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Abstract: Support vector machines (SVMs) are a well-known classifier due to their superior
classification performance. They are defined by a hyperplane, which separates two classes with the
largest margin. In the computation of the hyperplane, however, it is necessary to solve a quadratic
programming problem. The storage cost of a quadratic programming problem grows with the square
of the number of training sample points, and the time complexity is proportional to the cube of the
number in general. Thus, it is worth studying how to reduce the training time of SVMs without
compromising the performance to prepare for sustainability in large-scale SVM problems. In this
paper, we proposed a novel data reduction method for reducing the training time by combining
decision trees and relative support distance. We applied a new concept, relative support distance,
to select good support vector candidates in each partition generated by the decision trees. The selected
support vector candidates improved the training speed for large-scale SVM problems. In experiments,
we demonstrated that our approach significantly reduced the training time while maintaining good
classification performance in comparison with existing approaches.

Keywords: support vector machine; decision tree; large-scale dataset; relative support distance;
support vector candidates

1. Introduction

Support vector machines (SVMs) [1] have been a very powerful machine learning algorithm
developed for classification problems, which works by recognizing patterns via kernel tricks [2].
Because of its high performance and great generalization ability compared with other classification
methods, the SVM method is widely used in bioinformatics, text and image recognition, and finances,
to name a few. Basically, the method finds a linear boundary (hyperplane) that represents the largest
margin between two classes (labels) in the input space [3–6]. It can be applied to not only linear
separation but also nonlinear separation using kernel functions. Its nonlinear separation can be achieved
via kernel functions, which map the input space to a high-dimensional space, called feature space
where optimal separating hyperplane is determined in the feature space. In addition, the hyperplane
in the feature space, which achieves a better separation of training data, is translated to a nonlinear
boundary in the original space [7,8]. The kernel trick is used to associate the kernel function with the
mapping function, bringing forth a nonlinear separation in the input space.

Due to the growing speed of data acquisition on various domains and the continual popularity
of SVMs, large-scale SVM problems frequently arise: human detection using histogram of oriented
gradients by SVMs, large-scale image classification by SVMs, disease classification using mass spectrum
by SVMs, and so forth. Even though SVMs show superior classification performance, their computing
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time and storage requirements increase dramatically with the number of instances, which is a major
obstacle [9,10]. As the goal of SVMs is to find the optimal separating hyperplane that maximizes
the margin between two classes, they should solve a quadratic programming problem. In practice,
the time complexity in the training phase of the SVM method is at least O

(
n2

)
, where n is the number

of data samples, depending on the kernel function [11]. Indeed, several approaches have been applied
to improve the training speed of SVMs. Sequential minimal optimization (SMO) [12], SVM-light [13],
simple support vector machine (SSVM) [14] and library of support vector machine (LibSVM) [15] are
among others. Basically, they break the problem into a series of small problems that can be easily
solved, reducing the required memory size.

Additionally, data reduction or selection methods have been introduced for large-scale SVM
problems. Reduced support vector machines (RSVMs) are a random sampling method that, being
quite simple, uses a small portion of the large dataset [16]. However, it needs to be applied several
times and unimportant observations are equally sampled. The method presented by Collobert et al.
efficiently parallelizes sub-problems, fitting to very large-size SVM problems [17]. It used cascades
of SVMs in which data are split into subsets to be optimized separately with multiple SVMs instead
of analyzing the whole dataset. A method based on the selection of candidate vectors (CVS) was
presented using relative pair-wise Euclidean distances in the input space to find the candidate vectors
in advance [18]. Because the only selected samples are used in the training phase, it shows fast training
speed. However, its classification performance is relatively worse than that of the conventional SVM,
and the need for selecting good candidate vectors arise.

Besides, for large-scale SVM problems, a joint approach that combines SVM with other machine
learning methods has emerged. Many evolutionary algorithms have been proposed to select training
data for SVMs [19–22]. Although they have shown promising results, these methods need to be
executed multiple times to decide proper parameters and training data, which is computationally
expensive. Decision tree methods also have been commonly proposed to reduce training data because
the training time is proportional to O

(
np2

)
where p represents discrete input variables [23] so is faster

than traditional SVMs. The decision tree method recursively decomposes the input data set into binary
subsets through independent variables when the splitting condition is met. In supervised learning,
decision trees, bringing forth random forests, are one of the most popular models because they are
easy to interpret and computationally inexpensive. Indeed, taking advantage of decision trees, several
researches combining SVMs with decision trees have been proposed for large-size SVM problems.
Fu Chang et al. [24] presented a method that uses a binary tree to decompose an input data space into
several regions and trains an SVM classifier on each of the decomposed regions. Another method
using decision trees and Fisher’s linear discriminant was also proposed for large-size SVM problems
in which they applied Fisher’s linear discriminant to detect ‘good’ data samples near the support
vectors [25]. Cervantes et al. [26] also utilized a decision tree to select candidate support vectors using
the support vectors annotated by SVM trained by a small portion of training data. Their approaches,
however, are limited in that it cannot properly handle the regions that have nonlinear relationships.

The ultimate aim in dealing with large-scale SVM problems is to reduce the training time and
memory consumption of SVMs without compromising the performance. For this goal, it would
be worth finding good support vector candidates as a data-reduction method. Thus, in this paper
we present a method that finds support vector candidates based on decision trees that works better
than previous methods. We determine the decision hyperplane using support vector candidates
chosen among the training dataset. In this proposed approach, we introduce a new concept, relative
support distance, to effectively find candidates using decision trees in consideration of nonlinear
relationships between local observations and labels. Decision tree learning decomposes the input
space and helps find subspaces of the data where the majority class labels are opposite to each other.
Relative support distance measures a degree that an observation is likely to be a support vector, using a
virtual hyperplane that bisects the two centroids of two classes and the nonlinear relationship between
the hyperplane and each of the two centroids.
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This paper is organized as follows. Section 2 provides the overview of SVMs and decision trees
that are exploited in our algorithm. In Section 3, we introduce the proposed method of selecting
support vector candidates using relative support distance measures. Then, in Section 4, we provide the
results of experiments to compare the performance of the proposed method with that of some existing
methods. Lastly, in Section 5, we conclude this paper with future research directions.

2. Preliminaries

In this section, we briefly summarize the concepts of support vector machines and decision trees.
Relating to the concepts, we then introduce the concept of relative support distance to measure the
possibility of being a support vector in training data.

2.1. Support Vector Machines

Support vector machines (SVMs) [1] are generally used for binary classification. Given n pairs of
instances with input vectors {x1, x2, . . . , xn} and response variables

{
y1, y2, . . . , yn

}
, where xi ∈ Rp and

yi ∈ {−1, 1}, SVMs present a decision function in a hyperplane that optimally separates two classes:

y = sign(wtx + b) (1)

where w is a weight vector and b is a bias term. The margin is the distance between the hyperplane
and the training data nearest the hyperplane. The distance from an observation to the hyperplane
is given by

∣∣∣d(x)∣∣∣/w. To find the hyperplane that maximizes the margin, we solve the problem by
transforming it to its dual problem, introducing the Lagrange multipliers. Namely, in soft-margin
SVMs with penalty parameter C, we find w by the following optimization problem:

max
n∑
i
αi −

1
2

n∑
i

n∑
j
αiα jyiy jK

(
xi, x j

)
,

subject to
n∑
i
αiyi = 0,

0 ≤ αi ≤ C/n, i = 1, . . . , n.

(2)

where C > 0, αi, i = 1, . . . , n, are the dual variables corresponding xi, and all the xi corresponding to
nonzero αi are called support vectors. By numerically solving the problem (2) for αi, we obtain α∗i
and compute w∗ =

∑
i α
∗

i yixi and b∗ = yi −w∗xi for 0 < α∗i < C/n. The kernel function K
(
xi, x j

)
is the

inner product of the mapping function: K
(
xi, x j

)
= φ(xi)

Tφ
(
x j

)
. The mapping function φ(x) maps the

input vectors to high-dimensional feature spaces. Well-known kernel functions are polynomial kernels,
tangent kernels, and radial basis kernels. In this research, we chose the radial basis kernel function
(RBF) with a free parameter γ denoted as

K
(
xi, x j

)
= exp

(
−γ||xi − x j||

2
)

(3)

Notice that the radial basis kernel, possessing the mapping function φ(x) with an infinite number
of dimensions [27], is flexible and the most widely chosen.

2.2. Decision Tree

A decision tree is a general tool in data mining and machine learning used as a classification or
regression model in which a tree-like graph of decisions is formed. Among the well-known algorithms
such as CHAID (chi-squared automatic interaction detection) [28], CART (classification and regression
tree) [29], C4.5 [30], and QUEST (quick, unbiased, efficient, statistical tree) [31], we use CART which is
very similar to C4.5 since it uses a binary splitting criterion applied recursively and leaving no empty
leaf. Decision tree learning builds its model based on recursive partitioning of training data into pure
or homogeneous sub-regions. Prediction process of classification or regression can be expressed by
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inference rules based on the tree structure of the built model, so it can be interpreted and understood
easier than other methods. The tree building procedure begins at the root node, which includes
all instances in the training data. To find the best possible variable to split the node into two child
nodes, we check all possible splitting variables (called splitters), as well as all possible values of the
variable used to split the node. It involves an O(pn log n) time complexity where p is the number of
input variables and n is the size of the training data set [32]. In choosing the best splitter, we can use
some impurity metrics such as entropy or Gini impurity. For example, the Gini impurity function:
im(T) = 1−

∑
y p(T = y)2, where p(T = y) is the proportion of observations where class type T is y.

Next, we define the difference between the weighted impurity measure of the parent node and the two
child nodes. Let us denote the impurity measure of the parent node by im(T); the impurity measures
of the two child nodes by im

(
Tle f t

)
and im

(
Tright

)
; the number of parent node instances by XT; and the

number of the child node instances by XT,le f t and XT,right. We choose the best splitter by the query that
decreases the impurity as much as possible:

∆im(T) = im(T) −
XT,le f t

XT
im

(
Tle f t

)
−

XT,right

XT
im

(
Tright

)
. (4)

There are two methods called pre-pruning and post-pruning to avoid over-fitting in decision
tree. The pre-pruning method uses stopping conditions before over-fitting occurs. It attempts
to stop separating each node if specified conditions are met. The latter method makes a tree
over-fitting and determines an appropriate tree size by backward pruning of the over-fitted tree [33].
Generally, the post-pruning is known as more effective than the pre-pruning. Therefore, we use the
post-pruning algorithm.

3. Tree-Based Relative Support Distance

In order to cope with large-scale SVM problems, we propose a novel selection method for support
vector candidates using a combination of tree decomposition and relative support distance. We aim
to reduce the training time of SVMs for the numerical computation of αi in (2) which produces w∗

and b∗ in (1) by selecting good support vectors in advance that are a small subset of the training data.
To illustrate our concept, we start with a simple example in Figure 1, where the distribution of the iris
data is shown: for the details of the data, refer to Fisher [34]. In short, the iris dataset describes iris
plants using four continuous features. The data set contains 3 classes of 50 instances as Iris Setosa,
Iris Versicolor, or Iris Virginica. We decompose the input space into several regions by decision tree
learning. After training an SVM model for the whole dataset, we mark support vectors by filled shapes.
Each region has its own majority class label, and the boundaries are between the two majority classes.
The support vectors are close to the boundaries. In addition, we notice that they are located relatively
far away from the center of the data points with the majority class label in a region.

Figure 1. The construction of a decision tree and SVMs for the iris data shows the boundaries and
support vectors (the filled shapes). The support vectors in the regions are located far away from the
majority-class centroid.
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In light of this, we describe our algorithm to find a subset of support vectors that determine the
separating hyperplane. We divide a training dataset into several decomposed regions in the input
space by decision tree learning. This process brings each decomposed region to have most of the data
points with the majority class label by the tree learning algorithm. Next, we detect adjacent regions in
which the majority class is opposite to that of each region. We define this kind of region as distinct
adjacent region. Then we calculate a new distance measure, relative support distance, with the data
points in the selected region pairs. The procedure of the algorithm is as follows:

1. Decompose the input space by decision tree learning.
2. Find distinct adjacent regions, which mean adjacent regions whose majority class is different from

that of each region.
3. Calculate the relative support distances for the data points in the found distinct adjacent regions.
4. Select the candidates of support vectors according to the relative support distances.

3.1. Distinct Adjacent Regions

After applying decision tree learning to the training data, we detect adjacent regions. The decision
tree partitions the input space into several leaves (also denoted by terminal nodes) by reducing some
impurity measures such as entropy. Following the approach of detecting adjacent regions introduced
by Chau [25], we put in mathematical conditions for being adjacent regions and relate it to the relative
support distance. Firstly, we represent each terminal node of a learned decision tree as follows:

Lq =

p⋂
j=1

bqj, lqj ≤ bqj ≤ hqj, (5)

where Lq is the qth leaf in the tree structure and bqj is the boundary range for the jth variable of the
qth leaf with its lower bound lqj and upper bound hqj. Recall that p is the number of input variables.
We should check whether each pair of leaves, Lo and Lq, meet the following criteria:

hos = lqs or los = hqs, (6)

lqk ≤ lok ≤ hqk or lqk ≤ hok ≤ hqk, (7)

where s and k are one of the input variables, 1 ≤ s ≤ p, 1 ≤ k ≤ p, and s , k. That is to say, if two
leaves Lo and Lq are adjacent regions, they have to share one variable, represented by the variable
s in Equation (6), and one boundary, induced by the variable k in (7). Among all adjacent regions,
we only consider distinct adjacent regions. For example, in Figure 2, the neighbors of L1 are L2, L4,
and L5: {L1, L5}, however, does not form an adjacent region pair. {L3, L5} is an adjacent region pair but
not distinct since those regions have the same majority class. Therefore, the distinct adjacent regions
in the example are only {L1, L2}, {L1, L4}, {L2, L3}, {L2, L5}, and {L4, L5}. Distinct adjacent regions are
summarized in Table 1. Now, we apply the measure of relative support distance to select support
vector candidates in the found distinct adjacent regions for each region.

Table 1. Partition of input regions and distinct adjacent regions.

Region Distinct Adjacent Regions

L1 L2, L4
L2 L1, L3, L5
L3 L2
L4 L1, L5
L5 L2, L4
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Figure 2. Distinct adjacent regions are {L1, L2}, {L1, L4}, {L2, L3}, {L2, L5}, and {L4, L5}.

3.2. Relative Support Distance

Support vectors (SVs) play a substantial role in determining the decision hyperplane in contrast
to non-SV data points. We extract data points in the training data that are most likely to be the support
vectors, constructing a set of support vector candidates. Given two distinct adjacent regions L1 and
L2 from the previous step, let us assume the majority class label of L1 is y = 1 and that of L2, y = 2
without loss of generality. First, we calculate the centroid (mc) for each majority class label as follows:
for an index set Sc = {i|xi ∈ Lc and the label of xi = c},

mc =
1
nc

∑
i∈Sc

xi, (8)

where c ∈ {1, 2} and nc is the cardinality of index set Sc.
In other words, mc is the majority-class centroid of data points in Lc, of which the labels are y = c.

Next, we create a virtual hyperplane that bisects the line from m1 to m2:

M = 1
2 (m1 + m2),

W = m1 −m2,
(9)

where M is the middle point of the two majority-class centroids. The virtual hyperplane is given by
H(x) = 0, where

H(x) = Wt(x−M). (10)

Lastly, we calculate the distance rx between each data point x in Sc and mc and the distance h
between each data point in Sc and the virtual hyperplane H(x) = 0:

rxc,l =
∣∣∣∣∣∣xc,l −mc

∣∣∣∣∣∣,
hxc,l =

∣∣∣H(xc,l)
∣∣∣

||W|| =
Wt(xc,l−M)
||m1−m2 ||

,
(11)

where xc,l is the lth data point belonging to Sc. Figure 3 shows a conceptual description of r and h using
the virtual hyperplane in a leaf. After calculating rx and hx, we apply feature scaling to bring all values
into the range between 0 and 1. Our observation is that data points lying close to the virtual hyperplane
are likely to be support vectors. In addition, data points lying close to the centroid are less likely to be
support vectors. In light of these observations, we select data points lying near the hyperplane and far
away from the centroid. For this purpose, we define the relative support distance T(rx, hx) as follows:

T(rx, hx) =
1

(1 + e−rx)hx
. (12)
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Figure 3. Distances r from the center and h from the virtual hyperplane are shown. The two-star shapes
are the centroid of each class.

The larger T(rx, hx) becomes, the more likely that the associated x is a support vector.
The relationship between support vectors and distances r and h is illustrated in Figure 4. We use

leaves L4 with distinct adjacent regions L1 and L2 in Figure 1. In Figure 4, the observations marked
by circles are non-support vectors while those by triangles (in red) are support vectors selected
after training all data by SVMs. The distances r and h of L4 relative to L1 are in Figure 4a, and the
relative support distance measures in Figure 4c. Likewise, those of L4 relative to L2 are in Figure 4b,d.
We observe that the observations, marked by triangles and surrounded by a red ellipsoid in Figure 1,
correspond to the support vectors surrounded by a red ellipsoid in region L4 in Figure 4a, and they
have larger values of relative support distance as shown in Figure 4c. Similarly, we notice that the
observations, marked by triangles and surrounded by a green ellipsoid in Figure 4b, correspond to the
support vectors surrounded by a green ellipsoid in region L4 in Figure 1, and they also have larger
values of relative support distance as shown in Figure 4d. The support vectors in L4 are obtained
by collecting observations with large values of relative support distance, for example by the rule
T(rx, hx) > 0.9, from both the pair of L4 and L1 and the pair of L4 and L2. The results reveal that the
observations that have a mostly larger distance r and shorter distance h are likely to be support vectors.

Figure 4. Cont.
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Figure 4. Illustration of the distances r and h according to distinct adjacent regions for the iris data
in Figure 1. (a) Distances for leaf L4 relative to L1 are shown. Notice the support vectors captured by
leaf L4 to leaf L1 are in the (dotted) red ellipsoid. (b) Distances for leaf L4 relative to L2 are shown.
Notice the support vectors captured by leaf L4 relative to leaf L2 are in the (dashed) green ellipsoid.
(c) Relative support distances of the observations xi in leaf L4 relative to L1 are shown. Notice the
support vectors captured by leaf L4 to leaf L1 are in the (dotted) red ellipsoid. (d) Relative support
distances of the observations xi in leaf L4 relative to L2 are shown. Notice the support vectors captured
by leaf L4 relative to leaf L2 are in the (dashed) green ellipsoid.

For each region, we calculate pairwise relative support distance with distinct adjacent regions
and select a fraction of the observations, denoted by parameter β, in the decreasing order by T(rx, hx)

as a candidate set of support vectors. That is to say, for each region, we select the top β fraction of
training data based on T(rx, hx). Parameter β represents the proportion of the selected data points,
between 0 and 1. For example, when β is set to 1, all data points are included in the training of
SVMs. When β = 0.1, we exclude 90% of the data points and reduce the training data set to 10%.
Finally, we combine relative support distance with random sampling, which means that a half of the
training candidates are selected based on the proposed distance and the others are selected by random
sampling. Though being quite informative for selecting possible support vectors, the proposed distance
is calculated locally with distinct adjacent regions. Therefore, random sampling can compensate this
property by providing whole data distribution information.

4. Experimental Results

In the experiments, we compare the proposed method, tree-based relative support distance
(denoted by TRSD), with some previously suggested methods, specifically SVMs with candidate
vectors selection, denoted by CVS [18], and SVM with Fisher linear discriminant analysis, denoted by
FLD [25], as well as standard SVMs, denoted by SVM. For all comparing methods, we use LibSVM [15]
since it is one of the fastest methods for training SVMs. The experiments are run on a computer with the
following features: Core i5 3.4 GHz processor, 16.0 GB RAM, Windows 10 enterprise operating system.
The algorithms are implemented in the R programming language. We use 18 datasets which are from
UCI Machine Learning Repository [35] and LibSVM Data Repository [36] except the checkerboard
dataset [37]: a9a, banana, breast cancer, four-class, German credit, IJCNN-1 [38], iris, mushroom,
phishing, Cod-RNA, skin segmentation, waveform, and w8a. Iris and Waveform datasets are modified
for binary classification problems by assigning one class to positive and the others to negative. Table 2
shows a summary of the datasets used in the experiments where Size is the number of instances in
dataset and Dim is the number of features.
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Table 2. Datasets for experiments.

Dataset Size Dim
∣∣∣yi = +1

∣∣∣ ∣∣∣yi = −1
∣∣∣

Iris-Setosa 150 4 50 100
Iris-Versicolor 150 4 50 100
Iris-Virginia 150 4 50 100
Breast Cancer 683 10 444 239
Four-class 862 2 555 307
Checkerboard 1000 2 514 486
German Credit 1000 24 700 300
Waveform-0 5000 21 1657 3343
Waveform-1 5000 21 1657 3343
Waveform-2 5000 21 1657 3343
Banana 5300 2 2924 2376
Mushroom 8124 112 3916 4208
Phishing 11,055 68 4898 6157
w8a 45,546 300 44,226 1320
a9a 48,842 123 37,155 11,687
IJCNN-1 141,691 22 128,126 13,565
Skin Segmentation 245,057 3 50,859 194,198
Cod-RNA 488,565 8 325,710 162,855

For testing, we apply three-fold cross validation, repeated three-times, by shuffling each dataset
and dividing it into three parts, and use two parts as the training dataset, the other part as a testing
dataset with different seeds. We use the RBF kernel for training SVMs in all tested methods. For each
experiment, cross validation and grid search are used for tuning two hyper-parameters: the penalty
factor C and the RBF kernel parameter γ in Equation (3). Hyper-parameters are searched by a
two-dimensional grid with C ∈ {0.1, 1, 10, 100} and γ ∈

{
0.001, 0.01, 0.1, 1, 1/p

}
where p is the

number of features. Table 3 shows the values used for each dataset in the experiments. Moreover,
we vary the fraction of data points in each region β from 0.1 to 0.3 with the interval of 0.1.

Table 3. Hyper-parameters setting for the experiments.

Method Dataset Penalty Factor C RBF Kernel γ Dataset Penalty Factor C RBF Kernel r

SVM

Iris-Setosa

10 0.001 Waveform-2 0.1 1/p
CVS 100 0.001 10 0.01
FLD 100 0.001 100 0.001
TRSD 100 0.001 1 1/p

SVM

Iris-Versicolor

10 0.1 Banana 1 1
CVS 100 0.1 100 1
FLD 0.1 0.01 10 1/p
TRSD 10 1 1 1

SVM

Iris-Virginia

100 0.01 Mushroom 100 0.001
CVS 100 0.01 10 0.001
FLD 100 0.001 0.1 0.01
TRSD 100 0.1 100 0.001

SVM

Breast Cancer

1 0.01 Phishing 10 1/p
CVS 10 0.001 1 0.01
FLD 100 0.001 100 0.001
TRSD 1 0.1 100 0.001

SVM

Four-class

10 1 w8a 10 0.001
CVS 100 1 10 0.01
FLD 100 1 1 0.001
TRSD 10 1 10 0.001

SVM

Checkerboard

100 1 a9a 10 0.001
CVS 100 1 10 0.01
FLD 100 1 100 0.001
TRSD 100 1 10 0.001
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Table 3. Cont.

Method Dataset Penalty Factor C RBF Kernel γ Dataset Penalty Factor C RBF Kernel r

SVM

German Credit

100 0.001 IJCNN-1 10 0.1
CVS 1 1/p 100 1/p
FLD 0.1 0.001 100 0.01
TRSD 1 0.01 10 1/p

SVM

Waveform-0

1 0.01 Skin Segmentation 100 1
CVS 10 0.01 100 1
FLD 1 0.01 100 0.1
TRSD 1 0.01 100 1

SVM

Waveform-1

1 1/p Cod-RNA 10 1
CVS 10 1/p 100 0.001
FLD 1 1/p 100 0.01
TRSD 1 1/p 10 1/p

We compare the performance of SVM, CVS, FLD, and TRSD in terms of classification accuracy and
the training time (in seconds), summarized in Table 4. We also depicted the performance comparison of
the proposed TRSD with CVS and FLD on the five largest datasets when β = 0.1 in Figure 5. We used
log-2 scale for y-axis in Figure 5b. In Table 4, Acc is the accuracy on test data; σ is the standard deviation;
and Time is the training time in seconds. Even though the accuracy of the proposed algorithm is
slightly degraded in a few cases, it is higher than that of CVS and FLD in most cases. In addition, as β
is greater, the accuracy of the proposed algorithm enhanced substantially. For small datasets, there is
no significant improvement on computation time compared to the standard SVM since those datasets
are already small enough. However, we notice that the training time of TRSD improved quite much
when using the large-scale datasets.

Figure 5. Comparison of the proposed tree-based relative support distance (TRSD) with candidate
vectors (CVS) and Fisher linear discriminant analysis (FLD) on the five largest datasets.

For statistical analysis, we also performed Friedman test to see that there exists significant
difference between the multiple comparing methods in terms of accuracy. If the null hypothesis
of the Friedman test is rejected, we performed Dunn’s test. Table 5 shows the summary of the
Dunn’s test results at the significant level α = 0.05. In Table 5, the entries (1) TRSD > CVS (FLD);
(2) TRSD ≈ CVS (FLD); (3) TRSD < CVS (FLD), respectively, denote that: (1) the performance
of TRSD is significantly better than CVS (FLD); (2) there in no significant difference between the
performances of TRSD and CVS (FLD); and (3) the performance of TRSD is significantly worse than
CVS (FLD). Each number in Table 5 means the number of datasets. At β = 0.1, our proposed method is
significantly better than CVS and FLD in 10 and 9 cases among 18 datasets. These numbers increase to
11 and 10 at β = 0.3. On the other hand, our proposed method is significantly worse than CVS only in
2, 3 and 3 cases; than FLD in 0, 1 and 0 cases at β = 0.1, 0.2, 0.3 respectively. Based on the observations
in the experiments, we can conclude that our proposed method generates an effective reduction of the
training datasets while producing better performance than the existing data reduction approaches.



Appl. Sci. 2020, 10, 6979 11 of 14

Table 4. Comparisons in terms of accuracy and time on datasets (the results of support vector machines
(SVM) are not bolded, because it had access to all examples).

Dataset
SVM CVS FLD TRSD

acc σ Time acc σ Time Acc σ Time Acc σ Time

β = 0.1

Iris-Setosa 100 0 0.01 100 0 0.01 100 0 0.01 100 0 0.01
Iris-Versicolor 95.43 0.98 0.01 78.54 12.71 0.01 52.29 17.53 0.02 87.71 2.22 0.02
Iris-Virginia 96.57 2.24 0.01 87.99 6.55 0.01 91.71 4.07 0.02 91.5 4.72 0.01

Breast Cancer 96.99 0.89 0.01 95.36 0.5 0.01 96.3 0.95 0.08 96.24 1.04 0.04
Four-class 100 0 0.01 93.19 0.08 0.01 93.28 3.58 0.07 93.24 2.4 0.05

Checkerboard 94.3 0.63 0.03 84.61 1.47 0.01 - - - 79.34 3.13 0.08
German Credit 75.7 0.7 0.09 69.87 0.75 0.01 70 0.04 0.42 70.55 0.97 0.21

Waveform-0 89.85 0.63 1.03 85.5 0.73 0.21 87.51 0.65 0.58 89.01 0.51 0.34
Waveform-1 91.26 0.3 0.68 83.7 0.87 0.2 89.46 0.38 0.66 90.06 0.5 0.35
Waveform-2 91.76 0.48 0.94 84.52 1.23 0.21 89.77 0.97 0.74 90.31 0.48 0.38

Banana 90.6 0.69 0.59 64.13 2.69 0.03 83.46 1.77 0.09 88.8 0.4 0.06
Mushroom 100 0 1.47 90.67 0.62 2.08 84.99 7.23 1.11 99.83 0.12 0.79
Phishing 96.69 0.26 4.59 90 0.49 2.28 93.28 0.69 1.46 93.96 0.26 0.79

w8a 99.11 0.04 114.85 97.4 0.05 19.64 97.83 0.3 231.89 98.38 0.09 51.18
a9a 84.7 0.14 373.24 78.48 0.29 43.19 81.27 0.72 21.91 84.24 0.16 12.59

IJCNN-1 99.27 0.7 224.29 97.02 0.12 9.83 97.55 0.1 12 98.39 0.05 7.71
Skin Segmentation 99.94 0 20.23 99.93 0.01 1.27 99.45 0.11 3.39 99.89 0.01 2.51

Cod-RNA 96.98 0.03 4425.55 90.68 0.08 178.3 96.05 0.08 66.93 96.32 0.03 42.85

β = 0.2

Iris-Setosa 100 0 0.01 100 0 0.01 100 0 0.01 100 0 0.01
Iris-Versicolor 95.43 0.98 0.01 89.44 3.92 0.01 51.72 17.02 0.02 93.43 1.48 0.02
Iris-Virginia 96.57 2.24 0.01 93.43 2.2 0.01 94.26 2.17 0.02 90.31 3.03 0.02

Breast Cancer 96.99 0.89 0.01 95.55 1.09 0.01 96.49 0.91 0.07 96.3 0.95 0.06
Four-class 100 0 0.01 96.42 1.78 0.01 95.38 1.63 0.07 98.81 0.8 0.05

Checkerboard 94.3 0.63 0.03 93.66 1.09 0.01 - - - 83.66 2.48 0.08
German Credit 75.7 0.7 0.09 70.04 0.01 0.02 70 0.04 0.35 70.56 0.62 0.25

Waveform-0 89.85 0.63 1.03 88.35 0.37 0.27 88.55 0.73 0.76 89.28 0.73 0.54
Waveform-1 91.26 0.3 0.68 86.45 0.56 0.26 89.89 0.37 0.78 90.52 0.49 0.5
Waveform-2 91.76 0.48 0.94 88.21 0.5 0.27 90.39 0.54 0.99 90.62 0.58 0.51

Banana 90.6 0.69 0.59 79.86 2.02 0.1 85.14 1.5 0.1 89.69 0.36 0.07
Mushroom 100 0 1.47 97.09 1.12 2.22 97.37 0.88 1.33 99.91 0.1 0.85
Phishing 96.69 0.26 4.59 93.91 0.2 2.58 94.42 0.38 1.63 94.62 0.3 0.99

w8a 99.11 0.04 114.85 97.5 0.07 27.22 98.12 0.12 233.78 98.63 0.05 63.04
a9a 84.7 0.14 373.24 78.86 0.26 74.22 82.19 0.42 39.37 84.61 0.18 24.27

IJCNN-1 99.27 0.7 224.29 98.41 0.05 23.56 98.07 0.09 18.7 98.72 0.07 14.45
Skin Segmentation 99.94 0 20.23 99.94 0.01 2.36 99.73 0.06 4.82 99.9 0.01 3.64

Cod-RNA 96.98 0.03 4425.55 95.44 0.03 514.9 96.19 0.03 293.29 96.43 0.03 152.98

β = 0.3

Iris-Setosa 100 0 0.01 100 0 0.01 100 0 0.01 100 0 0.01
Iris-Versicolor 95.43 0.98 0.01 92.3 2.44 0.01 59.87 14.47 0.01 94.01 2.57 0.02
Iris-Virginia 96.57 2.24 0.01 93.98 2.03 0.01 95.51 2.53 0.01 94.31 1.77 0.02

Breast Cancer 96.99 0.89 0.01 96.42 0.69 0.01 96.36 0.55 0.08 96.17 0.79 0.05
Four-class 100 0 0.01 96.62 1.52 0.01 95.62 1.6 0.07 99.5 0.66 0.05

Checkerboard 94.3 0.63 0.03 93.96 1 0.01 - - - 87.18 2.3 0.1
German Credit 75.7 0.7 0.09 69.95 0.22 0.03 70 0.04 0.35 70.81 0.87 0.29

Waveform-0 89.85 0.63 1.03 89.1 0.38 0.35 88.93 0.71 0.71 89.47 0.34 0.41
Waveform-1 91.26 0.3 0.68 87.49 0.33 0.34 90.18 0.46 0.74 90.8 0.34 0.38
Waveform-2 91.76 0.48 0.94 89.63 0.43 0.33 90.71 0.66 0.84 91.09 0.63 0.41

Banana 90.6 0.69 0.59 81.47 0.74 0.17 86.63 1.83 0.12 90.09 0.49 0.1
Mushroom 100 0 1.47 97.79 0.71 2.17 97.87 0.28 1.71 99.95 0.07 0.97
Phishing 96.69 0.26 4.59 94.51 0.16 3 94.75 0.3 1.99 94.93 0.14 1.29

w8a 99.11 0.04 114.85 97.71 0.08 49.63 98.36 0.07 237.01 98.83 0.06 55.09
a9a 84.7 0.14 373.24 80.35 0.2 127.4 83.18 0.28 77.18 84.68 0.13 43.02

IJCNN-1 99.27 0.7 224.29 98.68 0.06 37.79 98.3 0.08 34.75 98.86 0.06 25.43
Skin Segmentation 99.94 0 20.23 99.94 0.01 3.84 99.75 0.08 7.01 99.91 0 3.78

Cod-RNA 96.98 0.03 4425.55 95.92 0.04 899.1 96.27 0.01 598.23 96.48 0.02 256.71
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Table 5. Dunn’s test results in different β for the significant level α = 0.05.

β TRSD > CVS TRSD ≈ CVS TRSD < CVS TRSD > FLD TRSD ≈ FLD TRSD < FLD

0.1 10 6 2 9 9 0
0.2 11 4 3 9 8 1
0.3 11 4 3 10 8 0

Total 32 14 8 28 25 1

Finally, to compare the training time of SVM, CVS, FLD, and TRSD in detail, we divide it into two
parts: selecting candidate vectors (SC) and training a final SVM model (TS) when β = 0.3, summarized
in Table 6. From Table 6, we can notice that it especially takes longer time for TRSD and FLD than CVS
to select candidate vectors with w8a dataset. This is because the time complexity of building a decision
tree is O(pn log n) where p is the number of features and n is the size of training dataset. However,
our proposed method takes shorter than FLD since calculating TRSD is more computationally efficient
than fisher linear discriminant and is the fastest overall. The results in Table 6 show that the proposed
method efficiently selects support vector candidates while maintaining good classification performance.

Table 6. Time comparison in detail. SC and TS mean computing time for selecting candidate vectors
and training a final SVM model respectively.

Dataset
SVM CVS FLD TRSD

SC TS SC TS SC TS SC TS

Iris-Setosa 0 0.01 0 0.01 0 0.01 0 0.01
Iris-Versicolor 0 0.01 0 0.01 0 0.01 0 0.01
Iris-Virginia 0 0.01 0 0.01 0 0.01 0 0.01

Breast Cancer 0 0.01 0 0.01 0.07 0.01 0.04 0.01
Four-class 0 0.01 0 0.01 0.06 0.01 0.04 0.01

Checkerboard 0 0.03 0 0.01 - - 0.09 0.01
German Credit 0 0.09 0.01 0.02 0.33 0.02 0.27 0.02

Waveform-0 0 1.03 0.18 0.17 0.58 0.13 0.3 0.11
Waveform-1 0 0.68 0.17 0.17 0.65 0.09 0.3 0.08
Waveform-2 0 0.94 0.17 0.16 0.73 0.11 0.34 0.07

Banana 0 0.59 0 0.17 0.08 0.04 0.05 0.05
Mushroom 0 1.47 1.9 0.27 0.99 0.72 0.71 0.26
Phishing 0 4.59 2.08 0.92 1.3 0.69 0.72 0.57

w8a 0 114.85 17.48 32.15 228.83 8.18 46.35 8.74
a9a 0 373.24 44.5 82.88 16.52 60.66 8.84 34.18

IJCNN-1 0 224.29 6.06 31.73 10.08 24.67 5.77 19.66
Skin Segmentation 0 20.23 0.3 3.54 3.22 3.79 2.3 1.48

Cod-RNA 0 4425.55 0.7 898.4 15.46 582.77 11.24 245.47

5. Discussion and Conclusions

In this study, we have proposed a tree-based data reduction approach for solving large-scale SVM
problems. In order to reduce time consumption in training SVM models, we apply a novel support
vector selection method combining tree decomposition and the proposed relative support distance.
We introduce the relative distance measure along with a virtual hyperplane between two distinct
adjacent regions to effectively exclude non-SV data points. The virtual hyperplane, easily obtainable,
takes advantage of the decomposed tree structures and is shown to be effective in selecting support
vector candidates. In computing the relative support distance, we also use the distance between
each data point to the centroid in each region and combine the two in consideration of the nonlinear
characteristics of support vectors. In experiments, we have demonstrated that the proposed method
outperforms some existing methods for selecting support vector candidates in terms of computation
time and classification performance. In the future, we would like to investigate other large-scale
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SVM problems such as multi-class classification and support vector regression. We also envision an
extension of the proposed method to under-sampling techniques.
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