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Abstract: Zero-shot recognition (ZSR) aims to perform visual classification by category in the absence
of training samples. The focus in most traditional ZSR models is using semantic knowledge about
familiar categories to represent unfamiliar categories with only the visual appearance of an unseen
object. In this research, we consider not only visual information but context to enhance the classifier’s
cognitive ability in a multi-object scene. We propose a novel method, contextual inference, that uses
external resources such as knowledge graphs and semantic embedding spaces to obtain similarity
measures between an unseen object and its surrounding objects. Using the intuition that close
contexts involve more related associations than distant ones, distance weighting is applied to each
piece of surrounding information with a newly defined distance calculation formula. We integrated
contextual inference into traditional ZSR models to calibrate their visual predictions, and performed
extensive experiments on two different datasets for comparative evaluations. The experimental results
demonstrate the effectiveness of our method through significant enhancements in performance.

Keywords: zero-shot recognition; similarity measures; distance-weighting; knowledge graph;
semantic embedding

1. Introduction

Demands to expand the scale of categories available for object recognition have been aroused by
a rapid increase in the sizes and types of image data and the recent success of large-scale recognition
systems [1]. However, manually constructing additional annotations and retraining existing image
classifiers through supervised learning is impractical and costly, which limits the scalability of existing
systems. To alleviate that limitation, a variant of transfer learning, zero-shot learning (ZSL) has drawn
the attention of the computer vision community [2–5].

ZSL is inspired by the human capacity to recognize objects without any visual samples using
background knowledge already read or heard. The key is to transfer semantic knowledge about
familiar (seen) objects to imagine unfamiliar (unseen) objects. For instance, a human can easily
recognize an unseen zebra based on visual experiences with a horse and a watermelon, if it is known
that a zebra looks like a horse with stripes on its body.In the same way, the objective of ZSL methods
is to increase the cognitive capability of a visual classifier by using annotated training sets of seen
class labels and external knowledge about the semantic relations between seen and unseen categories
to allow the classifier to infer the class labels of novel objects. In this context, external knowledge is
generally represented as non-visually using attributes [6,7], semantic embedding [8], and knowledge
graphs [9,10]. To transfer knowledge, zero-shot recognition (ZSR) assumes that visually similar objects
tend to also be semantically similar, which implies that the vector representations of their class labels
are close. Most existing ZSL methods thus focus on learning to recognize inherent visual features (e.g.,
color, shape, and texture) and providing a map between the visual and semantic representations.
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However, the correlation between visual and semantic information is not always assured.
For example, the unseen object, monitor, may be confused with a frame or a window because it
has a square, edged shape with inside contents. Thus, existing ZSR models have critical limitations
because they rely on visual information about a single unseen object. In contrast, when people try to
identify an unseen object, they naturally refer to the circumstances surrounding the object, such as
other objects and their relative positions, as well as the visual characteristics of the target object.
In addition, it is common to infer more from relatively close objects than from more distant objects
(e.g., the toothpaste beside a toothbrush and not the mirror in the scene). When modeling a zero-shot
classifier, the correct label monitor could be inferred as appropriate when the surroundings suggest an
office environment through the appearance of seen objects such as a keyboard and a notebook. That is,
the classifier should use surrounding information to determine the type of object appropriate in a
given environment.

In this paper, we use those intuitions to propose a novel ZSR method that leverages context based
on similarity measurements and distance-weighting between a target unseen object and surrounding
objects. We aim to enhance the performance of existing instance-level ZSR that relies only on individual
visual information about the target. To identify the context, our method uses cognitive information
about the surrounding objects and obtains their similarity information for the target object using
three different measures on a knowledge graph, a semantic embedding space, and both together.
Moreover, distance weighting is applied to each piece of similarity information to focus on nearby
surrounding objects by defining a distance calculation formula. To evaluate the effectiveness of our
method, we adopted several existing ZSL models as baselines and performed extensive experimental
evaluations on two different datasets containing small and large amounts of target categories.

The main contributions of this work are as follows. (1) We propose an advanced ZSR method
that references to the similarity-based contextual information in a multi-object scene to alleviate
the dependence of traditional methods on visual information about an unseen object. (2) With the
intuition that nearby objects have more reliable relationships with the target object than distant
objects, we newly formulate a distance calculation between the objects’ bounding boxes to enable
distance-weighted contextual inference. (3) Our method maintains modularity and can be integrated
with any instance-level zero-shot classifier because it does not require an additional training process
for the contextual inference. (4) Extensive experiments on two datasets with different target category
scales show that our system offers performance enhancements compared with existing instance-level
and context-aware ZSL models, often by a large margin.

This paper is structured as follows. Section 2 outlines related works and sets baselines for
the evaluation. We detail our method for contextual inference and distance-weighting in Section 3.
Section 4 presents our experiments and results, and Section 5 gives our conclusions.

2. Related Work

2.1. Instance-Level ZSL

Existing ZSL models differ in their use of semantic embedding spaces or other external knowledge
sources. Early models used manually constructed attribute spaces [11–17] to represent categories as
binary vectors that implied the presence of attributes. In general, the use of attributes has seemed
promising [18–21] in various research fields, including ZSL, but it has limited scalability due to domain
dependency and the cost of manual construction. To relax those limitations, semantic word-vector
spaces that are automatically trained on a textual dataset have been used used in more recent ZSL
works [6,22–25]. The word-vector spaces from text corpora, such as word2vec [26] and GloVe [27],
motivated the use of large-scale ZSR with many unseen categories because they are unrestricted
and less costly than manually annotated attributes. Some ZSL works has used knowledge graphs
instead [9,28–30]. In particular, some recent works [9,30] based on a graph convolutional network
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(GCN) [31] have used the WordNet [32] taxonomy to propagate classifier weights from seen to
unseen categories.

Most existing ZSL works make instance-level inferences about an individual unseen object by
transferring external knowledge from seen categories based on visual similarities, and they have
shown promising prediction results in test sets with a specific type of categories such as Caltech-UCSD
Birds (CUB) [33], Stanford Dogs (Dogs) [34], and Animals With Attributes (AWA) [35]. However,
despite many attempts of ZSR with large-scale datasets such as ImageNet [36], which contain various
types of categories for generic objects, instance-level ZSL works have produced comparatively poor
performance, which implies that different types of categories have irrelevant semantic characteristics
despite their visual similarities. Therefore, we consider not only visual prediction about an unseen
object but also its surrounding information to determine the most likely category.

2.2. Contextual Recognition

Many works [37–44] have emphasized the importance of context and tried to enhance recognition
or detection using context as an additional resource. However, they are inappropriate for ZSL,
in which supervised learning cannot be applied. Exploiting context in a ZSR task is still challenging
and not well standardized. Only a few recent works have proposed that a ZSR task be aware of
context. For instance, the authors of [45] leveraged visual context and the geometric relationships
between multiple objects using a conditional random field. The authors of [46] presented a
method based on conditional likelihoods that combined three independent models of contextual,
visual, and prior information. Both of those works complement our research, but we consider visual
candidates of surrounding objects as potential contexts based on similarity measurements and apply
distance-weighting according to the positional differences of the objects. In other words, we propose
a method that effectively exploits contextual information, and we validated our proposed model by
comparing it with several instance-level ZSL models [6,9,22,23] and one context-aware model [45]
through the experiments described in Section 4.

3. Method

3.1. Problem Definition

Let C be a set of class labels c that is split into two disjoint subsets, S = {sm} and U = {un} that,
respectively, denote a set of M seen class labels and a set of N unseen class labels. Under the setting
of the ZSR task, the two subsets of labels satisfy S ∩U = � and S ∪U = C. Each class label has its
representative semantic embedding vector e in a semantic embedding space E ∈ Rde .

For training, a labeled dataset of images Is = {(im, sm)} is given, in which each image is
represented by a di-dimensional feature vector, im ∈ Rdi , and a class label, sm ∈ S. A test dataset
Iu = {(in, un)} is provided for testing in which in ∈ Rdi and un ∈ U. In general, the goal of ZSL is to
learn a classifier f to produce the correct class label for an unseen individual image.

3.2. Model Overview

Traditional ZSR methods classify an unseen object using only its individual visual information.
On the contrary, our proposed model aims to classify an unseen object with the help of contextual
information obtained from its surroundings in a multi-object scene. We define potentially related
surrounding objects under the following assumptions; (1) they represent non-unseen classes and are
not the targets of our recognition task; (2) they are detected by a pre-trained object detector or classifier
before the ZSR of the target object; and (3) each one includes predicted candidates and corresponding
prediction probabilities. Consequently, the surrounding information (SI) of an unseen image feature i
with multiple surrounding objects is specified by the following equations,

SI(i) = {sij}Nsobj

j=1 , (1)
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si = ({(ck, pk)}Ncand

k=1 , d), (2)

where si denotes the surrounding information for a single surrounding object and SI consists of
multiple si s with the number, Nsobj. ck and pk are the class label of the k-th predicted candidate of
a surrounding object and the prediction probability of the corresponding candidate ck, respectively.
In particular, ck ∈ S, and pk is a soft-max value of the prediction score among Ncand candidates.

Our proposed model takes an unseen image feature i and its surrounding information SI(i) as
its inputs and predicts the most likely class label c as its output. Specifically, let the aforementioned
classifying function be f : I → E between a visual feature space I ∈ Rdi and a semantic embedding
space E ∈ Rde for class labels. The classifying function f outputs the semantic embedding vector e
that maximizes the scoring function F as follows and our model finally produces a prediction for the
corresponding class label c of the output semantic embedding vector.

f (i, SI(i)) = arg max
e∈ E

F(i, e, SI(i)). (3)

For the process of ZSR, as shown in Figure 1, our model acts on two collaborating branches,
the instance-level visual inference of an unseen object and the contextual inference with surrounding
information. The visual inference basically follows the process of traditional ZSL models: the extraction
of a feature vector from a target unseen image and the prediction of a visual score for each target
class label using a zero-shot classifier. The contextual inference, a novel process, performs similarity
measurements between each of target class labels and visual candidates of the surrounding objects
to obtain a contextual score.Similarities are measured using a knowledge graph and/or a semantic
embedding space. The prediction of the visual inference is calibrated and advanced by the result of the
contextual inference. More detailed processes and formulations are described in Sections 3.3 and 3.4.
Consequently, the scoring function F for a specific class label can be specified by combining the
instance-level visual inference function G and the contextual inference function H as follows, where α

is a balancing factor for an usage ratio between the visual and contextual scores:

F(i, e, SI(i)) = α · G(i, e) + (1− α) · H(e, SI(i)). (4)

Figure 1. The architecture of our proposed model with an example in an office environment. The model
performs Zero-Shot Recognition (ZSR) on two main branches: the instance-level visual inference and
the contextual inference.The visual inference first infers the class label of the extracted feature vector i1
of the target object, which is a process used by existing methods. A distance-weighted, similarity-based
calibration is then performed between the target and its surrounding objects to refer to the contextual
information, which is the novel process we propose.

As shown in the intuitive and assumptive example in Figure 1, an office environment contains
several objects including the target unseen object (orange bounding box), a monitor, and its surrounding
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objects (blue bounding boxes). The visual inference first predicts the orange-boxed image as a frame,
which has the highest rank due to its square appearance and raised edge, with a monitor, which is
the correct label, ranked third. Using only visual information about a target object can thus lead
to failed prediction. Therefore, we exploit additional context information from the surrounding
objects to calibrate the visual prediction result. Most of the surrounding objects are ranked as likely
to be computer devices, such as a keyboard and a mouse, by the pre-trained image classifier for
seen class labels. However, an unwanted object in the context, such as a hat, could disturb the
contextual inference.Under the assumption that closer objects are more relevant than more distant
objects, the contextual classifier gathers more information from the keyboard and mouse than from
the hat. That proper use of surrounding information enables the classifier to correctly rank the target
as a monitor that is “computer-related”, square-shaped, and edged. We experimentally validate this
overall intuition in Section 4.

3.3. Visual Inference

The visual inference process aims to classify an unseen object using only its individual visual
feature as input. As a result of that process, the classifier predicts a visual score for each unseen class
label as output. In general, classifiers use a model trained with fully supervised learning for seen class
labels or an indirectly trained model based on semantic relations between seen and unseen class labels.
Because the main concept of this paper is the additional use of context, we adopt several existing
ZSR models [6,9,22,23] for the visual inference function G : I → E and use them as baselines in the
comparison of models with and without the contextual inference in Section 4. The G functions used by
the baseline methods to measure the visual scores are specified in Table 1.

Table 1. Visual inference functions of baseline zero-shot recognition (ZSR) models.

Model Function G(i, e)

SJE iT W e
LatEm max1≤j≤K iT Wj e
ConSE cos

( 1
Z ∑c∈S p(c|i) · ec, e

)
GCN ŵe · i

Notations: SJE (Structured Joint Embeddings), LatEm (Latent Embedding), ConSE (Convex Combination
of Semantic Embedding), GCN (Graph Convolutional Network), W (image-semantic embedding matrix),
K (latent variable, K ≥ 2), Z (normalization factor, Z = ∑c∈S p(c|i)), ŵ (predicted classifier weight).

Structured Joint Embeddings (SJE) [6] trains an image-semantic embedding matrix W ∈ Rdi×de

and infers a class label of an unseen object by measuring the distance between an embedded image
feature of the object and unseen semantic embeddings. Latent Embedding (LatEm) [22] tries to relax the
limitation of linearity in SJE by using multiple image-semantic embedding matrices. LatEm proposes a
nonlinear compatibility function with K indexes over the latent choices.

The convex combination of semantic embeddings (ConSE) [23] uses a pretrained image classifier
trained on seen class labels with full supervision. For the inference, softmax-output values p of the
classifier for an input unseen image are used to create its representation vector by weighting the
semantic vectors of seen class labels ec. An unseen class label for the semantic vector nearest to the
representation vector is then predicted as an appropriate class label.

A multi-layer GCN model [9] begins by training an image classifier in the same manner, but it
uses classifier weights from the image classifier as ground-truth to learn predicted classifier weights
with semantic embeddings for class labels and their adjacency matrix as input. At test time, the visual
inference for the GCN conducts a dot-product estimation between an image feature vector i and a
predicted classifier weight ŵ for unseen class labels.
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3.4. Contextual Inference

When encountering an unseen object, humans unconsciously refer to not only its visual
appearance but also the surrounding environment and the types and relationships among nearby
objects to infer its identity. We propose a novel approach that derives a contextual score based on
the associations between an unseen object and its surrounding objects, and calibrates the prediction
results from the visual score of existing ZSR methods. In particular, the associations are obtained
through similarity measures that use external knowledge sources. Furthermore, a distance calculation
formula ensures that nearby surrounding objects are more important to the contextual score than
distant objects.

3.4.1. Similarity-Based Association Measurements

To grasp the context of an unseen object, we determine associations through similarities between
the class label of the target object and those of its surrounding objects. Note that we assume that
the surrounding objects are recognized before beginning ZSR for the unseen object, as explained
in Section 3.2. When measuring similarities for contextual inference, we consider not only the
top-1 classified label of the surrounding objects, but also all potentially-ranked labels of their
candidates. This helps to alleviate the problem of recognizing misclassified surrounding objects
as the representative context and allows our system to consider multiple potential contexts. External
knowledge sources—a knowledge graph, a semantic embedding space, and both together—are used
for three different similarity measurements: semantic similarity (SM), cosine similarity (CS), and the
harmony of both (HM), respectively.

• Semantic Similarity Measurement

The SM metric is defined over documents and is based on the likeness of conceptual meanings [47].
In this paper, we use a hierarchical knowledge graph, ontology, representing the hierarchical concepts
of objects for the SM measurement. Various measures [48] can be used with a knowledge graph,
such as path and depth measures, information content-based measures, feature measures, and hybrid
measures. We adopt three typical path and depth-based measures for our experiments, as presented in
Section 4.2.2. A SM-based association, SSM, between one unseen class label and a single surrounding
object, is given by

SSM(e, si) = max
1≤k≤Ncand

pk · sem(ce, ck), (5)

where the inputs are a semantic embedding e of an unseen class label ce and the surrounding
information si for a single surrounding object. ck denotes a class label of the k-th predicted candidate
for the surrounding object. Each SM value between ce and ck is weighted by pk, a prediction probability
for the candidate that implies the reliability of the measured similarity. An association’s output is the
maximization of the weighted similarities for candidates because finding the best combination of an
unseen class label and all candidates for all surrounding objects is equivalent to finding and combining
the best candidate for each surrounding object.

• Cosine Similarity Measurement

To measure associations, we next use CS, which is available in semantic embedding spaces.
Various types of semantic embedding spaces are used in ZSR, such as manually-annotated
attributes [11,12], text descriptions of images [49], word embeddings [26,27], and rdf graph
embeddings [50]. Among those, the attribute space represents fine-grained concepts of each class label
with a binary value depicting the presence/absence of an attribute, based on human annotated
description (e.g., for attributes horse-like, stripe, and green, ezebra = [1, 1, 0], etiger = [0, 1, 0],
and ewatermelon = [0, 1, 1], respectively). The word embedding space contains vectors learned by neural
net with a certain feature dimension according to the mutual frequency of words in the context in the
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text corpus (e.g., due to simultaneous occurrence of words, “monkey” and “banana”, the magnitude
and direction of emonkey and ebanana can be similar). In terms of ZSR performance, embedding spaces
based on manual construction such as attributes and text descriptions of images are generally more
effective than a word embedding space [6,12,51,52]. However, a word embedding space constructed
in an unsupervised manner still has higher versatility and utility than the other options because it
costs much less and enables large-scale recognition with many class labels [53]. We thus use word
embedding spaces as the semantic embedding space E for the evaluation, although our proposed
model works independently on the type of semantic space. A CS-based association, SCS, is measured
by calculating two vectors, as follows,

SCS(e, si) = max
1≤k≤Ncand

pk · cos(e, eck ). (6)

The overall metric is similar to Equation (5) except for the use of external knowledge and the similarity
measurement. eck denotes a semantic embedding vector for ck in the semantic embedding space E.

• Harmonic Similarity Measurement

As a harmonic approach, we combine the association results of the SM and CS, which implies the
use of both a knowledge graph and a semantic embedding space when referring to the surrounding
information. As a harmonic association, SHM is specified simply with a balancing factor on the two
measurements as follows,

SHM = β · SSM + (1− β) · SCS, (7)

3.4.2. Distance-Weighted Calibration for Multiple Surrounding Objects

Associations for all surrounding objects are eventually synthesized to derive the contextual
inference to calibrate the results of the visual inference. Using the intuition that objects near a target
object offer better context than objects farther away, the context inference applies a distance-weighted
average of associations rather than a simple average. We assume that the bounding boxes, b =

(x, y, w, h) of the objects needed to calculate distance are given, where (x, y) is the center point of a
bounding box and w and h denotes its width and height, respectively.

However, we do not simply use the Euclidean distance between center points. In Figure 2,
the Euclidean distances between the two objects in panels (a,b) are the same, but the actual relative
distances in panel (b) are much smaller. By generalizing all the related cases, we define a distance
calculation equation that relaxes the Euclidean distance with the size of two objects.

d =


√

x̃2 + ỹ2

x̃
x̃ + ỹ

· w̄ +
ỹ

x̃ + ỹ
· h̄

, if x̃ 6= 0 or ỹ 6= 0

0, else

(8)

where x̃ = |x1 − x2| and w̄ = w1+w2
2 . A distance is calculated when center points are not exactly the

same, and it is fixed to 0 otherwise. When calculating the distance, the application of the Euclidean
distance is adjusted to the average width and height of two objects, where the width and height are
referenced using the ratio of the x-axis and y-axis intervals between the objects.

As previously explained, because the context of close objects should be exploited more,
the reciprocal of the distance is considered as a weight. By weighted-averaging all obtained associations,
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the set of S(e, si), and the corresponding weights are combined to derive the contextual score for an
unseen class label as follows,

H(e, SI(i)) =

Nsobj

∑
j

rj · S(e, sij)

Nsobj

∑
j

rj

, (9)

where r = 1/(d + ε) and ε is a smoothing factor whose value is fixed at 0.001 in the experiments.

Figure 2. The Euclidean distances are the same in (a,b) for each case, but the actual distances seem
remarkably different. The upper and lower case of (b) are likely to show an “on” and “attached”
relation, respectively, which represents the definite nearness of the objects

4. Experiments

4.1. Overall Experimental Scenario

The main task in the experiments is to predict an appropriate class label for an unseen object from
among target class labels by using its visual information and the contextual information of surrounding
objects in a multi-object scene. Recall that we assume that the surrounding objects are detected and
recognized by the existing object detector, which is pretrained only on non-unseen class labels and
never on unseen ones. YOLOv2 [54] is mainly used as the object detector, the pretrained image classifier
in Figure 1 and is trained for 80 categories on the COCO dataset [55]. Among those categories, the ones
that share concepts with the unseen class labels are excluded for detection. The namespace of the rest
is matched and anchored to that of a knowledge graph and semantic embedding space (presented in
the following subsections). Moreover, confidence scores provided by YOLOv2 are exploited as the
reliability values p in the aforementioned equations for those whose values are higher than the fixed
threshold of 0.3.

We conduct two experiments with different dataset scales and types of class labels: (1) experiments
on ImageNet categories with less unseen class labels, and (2) experiments on Visual Genome categories
based on the split in [45,56], with relatively more unseen class labels and a larger scale test set.

4.2. Experiments on Imagenet Categories

4.2.1. Dataset

In the first experiment, we use the ImageNet dataset [36] and Visual Genome (VG) dataset [57]
for training and testing, respectively. Each image in ImageNet contains an annotation for only one
category, whereas an image in VG represents a multi-object situation and has multiple annotations.
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We use ImageNet (ILSVRC) 2012 1K, which is composed of 1K class labels and more than
1.2 million images for training, but we consider only 944 class labels with available semantic embedding
as seen classes, with 1,211,266 training images that are used to train some of aforementioned baseline
models for the visual inference. The weight matrix in SJE and 6 weight matrices (i.e., K = 6) in LatEm
are trained with 150 epochs and a learning rate of 0.001. For the GCN, we use the same training settings
as [9], which are 6 convolutional layers with an output channel D of 1024. The classifier weights and
image features are L2-normalized for the GCN and the ADAM [58] optimizer is used with 300 epochs,
a learning rate of 0.001 and a weight decay of 0.0005. The adjacency matrix in the GCN is constructed
based on the WordNet knowledge graph and considers sibling classes as adjacent classes as well.
More details about the knowledge graph are provided in the next subsection.

To adopt 34 unseen class labels for testing, we define and observe four criteria: (1) they are
selected among 360 categories in ImageNet 2010 1K that are disjoint from ImageNet 2012 1K, which is
similar to the settings in [53], (2) they are categories for generic objects, (3) they have available semantic
embeddings, and (4) they are also annotated in VG with more than 20 image instances. Additionally,
we randomly sample a maximum of 200 image instances per class label, which indicates that some
might have fewer than 200. Thus, we have 4720 test images in VG for 34 unseen class labels.

4.2.2. Visual/Semantic Embeddings and Knowledge Graphs

For the visual inference in this experiment, we use the entire model of Inception-V1 [57,58] on the
ConSE baseline model and 1024-dimensional outputs from the top-layer pooling units of Inception-V1
on the other baselines to extract visual features of image instances, which is the same technique used
in other recent ZSL researches [49,59]. We consider Inception-V1 to be reasonably appropriate for our
experimental setting because it is pre-trained on the ImageNet 2012 1K dataset, so that all of our seen
class labels are involved but our unseen class labels are not. Z-score normalization on the dimensions
is applied to extracted image features, and the mean and standard deviation values of the training
visual features are used on testing visual features for normalization.

Our approach uses a semantic embedding space to measure the CS between the class labels of
a surrounding object and a target object. Recall that word vectors are considered to be a semantic
embedding space E in this evaluation. In this experiment, we use a skip-gram model [26] trained on
Wikipedia English in February 2015 with a window size of 10. The dimension of the word vectors is
set to 1000, which is a column dimension of embedding matrices for baselines. All the word vectors
are L2 unit-normed, and all class labels are anchored to their own semantic embedding. Specifically,
each class label that consists of multiple words has a representative semantic embedding that is the
averaged word vector for all the words.

For the SM measurement, a sub-graph of WordNet [32] is used in the proposed model. WordNet
is a large-scale hierarchical database with more than 100K English words. The concepts in WordNet
are represented as synset IDs, which is the same as in the ImageNet dataset and allows us to integrate
the namespace of the class labels into the form of synset IDs. We adopt three SM metrics provided
by the NLTK library in WordNet, path, lch, and wup, from the work in [48]. In particular, the distance
relationships for path are scaled to the similarity measurement in NLTK to range the value from 0 to 1.
We conduct a performance evaluation separately for each metric, as presented in the next subsection.

4.2.3. Results

The experimental evaluation is performed under two ZSL settings: classic and generalized.
Only unseen class labels and both unseen and seen class labels are considered as target categories for
prediction in the classic setting and the generalized setting, respectively. Note that the ground-truths
of the test image instances represent only unseen class labels. The performance of each model is
evaluated in terms of the average per-class accuracy, “per-class” and an overall accuracy for all instances,
“per-instance”. Note that the accuracy values are expressed in percentage in all our experiments.
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We apply the proposed contextual calibrations to the visual inferences of four baseline models for
validation, giving seven types of evaluation per baseline model—three SMs (path, lch, and wup), CS,
and HMs—for each of the three semantic similarities.

• Comparative Evaluation to Baselines

Table 2 shows the results of our comparison with the baselines. All the prediction models using
any type of the contextual inferences significantly outperform the baseline models in both settings.
In most cases, the contextual inferences with harmonic measures are more effective than the others.

Table 2. Comparative results to the baseline models. Numerical values represent top-1
accuracy in percentage. SM, CS and HM imply the semantic, cosine and harmonic similarity
measurements, respectively.

Method Classic Generalized
Per-Class Per-Instance Per-Class Per-Instance

SJE (baseline) 11.64 13.2 1.7 2.03

SJE +
contextual inference
(proposed)

SM
path 15.86 16.93 3.2 4.43
lch 15.54 16.97 3.3 4.51
wup 15.39 16.67 3.31 4.56

CS 17.1 17.52 1.7 2.06

HM
path 18.56 18.77 3.2 4.43
lch 19.49 19.68 3.3 4.51
wup 19.25 19.2 3.31 4.56

LatEm (baseline) 11.99 13.22 0.78 0.83

LatEm +
contextual inference
(proposed)

SM
path 15.7 16.25 3.2 4.43
lch 15.69 16.46 3.3 4.51
wup 15.92 16.7 3.31 4.56

CS 16.83 16.95 1.43 2.06

HM
path 17.36 17.65 3.2 4.43
lch 17.85 18.24 3.3 4.51
wup 18.27 18.37 3.31 4.56

ConSE (baseline) 11.72 12.03 0.43 0.38

ConSE +
contextual inference
(proposed)

SM
path 15.15 14.85 3.2 4.43
lch 15.26 15.51 3.3 4.51
wup 15.07 15.11 3.31 4.56

CS 14.49 14.34 1.43 2.06

HM
path 16.09 15.59 3.2 4.43
lch 16.36 16.91 3.3 4.51
wup 16.35 16.29 3.31 4.56

GCN (baseline) 13.37 11.8 2.96 2.37

GCN +
contextual inference
(proposed)

SM
path 16.34 15.15 4.54 5.11
lch 16.39 15.13 4.34 5.4
wup 15.93 14.28 3.99 5.3

CS 18.44 16.91 2.96 2.37

HM
path 19.77 17.69 4.54 5.15
lch 20.43 18.52 4.34 5.4
wup 20.55 17.92 3.99 5.3

SJE, LatEm, ConSE, and GCN baselines result in per-class accuracies of 11.64, 11.99, 11.72, and 13.37
in the classic setting, respectively, and per-class accuracies of 1.7, 0.78, 0.43, and 2.96 in the generalized
setting, respectively. Note that the bold values in all tables represent the maximum accuracies.
Compared to those performances, when applied to the baselines, SJE, LatEm, ConSE, and GCN, our
model deduces per-class maximum accuracies (bold values) of 19.49 (increase rate of 67%), 18.27 (52%),



Appl. Sci. 2020, 10, 7234 11 of 19

16.36 (40%), and 20.55 (54%) in the classic setting, respectively and 3.31 (95%), 3.31 (324%), 3.31 (670%),
and 4.54 (53%) in the generalized setting, respectively. The enhancements in the generalized setting are
mostly higher than those in the classic setting, which indicates that the influence of contextual inference
increases as the number of target categories increases. That in turn implies that the surrounding objects
do have a common relationship, and thus, the context induces predictions of relevant types of categories
among the various types of the entire categories.

CS shows better performance than SM in the classic setting but poor performance in the
generalized setting. In several evaluations, it has no effect at all. We attribute that difference to
the properties of the external knowledge sources. A semantic embedding space is trained from a text
corpus in a sub-symbolic manner; thus, it contains less intuitive information, such as concept relations
or category types, than a symbolic knowledge graph, which explains the relatively poor effectiveness
of CS when the number of categories is large.

Moreover, for SJE, LatEm, and ConSE, the calibrated prediction performances are mostly the
same in the generalized setting, which indicates that the visual inference results are not referred in the
predictions in those cases. In other words, our experiments have verified the importance of considering
contextual information.

• Top-n Result

The top-N evaluation is conducted on the HMpath method which shows generally flat performance
in the previous hit@1 evaluation (Table 3). Our proposed method enhances performance compared
with the baselines even in the top-n. As n increases, the rate of performance improvement tends to
decrease slightly. In particular, according the performance of the ConSE, baseline at top-n is relatively
higher than top-1, the improvement rate becomes lower. In other words, it implies that context plays a
particularly important role in giving the correct category the highest ranking. Moreover, the significant
effectiveness of similarity-based contextual inference is validated in the top-n prediction results.

Table 3. Top-n prediction results of HMpath by applying contextual inference (CI) to the baselines.

Method
Classic Generalized

hit@3 hit@5 hit@5 hit@10
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins

SJE 25.26 27.42 35.36 37.56 6.14 7.39 10.83 11.89
SJE + CI 35.95 36 47.06 46.04 8.06 10.28 12.79 14.7

LatEm 24.64 26 32.85 34.32 4.72 5.28 7.36 7.67
LatEm + CI 30.15 30.59 41.05 39.66 6.19 7.92 9.19 10.45

ConSE 25.91 25.7 36.16 34.36 5.51 5.76 8.18 8.09
ConSE + CI 33.74 31.65 45.27 42.23 6.84 7.78 9.4 9.89

GCN 29.24 26.34 40.01 37.59 7.34 6.38 12.29 10.3
GCN + CI 36.43 34.13 47.15 44.94 10.11 9.85 16.4 15.02

• Ablation Study

We conduct an additional experiment to validate whether a nearby object is highly relevant to
the target object. The ablation study is performed by excluding the module that applies the defined
distance calculation from the entire model. For the contextual inference, the HMpath calibration is
applied with a normal average instead of the distance-weighted average in Equation (9). As seen in
Table 4, even with only the similarity measurement, our proposed approach outperforms the existing
models by a large margin. In most cases, however, the ablation study confirms that distance weighting
boosts performance, verifying the validity of our defined distance calculation.
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Table 4. An ablation study on HMpath.

Method
Classic/U Generalized/U

hit@1 hit@5 hit@1 hit@5
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins

SJE 11.64 13.2 35.36 37.56 1.7 2.03 6.14 7.39
SJE + sim 17.32 17.75 46.17 45.42 2.98 4.17 7.94 10.09

SJE + sim + dis 18.56 18.77 47.06 46.04 3.2 4.43 8.06 10.28

LatEm 11.99 13.22 32.85 34.32 0.78 0.83 4.72 5.28
LatEm + sim 16.46 17.2 39.67 39.09 2.4 3.67 6.05 7.75

LatEm + sim + dis 17.36 17.65 41.05 39.66 3.2 4.43 6.19 7.92

ConSE 11.72 12.03 36.16 34.36 0.43 0.38 5.51 5.76
ConSE + sim 14.31 14.85 44.74 41.34 2.59 3.67 6.73 7.67

CONSE + sim + dis 16.09 15.59 45.27 42.23 3.2 4.43 6.84 7.78

GCN 13.37 11.8 40.01 37.59 2.96 2.37 7.34 6.38
GCN + sim 19.34 17.06 47.57 44.94 4.12 4.64 10.23 9.77

GCN + sim + dis 19.77 17.69 47.15 44.94 4.54 5.15 10.11 9.85

4.3. Experiments on Visual Genome Categories

4.3.1. Dataset

VG contains more than 100K images, each of which has 35 object categories on average, and it is
separated into two subsets: part-1, with about 60K images, and part-2, with about 40K images. In this
experiment, we use categories and images in VG for both training and testing.

Our main goal in this experiment is to validate our method against both the baseline model and a
recently proposed context-aware ZSR model [45] that is already evaluated on the VG dataset using the
same setting as in [56]. We thus adopt the same split of seen and unseen class labels used in [56], 478
seen class labels and 130 unseen class labels, for a larger number of unseen class labels than in the first
experiment. Similar to the work in [45], we use 55,038 images with 621,770 instances from part-1 of
the VG dataset for training and 7818 images with 33,921 instances from part-2 for testing. The exact
number of images differs slightly, but it is still considered within tolerance.

4.3.2. Visual Classifier and Semantic Embedding Space

Following the same experimental setting and using ConSE [23] as the baseline model for the
comparative evaluation, prediction results from a visual classifier are needed to obtain a visual score for
the target objects. We fine-tune ResNet-50 (without freezing the conv. layers) pretrained on ImageNet
2012 1K by building the dimension of the output layer to be the same as the number of seen class labels.
The SGD optimizer is used for fine-tuning with approximately 240,000 iterations, and the learning rate,
momentum, weight decay, and batch size are set to 0.001, 0.9, 0.0001, and 8, respectively.

For the sementic embedding space in this experiment, we have applied GloVe [27] with 300
dimensions pretrained on Wikipedia 2014 and Gigaword 5 [60]. All seen and unseen class labels
individually have individually corresponding semantic embeddings or representative semantic
embedding, just as in the first experiment. In addition, note that we use the same knowledge graph,
WordNet, and SM measurements as well.

4.3.3. Results

• Evaluation Result

This experiment is conducted by matching its experimental configuration to Context-Aware (CA)
ZSR [45] to the hilt, but the performance of the ConSE baseline is reproduced slightly differently due to
a minute difference in the datasets, fine-tuning of the visual classifier, and the word embedding space.
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We thus evaluate performance in terms of the improvement rate using the results given in
Table 5. Recall that the numerical values represent accuracy in percentage. In the top-1 of the classic
setting, CA presents its performance as 19.6 (increase rate of −1.51%) and 30.2 (9.02%) for a baseline
performance of 19.9 and 27.7 on per-class and per-instance, respectively, whereas our proposed
method has a performance of 15.34 (2.33%) and 32.62 (3.16%), for 14.99 per-class and 31.62 per-instance.
Compared with CA, our method shows enhanced per-class performance, but the per-instance influence
is slightly deficient. In the top-1 in the generalized setting, our method produces relatively low
enhancement (0.05–0.27 and 0.29–0.81, for per-class and per-instance, respectively) compared with
that of the CA (0.1–5.8 and 0.6–20.7). In the top-5 evaluations, our absolute performance of 33.58 on
per-instance in the generalized setting outperforms CA’s 29.4, although the performance of the ConSE
baseline is lower than that of CA.

Consequently, the proposed method offers fair performance improvement in classifying an
appropriate category compared with the existing method, and it more often gives categories related to
the category type of the target object a high ranking, as shown by the first experimental results. This is
furthermore validated through qualitative evaluations by actual exemplary analysis, which is detailed
in the following subsection.

Table 5. Evaluation results for the proposed methods with the YOLOv2-80 detector on Visual
Genome categories.

Method
Classic Generalized

hit@1 hit@5 hit@1 hit@5
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins

ConSE (baseline) 14.99 31.62 34.45 57.64 0.05 0.29 13.97 32.28

ConSE + CI
(proposed)

SM
path 15.29 32 34.64 57.86 0.2 0.29 13.97 32.31
lch 15.17 32.02 34.55 57.76 0.23 0.29 13.97 32.31
wup 15.06 31.81 34.45 57.64 0.27 0.74 13.97 32.3

CS 15.11 32.09 34.77 58.31 0.15 0.81 14.39 33.58

HM
path 15.34 32.26 34.95 58.45 0.2 0.81 14.39 33.58
lch 15.2 32.22 34.92 58.4 0.23 0.81 14.39 33.58
wup 15.13 32.62 34.77 58.33 0.27 0.81 14.39 33.58

• Detector Comparison

In the previous experiment, surrounding information is obtained by detecting and recognizing
surrounding objects using YOLOv2 on 80 categories. However, of those 80 categories, we use the results
from only 65 that are disjoint from VG’s unseen categories. That limited reference to surrounding
objects for a somewhat small amount of classification categories could lead to poor performance
improvement. For ascertainment, we conduct an additional experiment by applying another pretrained
detector with a large scale category, YOLOv2-9K [54], and applying the other source, ground-truths for
seen class labels.

YOLOv2-9K produces detected results above the confidence threshold of 0.1 for 8955 categories
out of 9K that have available semantic embedding and disjoint from unseen categories. In both
YOLOv2-80 and YOLOv2-9K, we exclude detections whose intersection-over-union with the bounding
box of the target object is 0.8 or higher.

Ground-truths for seen class labels, GTS, are applied as surrounding information with a fixed
confidence by exploiting bounding boxes from annotations on the seen class labels in the test images.
The value of the prediction probability p in Equation (2) is fixed to 1.0 in GTS. To alleviate the problem
of noise caused by high-frequency objects, such as a category, window in the ground-truths, we set the
system to reference only one randomly selected object per class label.

The evaluation result of the variation in detection of surrounding objects is presented in Table 6.
The performance of YOLOv2-9K is generally poor because of its tendency to return detection results for
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higher-level categories or abstract concepts such as whole, instrumentality, and creation. That negative
tendency causes confusion by misreferencing the surrounding information. GTS outperforms the
models to which other detectors are applied in most cases, which means that the contextual inference
is well harmonized with the visual inference in ZSR.

Table 6. A comparative evaluation in the differentiation of sources for surrounding information with
the HMpath method.

Method

Classic Generalized

hit@1 hit@5 hit@10 hit@1 hit@5 hit@10
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins
(∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%)) (∆(%))

ConSE (baseline) 14.99 31.62 34.45 57.64 45.42 68.18 0.05 0.29 13.97 32.28 23.63 46.21

ConSE + CI 15.34 32.26 34.95 58.45 46.28 69.06 0.2 0.81 14.39 33.58 24.15 46.94
(YOLOv2- 80) (2.33↑) (2.02↑) (1.45↑) (1.41↑) (1.89↑) (1.29↑) (300↑) (179↑) (3.01↑) (4.03↑) (2.2↑) (1.58↑)

ConSE + CI 15.22 32.32 34.55 58.15 45.63 68.79 0.69 1.11 14.14 33.8 23.91 47.4
(YOLOv2- 9K) (1.53↑) (2.21↑) (0.29↑) (0.88↑) (0.46↑) (0.89↑) (1280↑) (282↑) (1.22↑) (4.71↑) (1.18↑) (2.58↑)

ConSE + CI 15.14 32.94 34.67 59.12 46.81 69.65 0.17 1.3 14.4 33.81 24.34 48.22
(GTS) (1↑) (4.17↑) (0.64↑) (2.57↑) (3.06↑) (2.16↑) (240↑) (348↑) (3.08↑) (4.74↑) (3↑) (4.35↑)

However, there is not a significant gap between the performance of YOLOv2-80 and that of GTS.
In other words, our method is easy to apply practically to existing detectors without needs to provide
accurate surrounding information because it can reference the potentials of classification candidates.
Furthermore, it is promising to show optimized performance with a detector that stably recognizes a
wide variety of categories.

• Qualitative Analysis

We also use GTS-based surrounding information for qualitative evaluations to clearly analyze the
effects of contextual inference. The HMpath method on ConSE is applied to the contextual inference,
and its optimized values of balancing parameters, α and β on GTS, are used for the evaluation.

Figure 3 depicts several qualitative experimental results. The upper three and lower two
results show the positive and negative effects of our method, respectively. In the first example,
the ground-truth class label of the target object (orange box) is chair. The visual inference predicts
chair-like bathhub and toilet in the first and second rank, respectively, with chair in the third. By referring
to the nearby objects, table and sofa, which are related to a living room, the contextual inference
calibrates the prediction results to rank chair first. Another surrounding object, fan, far from the
target, does not adversely affect the positive calibration because the degree of reference is reduced
by distance-weighting. This verifies our assumption that related objects are likely to be located
nearby. In fact, the CSs of sofa and table with chair in GloVe are both above 0.4, whereas that of
fan is approximately 0.11. Similar positive phenomena are confirmed from the second and third
examples, as well. Our methods infers the correct class label, flower, which is not even in the top-5 of
the visual-only prediction, into the top-3 by using the contexts close to the target, leaf and vase, in the
second example. In the third example, which has little useful surrounding information, the rank of
collar is slightly increased by the closest object, dog, with our distance formula.

Although the overall performance is enhanced by the positive calibration of contextual inference,
it still has some negative effects, particularly in the cases of general categories irrelevant to specific
objects. For example, the visually fourth-ranked ground-truths, writing and sky are excluded from
the top-5 and re-ranked to ninth and sixth, respectively. The tableware objects surrounding writing
negatively affect the prediction and produces high rankings for tableware-related categories such as
coffee and chair. Sky, which appears in most outdoor images regardless of the particular environment,
generally does not have a semantic relation with a specific object. In the last example, the ground-truth
category is undervalued by the contextual inference and rather structure-related window and building
are overvalued due to the low similarities between sky and its surrounding roof and train. However,
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our results generally validate that our methods based on the contextual inference positively affect ZSR
in an advanced way, as shown by the previous evaluation results.

Figure 3. Qualitative examples evaluated on HMpath in the classic setting using the ground-truths of
seen categories instead of the pretrained detector. The orange and blue boxes indicate the target unseen
objects and ground-truth surrounding objects, respectively.

5. Conclusions

We have proposed a novel approach to ZSR that enhances the performance of existing ZSL
methods. Our method uses surrounding information as context by measuring the similarities of each
surrounding object and applying distance-weighted averaging with a defined distance calculation
formula to calibrate the visually predicted results. We performed experimental evaluations with
various combinations of similarity measures to validate the comparative performance of our proposed
method on two different datasets with ImageNet and Visual Genome categories. Our experimental
results demonstrate that our method enhances performance by a large margin compared with
existing methods. The ablation and differentiation in detectors studies verified the effectiveness
of distance-weighting and the potential practicality of our method, respectively. Future research could
consider the topological relationships among objects in an image and optimized semantic embedding
for ZSR using annotations of train images as sources.



Appl. Sci. 2020, 10, 7234 16 of 19

Author Contributions: Conceptualization, D.S.C.; data curation, D.S.C. and G.H.C.; formal analysis, D.S.C.;
funding acquisition, Y.S.C.; investigation, D.S.C. and Y.S.C.; methodology, D.S.C. and G.H.C.; resources, G.H.C.;
software, D.S.C. and G.H.C.; supervision, Y.S.C.; validation, D.S.C. and G.H.C.; writing—original draft, D.S.C.;
writing—review and editing, D.S.C., G.H.C., and Y.S.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Technology Innovation Program (10077553, Development of Social
Robot Intelligence for Social Human-Robot Interaction of Service Robots) funded By the Ministry of Trade, Industry
& Energy (MOTIE, Korea), supported by Institute of Information & communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2020-0-01373, Artificial Intelligence Graduate
School Program (Hanyang University)), and the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2020R1A2C1014037).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting unreasonable effectiveness of data in deep
learning era. In Proceedings of the IEEE INTERNATIONAL Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 843–852.

2. Farhadi, A.; Endres, I.; Hoiem, D.; Forsyth, D. Describing objects by their attributes. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009;
pp. 1778–1785.

3. Akata, Z.; Perronnin, F.; Harchaoui, Z.; Schmid, C. Label-embedding for attribute-based classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–27 June 2013; pp. 819–826.

4. Kodirov, E.; Xiang, T.; Gong, S. Semantic autoencoder for zero-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3174–3183.

5. Xian, Y.; Lampert, C.H.; Schiele, B.; Akata, Z. Zero-shot learning-a comprehensive evaluation of the good,
the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2251–2265. [CrossRef] [PubMed]

6. Akata, Z.; Reed, S.; Walter, D.; Lee, H.; Schiele, B. Evaluation of output embeddings for fine-grained image
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 8–12 June 2015; pp. 2927–2936.

7. Changpinyo, S.; Chao, W.L.; Gong, B.; Sha, F. Synthesized classifiers for zero-shot learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 25 June–1 July 2016;
pp. 5327–5336.

8. Frome, A.; Corrado, G.S.; Shlens, J.; Bengio, S.; Dean, J.; Ranzato, M.; Mikolov, T. Devise: A deep
visual-semantic embedding model. In Proceedings of the Advances in Neural Information Processing
Systems, Douglas County, NV, USA, 5–10 December 2013; pp. 2121–2129.

9. Wang, X.; Ye, Y.; Gupta, A. Zero-shot recognition via semantic embeddings and knowledge graphs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 19–22 June 2018; pp. 6857–6866.

10. Rohrbach, M.; Stark, M.; Schiele, B. Evaluating knowledge transfer and zero-shot learning in a large-scale
setting. In Proceedings of the IEEE CVPR 2011, Colorado Springs, CO, USA, 21–23 June 2011; pp. 1641–1648.

11. Ferrari, V.; Zisserman, A. Learning visual attributes. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 8–13 December 2008; pp. 433–440.

12. Lampert, C.H.; Nickisch, H.; Harmeling, S. Attribute-based classification for zero-shot visual object
categorization. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 453–465. [CrossRef] [PubMed]

13. Farhadi, A.; Endres, I.; Hoiem, D. Attribute-centric recognition for cross-category generalization.
In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 2352–2359.

14. Duan, K.; Parikh, D.; Crandall, D.; Grauman, K. Discovering localized attributes for fine-grained recognition.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 16–21 June 2012; pp. 3474–3481.

15. Changpinyo, S.; Chao, W.L.; Gong, B.; Sha, F. Classifier and exemplar synthesis for zero-shot learning. Int. J.
Comput. Vis. 2020, 128, 166–201. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2018.2857768
http://www.ncbi.nlm.nih.gov/pubmed/30028691
http://dx.doi.org/10.1109/TPAMI.2013.140
http://www.ncbi.nlm.nih.gov/pubmed/24457503
http://dx.doi.org/10.1007/s11263-019-01193-1


Appl. Sci. 2020, 10, 7234 17 of 19

16. Jayaraman, D.; Grauman, K. Zero-shot recognition with unreliable attributes. In Proceedings of the Advances
in Neural Information Processing Systems, Montréal, QC, Canada, 8–13 December 2014; pp. 3464–3472.

17. Misra, I.; Gupta, A.; Hebert, M. From red wine to red tomato: Composition with context. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1792–1801.

18. Chen, H.; Gallagher, A.C.; Girod, B. What’s in a name? first names as facial attributes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–27 June 2013;
pp. 3366–3373.

19. Douze, M.; Ramisa, A.; Schmid, C. Combining attributes and fisher vectors for efficient image retrieval.
In Proceedings of the IEEE CVPR 2011, Colorado Springs, CO, USA, 21–23 June 2011; pp. 745–752.

20. Liu, J.; Kuipers, B.; Savarese, S. Recognizing human actions by attributes. In Proceedings of the IEEE CVPR
2011, Colorado Springs, CO, USA, 21–23 June 2011; pp. 3337–3344.

21. Scheirer, W.J.; Kumar, N.; Belhumeur, P.N.; Boult, T.E. Multi-attribute spaces: Calibration for attribute
fusion and similarity search. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2933–2940.

22. Xian, Y.; Akata, Z.; Sharma, G.; Nguyen, Q.; Hein, M.; Schiele, B. Latent embeddings for zero-shot
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 25 June–1 July 2016; pp. 69–77.

23. Norouzi, M.; Mikolov, T.; Bengio, S.; Singer, Y.; Shlens, J.; Frome, A.; Corrado, G.S.; Dean, J. Zero-shot
learning by convex combination of semantic embeddings. arXiv 2013, arXiv:1312.5650.

24. Socher, R.; Ganjoo, M.; Manning, C.D.; Ng, A. Zero-shot learning through cross-modal transfer.
In Proceedings of the Advances in Neural Information Processing Systems, Douglas County, NV, USA, 5–10
December 2013; pp. 935–943.

25. Fu, Y.; Hospedales, T.M.; Xiang, T.; Fu, Z.; Gong, S. Transductive multi-view embedding for zero-shot
recognition and annotation. In European Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 584–599.

26. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems,
Douglas County, NV, USA, 5–10 December 2013; pp. 3111–3119.

27. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 1532–1543.

28. Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G. Metric learning for large scale image classification:
Generalizing to new classes at near-zero cost. In European Conference on Computer Vision; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 488–501.

29. Palatucci, M.; Pomerleau, D.; Hinton, G.E.; Mitchell, T.M. Zero-shot learning with semantic output
codes. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada,
6–9 December 2009; pp. 1410–1418.

30. Kampffmeyer, M.; Chen, Y.; Liang, X.; Wang, H.; Zhang, Y.; Xing, E.P. Rethinking knowledge graph
propagation for zero-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 11487–11496.

31. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016,
arXiv:1609.02907.

32. Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
33. Wah, C.; Branson, S.; Perona, P.; Belongie, S. Multiclass recognition and part localization with humans in

the loop. In Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain,
6–13 November 2011; pp. 2524–2531.

34. Khosla, A.; Jayadevaprakash, N.; Yao, B.; Li, F.F. Novel dataset for fine-grained image categorization:
Stanford dogs. In Proceedings of the CVPR Workshop on Fine-Grained Visual Categorization (FGVC),
Colorado Springs, CO, USA, 25 June 2011; Volume 2.

35. Lampert, C.H.; Nickisch, H.; Harmeling, S. Learning to detect unseen object classes by between-class
attribute transfer. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition,
Miami, FL, USA, 20–25 June 2009; pp. 951–958.

http://dx.doi.org/10.1145/219717.219748


Appl. Sci. 2020, 10, 7234 18 of 19

36. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

37. Song, Z.; Chen, Q.; Huang, Z.; Hua, Y.; Yan, S. Contextualizing object detection and classification.
In Proceedings of the IEEE CVPR 2011, Colorado Springs, CO, USA, 21–23 June 2011; pp. 1585–1592.

38. Desai, C.; Ramanan, D.; Fowlkes, C.C. Discriminative models for multi-class object layout. Int. J. Comput.
Vis. 2011, 95, 1–12. [CrossRef]

39. Torralba, A.; Murphy, K.P.; Freeman, W.T. Using the forest to see the trees: Exploiting context for visual
object detection and localization. Commun. ACM 2010, 53, 107–114. [CrossRef]

40. Divvala, S.K.; Hoiem, D.; Hays, J.H.; Efros, A.A.; Hebert, M. An empirical study of context in object detection.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 1271–1278.

41. Rabinovich, A.; Vedaldi, A.; Galleguillos, C.; Wiewiora, E.; Belongie, S. Objects in context. In Proceedings of
the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–20 October 2007;
pp. 1–8.

42. Yu, R.; Chen, X.; Morariu, V.I.; Davis, L.S. The role of context selection in object detection. arXiv 2016,
arXiv:1609.02948.

43. Chen, X.; Li, L.J.; Fei-Fei, L.; Gupta, A. Iterative visual reasoning beyond convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–22 June 2018;
pp. 7239–7248.

44. Galleguillos, C.; Belongie, S. Context based object categorization: A critical survey. Comput. Vis. Image
Underst. 2010, 114, 712–722. [CrossRef]

45. Luo, R.; Zhang, N.; Han, B.; Yang, L. Context-Aware Zero-Shot Recognition; AAAI: Menlo Park, CA, USA,
2020; pp. 11709–11716.

46. Zablocki, E.; Bordes, P.; Soulier, L.; Piwowarski, B.; Gallinari, P. Context-aware zero-shot learning for object
recognition. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA,
9–15 June 2019; pp. 7292–7303.

47. Jiang, J.J.; Conrath, D.W. Semantic similarity based on corpus statistics and lexical taxonomy. arXiv 1997,
cmp-lg/9709008.

48. Taieb, M.A.H.; Aouicha, M.B.; Hamadou, A.B. Ontology-based approach for measuring semantic similarity.
Eng. Appl. Artif. Intell. 2014, 36, 238–261. [CrossRef]

49. Reed, S.; Akata, Z.; Lee, H.; Schiele, B. Learning deep representations of fine-grained visual descriptions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
25 June–1 July 2016; pp. 49–58.

50. Ristoski, P.; Paulheim, H. Rdf2vec: Rdf graph embeddings for data mining. In Proceedings of the
International Semantic Web Conference; Springer: Cham, Switzerland, 2016; pp. 498–514.

51. Zhang, Z.; Saligrama, V. Zero-shot learning via semantic similarity embedding. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 4166–4174.

52. Romera-Paredes, B.; Torr, P. An embarrassingly simple approach to zero-shot learning. In Proceedings of
the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2152–2161.

53. Fu, Y.; Sigal, L. Semi-supervised vocabulary-informed learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 25 June–1 July 2016; pp. 5337–5346.

54. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

55. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. In Proceedings of the European Conference on Computer Vision; Springer: Cham,
Switzerland, 2014; pp. 740–755.

56. Bansal, A.; Sikka, K.; Sharma, G.; Chellappa, R.; Divakaran, A. Zero-shot object detection. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 384–400.

57. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 8–12 June 2015; pp. 1–9.

58. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1007/s11263-011-0439-x
http://dx.doi.org/10.1145/1666420.1666446
http://dx.doi.org/10.1016/j.cviu.2010.02.004
http://dx.doi.org/10.1016/j.engappai.2014.07.015


Appl. Sci. 2020, 10, 7234 19 of 19

59. Zhang, L.; Xiang, T.; Gong, S. Learning a deep embedding model for zero-shot learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 2021–2030.

60. Parker, R.; Graff, D.; Kong, J.; Chen, K.; Maeda, K. English Gigaword Fifth Edition, Linguistic Data Consortium;
Linguistic Data Consortium: Philadelphia, Pennsylvania, 2011.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Instance-Level ZSL
	Contextual Recognition

	Method
	Problem Definition
	Model Overview
	Visual Inference
	Contextual Inference
	Similarity-Based Association Measurements
	Distance-Weighted Calibration for Multiple Surrounding Objects


	Experiments
	Overall Experimental Scenario
	Experiments on Imagenet Categories
	Dataset
	Visual/Semantic Embeddings and Knowledge Graphs
	Results

	Experiments on Visual Genome Categories
	Dataset
	Visual Classifier and Semantic Embedding Space
	Results


	Conclusions
	References

