǫ δAt(ρ, x

µ), Ax(ρ, x
µ) = ǫ δAx(ρ, x

µ)

δy(ρ, xµ) = e−ikxY (ρ), δφ(ρ, xµ) = e−ikxΨ(ρ)

δAt(ρ, x
µ) = e−ikxat(ρ), δAx(ρ, x

µ) = e−ikxax(ρ) (35)

where ǫ is the expansion parameter which is very small, and ξ2 = ρ2 + y2

U

UK
=

1

41/3
ξ

ξ0

[

1 +

(

ξ0
ξ

)3
]2/3

, ξ0 =
UK

41/3
. (36)

The embedding metric of the probe brane is

ds2 =

(

UK
R

)3/2

U3/2ηµνdx
µdxν +

√

UKR3

ξ2

√
U

[

(

1 + ẏ2v

)

dρ2 + ρ2dΩ2
2

+ǫ2
(

∂aδy∂bδy + y2v∂aδφ∂bδφ
)

dxadxb + 2 ǫ ẏv(∂aδy)dρdx
a

]

. (37)

We plug the field configuration Eq.(35) into the DBI action Eq. (21) and expand it to ǫ2 order
to get the linearized fluctuation. The fluctuating Lagrangian is

LY = τ6
ρ2√
g0

[w
8/3
+

(

−F 2 + w
4/3
+

)

2g0
Y ′2 −

2w
5/3
+ yvyv

′
(

−4F 2 + 3w
4/3
+ (1 + y′2v )

)

g0ξ5v
Y Y ′

+
R3

ξ0

w
2/3
+

2ξ3v

(

F 2k2 +
(

k2 − w2
)

w
4/3
+ )

)

Y 2

+
1

ω
2/3
+ g0ξ10v

{

(

2F 2 + ω
4/3
+ (1 + ẏ2v)

)(

F 2 − 3ω
4/3
+ (1 + ẏ2v)

)

(1 + ξ3v)(4y
2
v − ρ2)

+
(

F 2 − ω4/3
+ (1 + ẏ2v)

)(

2F 2 − 9ω
4/3
+ (1 + ẏ2v)

)

− 2ω
4/3
+ F 2(1 + ẏ2v)y

2
v

}

Y 2

]

(38)

for the scalar field,

LAt = τ6
ρ2

2
√
g0

[

− w
8/3
+ (1 + y′2v )

g0
a′2t +

R3

ξ0

k2w
2/3
+ (1 + y′2v )

ξ3v
a2t

]

(39)

for the longitudinal gauge field,

LaY = τ6
Fρ2√
g0

[

− k2R
3

ξ0

w
2/3
+ y′v
ξ3v

Y at +
w

8/3
+ y′v
g0

Y ′a′t −
2w

1/3
+ yv

(

2F 2 − w4/3
+

(

1 + y′2v
)

)

g0ξ5v
Y a′t

]

(40)

for the cross terms,

Lφ = τ6
ρ2y2v
2
√
g0

[

w
8/3
+ Ψ′2 +

R3

ξ0

k2F 2w
2/3
+ + (w2 − k2)w2

+(1 + y′2v )

ξ3v
Ψ2

]

(41)
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for the Goldstone mode, and

LAx = τ6
ρ2

2
√
g0

[

w
4/3
+ a′2x +

R3

ξ0

k2F 2 + (w2 − k2)w4/3
+ (1 + y′2v )

w
2/3
+ ξ3v

a2x

]

(42)

for the transverse gauge field where

g0 = w
4/3
+ (1 + y′2v )− F 2 =

w4
+ρ

4(1 + ẏ2v)

Q2 + ρ4w
8/3
+

. (43)

Note all variables are dimensionless; we just dropped tilde for all variables. The equations of
motion for the Goldstone mode and the transverse vector5 are

0 =

(

ρ2y2v√
g0
ω
8/3
+ Ψ′

)′

− ρ2y2v
ξ3v
√
g0

(1 + y′2v )ω
2
+

[

w2
sR

3

ξ0
− k2sR

3

ξ0

ρ4ω
8/3
+

Q2 + ρ4ω
8/3
+

]

Ψ

0 =

(

ρ2√
g0
ω
4/3
+ a′x

)′

− ρ2

ξ3v
√
g0

(1 + y′2v )ω
2/3
+

[

w2
xR

3

ξ0
− k2xR

3

ξ0

ρ4ω
8/3
+

Q2 + ρ4ω
8/3
+

]

ax. (44)

For convenience, we will not compute the longitudinal vector and the real scalar that are coupled
to each other. What we will do is to find the dimensionless eigenvalue

M̃2
Ψ = −w2

s

R3

ξ0
= − 9w2

s

42/3M2
KK

and M̃2
ax = −w2

x

R3

ξ0
= − 9w2

x

42/3M2
KK

(45)

which is the thermal mass in dense medium when ks, kx =0. We impose the Neumann boundary
condition at ρ = 0 and the Dirichlett condition at ρ =∞ for Eq. (44): Ψ′(0) = 0→ Ψ(∞) = 0 to
solve the eigenvalue problem. One might wonder why we cannot impose the Dirichlett condition
at ρ = 0. We discarded this possibility since it is unnatural to fix the y-position of the connection
point, which can easily vibrate. The other possibility is discussed in Appendix. And from the
meson spectra for the light quark systems, i.e., η′ and ρ mesons [13], we get the Kaluza-Klein
scale MKK = 1.039 GeV and the asymptotic distance of D4-D6 y∞. And the ’t Hooft coupling
constant λ can be determined from the relation mq = yv(∞)MKKλ

9π .

5 Mass vs Density

The eigenvalue of Eq. (44) is obtained for varying density. For very small values of n/n0, the
mass drops slowly and then in the medium density region the mass drops almost linearly in
density. Such a transition from slow to linear dropping takes place abruptly as mq decreases.
For large density, the mass saturates to a finite value as seen in Fig. 2. The linear dropping
regime is a consequence of transition from concave up to concave down of the mass as a function
of density. Assuming the physical situation corresponds more or less to the linear dropping
regime, we predict the mass shift of the transverse vector meson to be given by

mV (n) = mV (0)Φ(n) (46)

5Here we mean by transverse vector the SO(2) transverse vector. In medium, the Lorentz symmetry, SO(1,3),
is broken, so we cannot say anything in the Lorentz covariant manner, but we still have spatial rotation SO(2).
The unbroken SO(2) symmetry has transverse vectors Ax, Ay when z is the direction of the wave propagation.
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where

Φ(n) ≈ 1− 0.18 · 6
λ

n

n0
. (47)

How does this “prediction” compare with Brown-Rho scaling in nuclear processes? A
variety of indications coming from analyses based on the scaling described in Section 2, i.e.
Eq.(2), are that the vector mesons ρ and ω scale in the vicinity of n = n0 as

Φ(n) ≈ 1

1 + y(n/n0)
with y ≈ 1/4. (48)

This would be roughly reproduced by our model prediction Eq. (47) if λ is about 6. Given
that our model is valid for λ < Nc, we find it to be disingenuous to fix Nc = 3. In fact, there
are no physical quantities in our model that depend on Nc separately. Rather, they depend on
the combination of Nc and gs. We may therefore pick the parameters within the regime where
the theory is valid. Furthermore, the saturation in the dropping mass to a finite value at high
density predicted in this model (see Fig. 2) is seemingly at odds with the VM prediction Eq. (3)
which may be closer to nature although it has not been verified experimentally.

For the Goldstone boson, we get a similar result:

mη′(n) ≈ mη′(0)

(

1− 0.20 · 6
λ

n

n0

)

, (49)

showing that the Goldstone boson mass drops slightly faster than that of the vector meson in
the linear regime. This behavior is not in agreement with what is expected in QCD. In QCD,
the properties of the pion with small mass are still protected by chiral symmetry so that the
mass remains more or less the same in medium as in the vacuum. This aspect will be further
commented on in Section 8.

One might attribute the discrepancies we have here to the nature of the probe limit of
our system. At high enough density, the number of the fundamental strings are high and their
gravitational effect could become significant so the background geometry could be quite different.
This means that we cannot ignore the back reaction of the baryonic D4. Stated differently, what
is happening is that after passing a critical density, the system becomes unstable but there will
be a stable geometry with full back-reaction of the baryonic D4 and the flavor D6. This should
correspond to “beyond quenched approximation” in lattice gauge theory. As is shown in [17],
the gravity back reaction of charge can restore the possibility of phase transition driven by high
density.

One can now see the geometric reason why the mass has to decrease; since the effective
tention τ eff6 (ρ) = τ6V (ρ) in Eq. (29) increases with increasing Q̃, it costs energy to bend the
brane. Note that the fluctuation wave function describes the deformation of the brane. With
our boundary condition Ψ′(0) = 0 the wave function becomes smoother for large Q̃ and the
energy for this less-bending configuration should be lowered. Therefore the large Q̃, the smaller
is the meson mass. This feature is captured in Fig. 7 in Appendix B.
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Figure 2: Left :The vector meson ρ mass with yv(∞)=0.301. Right: The Goldstone boson η′

mass. Our result shows that the Goldstone boson mass drops slightly faster than that of the
vector meson. The normal nuclear density n0 was fixed by taking λ = 6.

6 The “Pion” (η′) Velocity

The pion velocity6 is defined as the ratio between the temporal and the spatial pion decay
constants, f sπ/f

t
π. From Eq. (41), we define the pion decay constant as a wave-function renor-

malization factor of φ,

L4d,φ =
f2π,t
2

∫

dtd3x∂tφ∂
tφ+

f2π,s
2

∫

dtd3x∂iφ∂
iφ

(f tπ)
2 =

τ6R
3

V3ξ0

∫ ∞

0
dρ

ρ2y2v
ξ3v
√
g0
ω2
+(1 + ẏ2v)Ψ(ρ)2, (f sπ)

2 =
τ6R

3

V3ξ0

∫ ∞

0
dρ
ρ2y2v
ξ3v

ω
2/3
+

√
g0Ψ(ρ)2.(50)

The numerical results obtained from these formulae are given in Fig. 3. One sees that the spatial
pion decay constant decreases while the temporal decay constant increases as density increases.
As a result, the pion velocity decreases to almost 0.6 at the normal nuclear density. This is
similar to the result obtained in [18] from the Sakai-Sugimoto model[2]. Our present result
shows more rapid drop of the pion velocity since the spatial part of the pion decay constant does
not increase at all. In QCD-motivated effective theories, one expects that the temporal pion
decay constant decreases, not increases, in density and hence there is again a difference from
the gauge theory sector. This aspect will also discussed in Section 8.

7 Density-Dependent Dispersion Relation

The dispersion relation is the relation between the frequency w and the spatial momentum
k. And the frequency is numerically computed as the eigenvalue of Eq. (44) by varying the
parameter k7. Fig. 4 shows the dispersion relation of the pseudo-scalar (left) and the group
velocity (right). At zero density the dispersion relation is w2−k2 =M2. What we want to see is

6Here we use “pion” as the pseudo-Goldstone mode, not the real pion meson. In our system, pion corresponds
to the η′ meson. In QCD, the η′ is pushed up in mass by the SU(1)A anomaly which is the 1/Nc effect. In the
large Nc limit, it is degenerate with the pion.

7We compute −w2 in Eq. (44) by varying the parameter k2 because of the sign convention −M2 = −w2 + k2.
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Figure 3: The pion decay constants are given as a function of density. The temporal (spatial)
decay constant increases (decreases) from 17 MeV to 21(15) MeV at the normal nuclear density.
The pion velocity is presented as a function of density in the right panel. The pion velocity
decreases when density is increased; at the normal nuclear density, n = n0, the pion velocity

vπ =
√

fsπ
f tπ

is about 0.85.

how this relation is modified in dense medium. Given the dispersion relation, the group velocity
is calculated by dω

dk . In our approach, the dispersion relation has two interesting features. First
there is a sudden decrease of group velocity in the intermediate k region. The group velocity
is linear in k when k is less than the rest mass(0.77 GeV for ρ meson) and vg is a constant
when k is large compared to the mass. But when k is larger than 1, the group velocity suddenly
decreases and saturates to a certain value, Fig 4. Secondly, the group velocity is not 1 in our
dense medium (compare the zero density case, red line in Fig. 4). It slowly decreases when
baryon density is increased.
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Figure 4: Left panel: The dispersion relation for the transverse vector with yv(∞) =0.303.
The eigenvalue w is plotted. The solid lines correspond to Q̃ = 0 (red), .2(green), 1(skyblue),
6(pink) as a function of k. Middle panel: dw

dk as a function of k. Right panel: The group velocity

vg =
dw(k)
dk |k→∞ is given and for each line.
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8 Remarks and Conclusion

We have solved the embedding function of baryonic D4 and probe D6 with FBC (force balance
condition) with the embedding parameterized by yv(∞) and Q̃. The density dependence of the
meson mass obtained therefrom is studied for the same yv(∞). We find no qualitative difference
between the Goldstone mode and the transverse vector mode: their mass drops substantially, at
the normal nuclear density but does not vanish at high density. Thus chiral symmetry does not
get restored at any density. Both are at odds with what one expects in QCD: The pion mass,
protected by chiral symmetry (though lightly broken), should not change much by density and
chiral symmetry should get restored at least in the chiral limit at large density.

As mentioned in Introduction, whether the vector-meson mass can be taken as an order
parameter of chiral symmetry to be probed in physical observables depends on whether local
fields are relevant degrees of freedom at the phase change driven by density. In the vicinity of
nuclear matter density where the quasiparticle picture should be applicable, hadron masses, both
nucleon and meson, do seem to drop proportionally to the pion decay constant (more precisely
the time component f tπ). The drop is roughly 20%. Our model agrees with the BRS/VM scenario
when we take ’t Hooft coupling λ =6. The value of λ needed to fit the mass drop near n0 is
around 6, which exceeds 2.5, the bound for the validity of the scheme for Nc=3. The number
of colors Nc, however, figures nowhere in our analysis and hence need not be fixed to any value.
Hence taking λ=6 does not spoil the validity of our model.

It should be stressed, however, that it is not obvious that the system could be described in
terms of quasiparticles in the vicinity of the phase change. The system could be totally “melted.”
Up to day, searches for the evidence of vanishing vector meson mass in experiments have not
yet come out positive. Therefore our hQCD result that the vector meson mass cannot vanish
is not ruled out by nature. It remains to see what happens when 1/Nc and 1/λ corrections are
made to the model.

Let us consider the pion velocity for which there are results in effective field theories in the
QCD sector. Effective field theory encompassing the current algebra relations and spectral de-
composition and using linear density approximation predicts that the Gell-Mann-Oakes-Renner
relation – which is satisfied in the matter-free vacuum by the D4-D6 model used here – is given
in medium in terms of the time component of the pion decay constant f tπ as [14]

(f tπ/fπ)
2(m∗

π/mπ)
2 = 〈q̄q〉∗/〈q̄q〉 (51)

which implies that as 〈q̄q〉∗ drops at increasing density, the f tπ will also decrease. The same
line of arguments indicate that the pion mass is largely protected by chiral symmetry so that it
changes little in medium. What we found in this hQCD model seems not to be following the
QCD-anchored intuition.

It is intriguing and perhaps significant, however, that in this hQCD model, the left hand
side (LHS) and the right hand side (RHS) of Eq. (51) are balanced even though (f tπ/fπ)

2

and 〈q̄q〉∗/〈q̄q〉 separately behave differently, as one can see in Figs. 3 and 5. In our model,
〈q̄q〉∗/〈q̄q〉 ≈ 0.99, f tπ/fπ ≈ 21/17 and m∗

π/mπ ≈ 0.8 at n=n0. So in Eq. (51) LHS ≈ 0.95
and RHS ≈ 0.99. The GMOR relation appears to hold even at finite density – as it does in
matter-free space – in our hQCD model. So if there were any defect in one, the same would be
present in the other.

What can be happening with the BRS/VM can be understood more clearly in hot matter.
Suppose that the relevant low-mass degrees of freedom near chiral restoration are the pions only.

14



0.5 1.0 1.5 2.0 2.5 3.0

n

n0

0.2

0.4

0.6

0.8

1.0

mΠHnL2 fΠ
tHnL2

fΠ2 mΠ2

Figure 5: The graphical presentation of the GMOR relation is given as a function of density.

The dashed line is for (f tπ/fπ)
2(m∗

π/mπ)
2 and the solid line for the fermion condensate, 〈ψ̄ψ〉(n)

〈ψ̄ψ〉
.

At n0 with ’t Hooft constant λ=6, 〈ψ̄ψ〉(n0)
〈ψ̄ψ〉

=0.99..

In this case, one can use chiral effective Lagrangian field theory to compute near the critical
temperature the pion decay constant f tπ – which is found to be equal to the axial susceptibility
µA – which is not zero, whereas the space component f sπ tends to zero, hence finding vπ → 0 [10].
This result is drastically modified when the vector meson mass drops to zero (in the chiral limit)
as in BRS/VM [15]. In this case, both f sπ and f tπ drop to zero, with the vπ going to 1. What
happens is that the the zero-mass vector meson cancels the pion contribution in f tπ. The situation
is not as clear in density as in temperature. However simulating dense matter with skyrmions –
which is essentially the same as the BRSA – shows that vπ behaves similarly in density [16].

The glaring differences between the the two – hQCD and QCD-motivated – approaches
raise the big question as to where the defects are and how to remedy them. While the QCD-
motivated approaches are found to be consistent with observations up to the density probed by
experiments, going beyond that density remains unverified and hence could very well be incorrect
due to the lack of reliable theoretical tools to handle strong-coupling regimes. On the other
hand, the hQCD-based models – seemingly inconsistent with available observations in hadron
physics – can more readily access the strong-coupling regime within certain approximations.
Connecting the two approaches will likely provide the means to unravel the structure of the
poorly understood cold dense matter system. To improve the situation for hQCD we first
have to consider the back-reaction of the gravity to the probe brane, that is, the gluon-fermion
interaction effect. The situation is quite similar in the Sakai-Sugimoto model. It is possible
that this increasing tendency in both the pion decay constant and the quark condensate for
increasing density is due to the large Nc nature. In that case, we need to consider the finite Nc

effect, which is beyond the gravity approximation. The result on the pion velocity vπ presents
also a conflict between the dual descriptions. The result found in the previous section is that at
increasing density, the pion velocity decreases from 1 in the vacuum to near zero at high density.
Model calculations based on the BRS/VM modeling QCD indicate the contrary, that is, the vπ
tends to go back to 1 near the chiral transition point.
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Appendix

A WZ term

Taking from Chapter 19 of [12] the type-IIA super gravity solution of D4 brane

ds2 =
1√
HD4

[

−Wdt2 + d~x2
]

+
√

HD4

[

dρ2

W
+ ρ2dΩ2

4

]

e−2φ̂ = e−2φ̂0
√

HD4, Ĉ
(5)
ty1y2y3y4

= αe−φ̂0(H−1
D4 − 1)

HD4 = 1 +
hD4

ρ3
, W = 1 +

hD4(1− α2)

ρ3
, hD4 =

g(2πls)
4

3ω4
, (A1)

the near horizon limit HD4 = hD4

ρ3
, and renaming the coordinates, we write the non-extremal

solution as

ds2 =

√

U3

R3

[

−fdt2 + d~x2
]

+

√

R3

U3

[

dU2

f
+ U2dΩ2

4

]

, e−φ =
1

gs

(

R3

U3

)1/4

f = 1− U3
K

U3
, Ĉ

(5)
tx1x2x3x4

= − 1

gs

√

1 +
U3
K

R3

(

1− U3

R3

)

(A2)

where the parameters are identified as

ρ = U, hD4 = R3, eφ̂0 = gs, α2 = 1 +
U3
K

hD4
. (A3)

The five form field has its six form field strength, dC(5)

dC
(5)
tx1x2x3x4U

=
1

gs

√

1 +
U3
K

R3
3
U2

R3
(A4)

and its magnetic dual is

C(4) = ⋆
(

dC(5)
)

θψ1ψ2ψ3

=
√
ggttg11g22g33g44gUUdC

(5)
tx1x2x3x4U

=
1

gs

R6

U2
sin3 θ Ω3

√

1 +
U3
K

R3
3
U2

R3
= 3

R3

gs
sin3 θ Ω3

√

1 +
U3
K

R3
. (A5)

Note that the volume of Sn is

dSn−1V = sinn−2(φ1)sin
n−3(φ2) · · · sin(φn−2)dφ1 · · · dφn−1

dΩ4 = sin3 θdΩ3. (A6)
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B Other boundary condition

In our treatment given in the main text, we used the Neumann boundary condition (hereafter
N). Here let us consider the Dirichlet boundary condition (hereafter D) in computing the meson
spectrum

Ψ(0) = 0 −→ Ψ(∞) = 0. (B1)

The spectrum is the same as with the Neumann boundary condition at Q̃=0 but different
at finite Q̃. The ground-state and the excitation spectra are presented in Fig. 6 with two
different boundary conditions and yv(∞) =0.1 (left), 1(right). The mass computed with D
increases when the density is increased, while the mass with N decreases. The origin of this
difference can be seen Fig. 7. With N, the wave function is more flattened for larger density,
so the energy cost is lowered. But with D, the wave function bends increasingly more near
the origin when Q becomes large. With D, the system costs more energy to fluctuate from the
vacuum and with N, the energy cost is lowered as the density is increased.
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Figure 6: The meson masses is presented as a function of the dimensionless density, Q̃. The red
thick line is of the Dirichelet boundary condition and the blue dashed line is of the Neumann.
TOP - The masses of lowest and first two excitations of η′ are plotted from bottom. Top-left
figure is of y∞=0.1 and top-right is of y∞ = 1. BOTTOM - The masses of lowest and first two
excitations of transverse vector meson are plotted from bottom and the same parameters are
used as top figure.
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Figure 7: Top : The wave function of δφwith Dirichlet (Left) boundary condition and with
Neumann (Right) boundary condition. Bottom : The wave function of δφ.
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