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Abstract: Numerous dimensionality-reducing representations of time series have been proposed in
data mining and have proved to be useful, especially in handling a high volume of time series data.
Among them, widely used symbolic representations such as symbolic aggregate approximation
and piecewise aggregate approximation focus on information of local averages of time series.
To compensate for such methods, several attempts were made to include trend information. However,
the included trend information is quite simple, leading to great information loss. Such information
is hardly extendable, so adjusting the level of simplicity to a higher complexity is difficult. In this
paper, we propose a new symbolic representation method called transitional symbolic aggregate
approximation that incorporates transitional information into symbolic aggregate approximations.
We show that the proposed method, satisfying a lower bound of the Euclidean distance, is able to
preserve meaningful information, including dynamic trend transitions in segmented time series,
while still reducing dimensionality. We also show that this method is advantageous from theoretical
aspects of interpretability, and practical and superior in terms of time-series classification tasks when
compared with existing symbolic representation methods.

Keywords: dimensionality reduction; time-series representation; symbolic aggregate approximation;
transition information

1. Introduction

Most of the real-world applications, such as financial assessment, weather monitoring, medical
data examination, and multimedia systems generate huge amounts of time-series data daily. One of
the main characteristics of time series data is high-dimensionality, which leads to the development of
efficient data representation techniques that not only reduce the high dimensionality but also preserve
the meaningful characteristics. In addition, a desirable distance measure for the reduced time series
representation needs to be defined carefully for various data-mining tasks, such as indexing, searching,
classification, clustering, motif discovery, anomaly detection, and rule discovery.

Some of the well-known data representations for time series with dimensionality reduction are
discrete Fourier transform (DFT) [1], discrete wavelet transform (DWT) [2], discrete cosine transform
(DCT) [3], singular value decomposition (SVD) [4], piecewise aggregate approximation (PAA) [5],
adaptive piecewise constant approximation (APCA) [6], and symbolic aggregate approximation
(SAX) [7]. Most of the above mentioned techniques except for SAX bring forth real-valued
representations that are more expensive in terms of storage and computational complexity than
symbolic representations for high dimensional time series data. The SAX method transforms
real-valued time series data into a symbolic string following two main steps: (1) transforming

Appl. Sci. 2020, 10, 6980; doi:10.3390/app10196980 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7735-0231
https://orcid.org/0000-0003-3287-6069
https://orcid.org/0000-0002-5184-7151
http://dx.doi.org/10.3390/app10196980
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/10/19/6980?type=check_update&version=3


Appl. Sci. 2020, 10, 6980 2 of 14

the original time series to piecewise aggregate approximation (PAA), and (2) converting the PAA
represented values into alphabetic symbols based on the assumption that the given normalized data
follow normal distribution. Symbolic representations make possible the use of various string-based
algorithms, already available, and diverse data structures in time series mining tasks. In addition,
the distance measure corresponding to SAX attains a lower bound than popular distance measures
defined on the original data. Due to its good performance in storage efficiency, time efficiency,
and answer-set correctness (no false dismissals), SAX has been widely used in various applications,
such as semantic sensor networks [8], mobile data management [9], and data visualization tools [10].

Though SAX is widely adopted in time series representation for its simplicity and efficiency,
it undergoes considerable information loss. The traditional SAX method, however, removes trend
and shape information in a time series, assuming that a portion of an arbitrary time series contains
intermingled up-and-down trends. SAX basically uses averaged values of subsequences while ignoring
trend information. Noticeably, SAX discretization does not guarantee equally probable symbols owing
to its intermediate PAA [11]. As PAA is applied before SAX representation, the distribution of the
data is altered and results in a shrinking standard deviation. This shrinking distribution negatively
affects the symbolic representation of the time series deviating from the target distribution. Recently,
researchers have improved SAX representations and the associated distance measures from various
aspects to compensate for its information loss. The original SAX representation is integrated with,
for example, a modified lookup table and a slope by regression. We explore some improvements
related to the SAX representation and the distance measures.

Genetic-algorithm SAX (GASAX) was proposed to determine breakpoints using a genetic
algorithm [12]. The objective of GA is to find the nearly optimal configuration of breakpoints that gives
the best fitness. The authors argued that the normality assumption oversimplifies the problem of SAX
representations and may result in high error when performing time-series mining tasks. Although
GASAX works well on both normalized and non-normalized time series data, it needs to define
suitable control parameters for its operators and fails to include trend information. Extended SAX
(ESAX) [13] enhanced SAX by adding two new points, the maximum and minimum, to the original SAX
representation. Using financial time-series data, the research showed that representations of ESAX are
more precise than those of SAX without losing the symbolic nature of the original SAX. On the one hand,
the storage cost of ESAX is triple that of the original SAX, since it necessarily locates the maximum and
minimum along with the sample mean for each segment. Since SAX representations have low accuracy
when distinguishing time series with similar average values but different trends, several attempts were
made to qualitatively define a few trends, such as slight up/down and substantial up/down. Sun et al.
defined a SAX-based trend distance (SAX-TD) quantitatively by using the starting and ending points
of a segment and improved the original SAX distance [14].

Yin et al. proposed trend feature symbolic approximation (TFSA) using a two-step segmentation
technique for rapid segmentation in long time series data [15]. TFSA, satisfying a lower bound criterion,
showed better segmentation and classification accuracy. Malinowski et al. also represented a time
series as a sequence of symbols consisting of the average and trend for each segment [16]. Basically,
it is an application of linear regression to time series sub-segments, and symbols take into account
information on the sample averages and slope values. This method, called 1d-SAX, improved retrieval
performance, while the compression ratio remained similar to the original SAX.

In this paper, we propose a new symbolic representation method that incorporates transitional
information of values according to time, enabling the method to easily track the direction in which
a current symbolic representation moves toward the symbolic aggregate approximation. We aimed
to capture important patterns in a systemic and meaningful fashion and append them to a piecewise
representation method, such as SAX or PAA, for time series. We chose the SAX method to associate
with the proposed method with because of its popularity and performance. Since neither SAX nor PAA
suffer from low classification accuracy due to a high level of information compression or information
loss, the proposed representation improves classification tasks and preserves interpretability.
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The remaining part of this article is organized as follows: Section 2 contains the background of
SAX. Section 3 describes the proposed approach for improving SAX with trend information. Section 4
shows experimental designs and results to verify the performance and interpretability of the proposed
representation. Section 5 concludes the research with future research directions.

2. Preliminary: PAA and SAX

In this section, we briefly explain preliminary information of SAX. SAX is a time series
representation method using piecewise aggregate approximation (PAA) of time-series subsequences.
Given a time series X := {x(t)}t=1,...,N , the PAA divides X into n equally sized segments,
Xp := {x(t)}t=K(p−1)+1,...,Kp, p = 1, . . . , n, where N is divisible by n (n � N) and K = N/n.
It evaluates its local average for the p-th segment, Xp:

x̄p =
1
K ∑Kp

j=K(p−1)+1 x(j). (1)

Next, the method transforms X into a representation vector {x̄p}p=1,...,n, an efficient
dimensionality-reduction from N to n, which weakens the noise influence in x(t). The SAX method
maps x̄p into a symbol in consideration of the value space of X. For the mapping, it further divides
the value range or value space of segments Xp into several non-uniform regions under the normality
assumption and assigns a symbol to each region.

3. The Proposed Method, Transitional SAX

Starting with the definition and transition of value spaces in detail, we introduce the
proposed method.

3.1. Transitional Information in Sub Value Spaces

We first assume that the values x(t) in time series X follow a normal distribution through
normalization and detrending, widely adopted in the literature [7,17]. Notice that we choose the
original time series X rather than segment Xp to increase the validity of the assumption. We divide the
value space into regions with equal probability. To describe the regions in detail, we define a sub value
space to be an interval Sk = [yk−1, yk), k = 1, . . . , α, such that Φ̂(yk)− Φ̂(yk−1) = 1/α, in which Φ̂ is
the cumulative probability function of a normal distribution with the sample average and the sample
variance of x(t). The parameter α is the number of sub value spaces. In the following experiments,
we show how to set α through a cross-validation procedure with training datasets. Observe that y0 is
the minimum of all values x(t) and yα is the maximum.

Now given the sub value spaces Sk, various feature reduction and extraction approaches are
possible for expressing the time series X. For example, the SAX method assigns a symbol for a sub
value space, reducing a numerical piecewise approximation to a symbol. In this paper, we aim to
include transitional trend information by extracting the transition counts. For segments Xp, we count
the number of transitions, denoted by γi,j where i, j = 1, . . . , α, from sub value space Si to Sj as follows:

γi,j = ∑Kp
t=K(p−1)+1 I(x(t) ∈ Si) I(x(t + 1) ∈ Sj), (2)

where I(A) is 1 if the relation A is true, and 0 otherwise. Let us define x̄(i) to be the average of x(t) in
sub value space Si: x̄i = 1/|Si|∑t:x(t)∈Si

x(t).
When applying all combinations of sub value spaces, S1, S2, . . . , Sα, we form a transition matrix,

γ = [γi,j] of size α× α: element γi,j means the number of transitions from Si to Sj. The use of transition
matrix γ enables us to state terms relating to trend. We call the collection of γi,j in which |i − j| is
constant a trend. In particular, ∑α

i=1 γi,i defines a sojourn trend as the sum of each piece of sojourn
information γi,i. In Figure 1, for instance, α is set to 3, and three sub value spaces, S1, S2, and S3, exist.
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For the first segment X1, the transitional information of values moving in sub value spaces is stored
in γ = [[4, 0, 0], [1, 16, 1], [0, 1, 40]]. While all transitional elements γi,j are worthwhile, we focus on
one-step upward and downward transitional information with sojourn information. For example,
γ2,1(= 1) represents the frequency of one-step upward transitions from the sub value space S2,
and γ2,3(= 1) represents that of one-step downward transitions from S2. The diagonal elements,
γ1,1(= 4), γ2,2(= 16), and γ3,3(= 40), represent the sojourn trends in the three subspace spaces,
respectively. If the sum of one-step upward transitions γ2,1 + γ3,2 is zero, it means non-existence of
upward trend and possible downward or steady trend. Observe that 0 ≤ γi,j ≤ n− 1 since the most
continuous transition pattern is to remain in a sub value space.

Figure 1. Graphical description of transitional SAX.

We apply the above-mentioned transitional information to SAX, denoting the proposed approach
transitional SAX. The overall algorithm is summarized in Algorithm 1. We notice that, as shown in
Algorithm 1, a new representation for time series X of size N is the output in Algorithm 1, V = [W, Z]
of size n(1 + α2) since each segment produces a symbol for the local average plus α2 of the transitional
information. Unless N is large enough, meaning a long time series, we recommend the use of one-step
upward and downward transitions, α− 1 counts for each, plus the sojourn transitions instead of all
α2 counts, which brings the dimensionality of V to n(3α− 1). In contrast with SAX which is able to
handle incremental data, the proposed transitional SAS is not fully online but segment-wise online,
since it is able to append a SAX word and a transition vector of a segment to its representation V.
One needs to avoid a quite large n to prevent possible delay for online usage. On the contrary, a quite
small n hardly captures transitional movements in the sub value spaces.

As shown in line 12 of Algorithm 1, we use letter symbols α1 = k1 and α2 = k2 if x̄p1 ∈ Sk1 =

[yk1−1, yk1) and x̄p2 ∈ Sk2−2 = [yk2−1, yk2), respectively, and their distance is given by

dist(α1, α2) = max{ymax {k1,k2}−1 − ymin {k1,k2}, 0}. (3)

The letter distance, if located in either the same value sub space, is zero, and otherwise, it is set
by the intermediary value spaces between two sub spaces Sk1 and Sk2 . For example, if x̄p1 ∈ S3 and
x̄p2 ∈ S3, i.e., in the same value sub space, the distance becomes zero. For value sub spaces right
adjacent to each other, x̄p1 ∈ S3 and x̄p2 ∈ S4, the distance becomes zero since the in-between sub
value space does not exist. For x̄p1 ≥ x̄p2 , it straightforwardly follows that k1 ≥ k2, x̄p1 ≥ yk1−1,
and x̄p2 ≤ yk2 , leading to x̄p1 − x̄p2 ≥ yk1−1 − yk2 = dist(α1, α2).
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Algorithm 1 Transitional SAX.

1: Input: time series data X := {x(t)}t=1,...,N
the length of a segment n,
the number of sub value spaces α

2: Output: transitional symbolic representation V

3: procedure TRANSITIONALSAX(X, n, α)

4: Initialize V ← [], W ← [], Z ← [], and set K = N/n

5: Create sub value spaces Sk, k = 1, . . . , α, with equal probability 1/α by fitting x(t) values
to normal distribution

6: for p = 1, . . . , K do

7: Xp := {x(t)}t=K(p−1)+1,...,Kp

8: x̄p = 1
K ∑

Kp
j=K(p−1)+1 x(j)

9: end for

10: Set ρ = minp,p′=1,...,K{|x̄p − x̄p′ |}

11: for each segment Xp, p = 1, . . . , K do

12: Compute local average x̄p and assign a symbol αk(= w) if x̄p ∈ Sk

13: W ← [W, w]

14: for each i, j = 1, . . . , α do

15: Compute transitional information
γi,j = ∑

Kp
t=K(p−1)+1 I(x(t) ∈ Si)I(x(t + 1) ∈ Sj)

16: Update Z
Z ← [Z, γi,j]

17: end for

18: end for

19: Update V ← [W, Z]
return V

20: end procedure

3.2. Distance Measure for Transitional SAX

We evaluate the proposed method by how closely the new representation V = [W, Z] of a time
series, X, approximates the original time series X. The new distance measure associated with the
new representation needs to satisfy a lower-bounding property to ensure no false dismissals [17,18].
For that purpose, we propose the following distance measure. Let us suppose that the transitional
SAX method produces new representations V(1) = [W(1), Z(1)] and V(2) = [W(2), Z(2)] for X1 and X2,
respectively, with the same size, in which τ is the size of Z(1) or Z(2), τ = |Z(1)| = |Z(2)|; we define
D(·, ·) to be:

D(V1, V2) =

√
∑n

i=1 K(W(1)(i)−W(2)(i))2 ·∑τ

j=1
(Z(1)(j)− Z(2)(j))2

τ(n− 1)2 . (4)
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We compare the distance measure (4) with the Euclidean distance of the original time series
to verify that it satisfies the lower-bound condition: we show that D(V1, V2) ≤ DEuclidean(X1, X2).
The right-hand side of the inequality becomes:

D2
Euclidean(X1, X2) = ∑N

t=1(x1(t)− x2(t))2 = ∑n
p=1 ∑Kp

t=K(p−1)+1(x1 − x2)
2

= ∑n
p=1 ∑Kp

t=K(p−1)+1(x1(t)− x̄1,p + x̄1,p − x2(t) + x̄2,p − x̄2,p)
2.

(5)

Since the sum of values centered by the average is zero, that is to say,

∑n
p=1 ∑Kp

t=K(p−1)+1(x1(t)− x̄1,p − x2(t) + x̄2,p)

= ∑n
p=1 ∑Kp

t=K(p−1)+1(x1(t)− x̄1,p)−∑n
p=1 ∑Kp

t=K(p−1)+1(x2(t)− x̄2,p) = 0,

the right-hand side of Equation (5) becomes

∑n
p=1 ∑Kp

t=K(p−1)+1(x1(t)− x̄1,p − x2(t) + x̄2,p)
2 + ∑n

p=1 ∑Kp
t=K(p−1)+1(x̄1,p − x̄2,p)

2

≥∑n
p=1 ∑Kp

t=K(p−1)+1(x̄1,p − x̄2,p)
2 ≥∑n

p=1 ∑Kp
t=K(p−1)+1(W

(1)(p)−W(p)(i))2
(6)

The last inequality (x̄1,p − x̄2,p)
2 ≥ (W(1)(p) −W(2)(p))2 holds true by the letter-distance

definition given in Equation (3). The value Z(j) difference is lower bounded by |Z(1)(j)−Z(2)(j)| ≤
max {Z(1)(j)} −min {Z(2)(j)} = n− 1, (Z(1)(j)−Z(2)(j))2/(n− 1)2 ≤ 1, and

1 ≥∑τ

j=1
(Z(1)(j)−Z(2)(j))

2

τ(n− 1)2 . (7)

The combination of the right-hand sides of equations and (6) and (7) produces

∑n
p=1 ∑Kp

t=K(p−1)+1(W
(1)(i)−W(2)(i))2 ≥ ∑n

p=1 K(W(1)(i)−W(2)(i))2 ·∑τ

j=1
(Z(1)(j)−Z(2)(j))

2

τ(n− 1)2 ,

finalizing the proof of D(V1, V2) ≤ DEuclidean(X1, X2). By admitting that tight lower-bounds bring
forth better contractive property, the lower-bound relation of the associated distance measure implies
the utility of the proposed transitional information in distance computation. We will elaborate on its
attributes in more detail in the Experiments section.

4. Experiments

4.1. Dataset

We used twenty UCR time series benchmarking datasets [19] to compare the proposed
method with the previous algorithms. Table 1 describes the characteristics of the datasets, such
as the number of classes, the size, and so forth. We split each dataset into training and testing sets as
described in the table. The number of classes varied from 2 to 50. Training and testing set sizes were
various from two dozen to thousands. The length of the time series ranged from 60 to 637.
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Table 1. The description of twenty UCR datasets.

No. Name # of Classes Size of Training Set Size of Test Set Length of
Time Series

1 Synthetic_control 6 300 300 60
2 GunPoint 2 50 150 150
3 CBF 3 30 900 128
4 FaceAll 14 560 1690 131
5 OSULeaf 6 200 242 427
6 SwedishLeaf 15 500 625 128
7 50Words 50 450 455 270
8 Trace 4 100 100 275
9 TwoPatterns 4 1000 4000 128

10 Wafer 2 1000 6164 152
11 FaceFour 4 24 88 350
12 Lighting2 2 60 61 637
13 Lighting7 7 70 73 319
14 ECG 2 100 100 96
15 Adiac 37 390 391 176
16 Yoga 2 300 3000 426
17 Fish 7 175 175 463
18 Beef 5 30 30 470
19 Coffee 2 28 28 286
20 OliveOil 4 30 30 570

4.2. Methods in Comparison and Parameter Settings

We compared the classification accuracy of our proposed method on one of the major time
series data mining tasks symbolic, aggregate approximation, with the transition matrix (denoted as
SAX-TM), the classic Euclidean distance (ED), SAX [10], SAX-TD [14], and SAX-SD [18]. We chose
classification by one nearest neighbor (1NN) as the performance criterion, following most studies in
time series representation [7,10,14]. The advantage of 1NN in time series representation is that the
underlying distance measure is critical to the performance of the 1NN classifier. Therefore, the error rate
of the 1NN classifier directly reflects the effectiveness of distance measures. Besides, the 1NN classifier is
directly comparable with diverse distance measures, since it is parameter-free.

To obtain the best accuracy for each method, we used all training data to search for the best
parameters n and α. For a given time series of length N, we chose the two parameters n and α using
the following criteria. To make the comparison fair, the criteria were the same as those in [17]: for
n, we searched from 2 up to N/2, doubling the value each time; for α, we searched from 3 up to 10.
If two sets of parameter settings produced the same classification error rate, we chose the smaller set.
We mention that, given labeled data, a training phase will boost not only SAX-TM but also other SAX
methods; the traditional SAX needs to set the number of letters among other parameters. With the
absence of labeled data, one needs to set the parameters for the SAX methods, including SAX-TM,
according to other criteria in an unsupervised manner.

4.3. Experimental Results

The overall classification results for the testing datasets are listed in Table 2, where the lowest
classification error is highlighted. Clearly, SAX-TM has the lowest error in most of the datasets (14/20),
followed by the SAX-SD (6/20). On average, the classification error for SAX-TM is lower than
half of that for the original SAX in 19 datasets among the 20 datasets. The number of sub value
spaces, i.e., the dimensionality reduction ratio, α, for SAX-TM is smaller than those for the others
except SAX-SD. Figure 2 shows comparisons of SAX-TM with ED, SAX, SAX-TD, and SAX-SD,
respectively, in terms of error rates of 1NN classification. Figure 3a depicts changes of n parameters
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among SAX, SAX-SD, SAX-TD, and SAX-TM, and Figure 3b illustrates changes of parameter α among
the comparative algorithms. In addition to the classification performance, we present the computation
time of the proposed method in comparison with the original SAX. The comparison bears significance
that SAX-TM requires a memory of size n(1 + α2) for symbols, whereas the original SAX requires
that of size n, as mentioned in Section 3.1. For this comparison, we used three datasets (Lighting2,
SpaceShuttle, ECG2) of lengths 637, 5000, and 21, 600; see the results in Table 3. The environment
for the comparison was Matlab R2020b and Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz with
α = 10. We observed that SAX is quite a lot faster than SAX-TM, which is reasonable since SAX-TM
requires additional point-wise testing and storage for sub value spaces. The computation times for
both methods, increasing according to the dataset length, are reasonably fast. Noticeably, the speed of
SAX-TM is relatively robust against n; SAX becomes quite much slow when n changes from 128 to 256
and SAX-TM hardly changes in speed; the standard deviation of SAX-TM is smaller than that of SAX
in SpaceShuttle and ECG2.

(a) Error rates of 1NN classification between ED and
SAX-TM

(b) Error rates of 1NN classification between SAX and
SAX-TM

(c) Error rates of 1NN classification between SAX-SD and
SAX-TM

(d) Error rates of 1NN classification between SAX-TD and
SAX-TM

Figure 2. Comparison of error rates in 1NN classification between the existing methods and the
proposed algorithm.

4.4. Information Analysis

Next, we evaluate the performance of SAX-TM from the viewpoint of information. SAX has been
regarded as a de facto standard to reduce the dimensionality of time series data. Despite its popularity
and universality, the structural properties of SAX from the information viewpoint have been rarely
researched to the best of our knowledge.

Among the statistical facets, Song et al. proposed in the investigation of time-series dimensionality
reduction [20] that we focus on information loss and efficiency of information embedding.
Both minimizing the loss of useful information and preserving useful information in a raw time
series are practical goals. Thus, we adopted procedures to discover intrinsic properties of the proposed
method from the perspective of information loss and information embedding.
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(a) parameter n among SAX, SAX-SD, SAX-TD and SAX-TM

(b) parameter α among SAX, SAX-SD, SAX-TD and SAX-TM

Figure 3. Parameters among SAX, SAX-SD, SAX-TD, and SAX-TM.

For this purpose, we calculated the information loss, denoted by Lin f o, by mean squared error
(MSE) between a raw signal and reconstructed symbolic words:

Lin f o(T̃, T) = ∑(t̃i − ti)
2

n− 1
, t̃i ∈ T̃, ti ∈ T, (8)

in which T is raw signal and T̃ is a reconstructed one. To conduct the comparison, we scaled raw time
series and SAX words to [0, 1]. We also calculated the Kullback–Leibler (KL) divergence, which is a
non-symmetric similarity measure between two different probability distributions. For distributions P
and Q with k points, the KL divergence is defined as follows:



Appl. Sci. 2020, 10, 6980 10 of 14

KL(P ‖ Q) = ∑k
i=1 pi log

pi
qi

, pi ∈ P, qi ∈ Q (9)

Table 2. 1NN classification error rates of ED (Euclidean distance); 1NN best classification error rates,
length n, and dimensionality reduction ratio α of the SAX, SAX-TD, SAX-SD, and SAX-TM on
20 datasets. The lowest error rates are highlighted in bold.

No. ED
Error

SAX
Error

SAX
n

SAX
α

SAX
-TD
Error

SAX
-TD
n

SAX
-TD
α

SAX
-SD
Error

SAX
-SD
n

SAX
-SD
α

SAX
-TM
Error

SAX
-TM
n

SAX
-TM
α

1 0.120 0.020 16 10 0.077 8 10 0.027 16 10 0.020 32 7
2 0.087 0.180 64 10 0.073 4 3 0.033 32 3 0.04 32 8
3 0.148 0.104 32 10 0.088 4 10 0.020 4 10 0.001 8 6
4 0.286 0.330 64 10 0.215 16 8 0.164 64 3 0.219 16 9
5 0.483 0.467 128 10 0.446 32 7 0.433 32 3 0.417 16 6
6 0.211 0.483 32 10 0.213 16 7 0.134 32 3 0.171 32 10
7 0.369 0.341 128 10 0.338 128 9 0.325 8 9 0.286 64 6
8 0.240 0.460 128 10 0.21 128 3 0.060 8 7 0.040 2 6
9 0.093 0.081 32 10 0.071 16 10 0.091 8 10 0.013 16 7
10 0.005 0.003 64 10 0.004 32 8 0.013 4 9 0.003 128 4
11 0.216 0.17 128 10 0.181 32 9 0.114 16 7 0.045 16 5
12 0.246 0.213 256 10 0.229 8 9 0.164 4 10 0.164 2 6
13 0.425 0.397 128 10 0.329 16 10 0.370 4 10 0.274 4 8
14 0.120 0.120 32 10 0.090 16 5 0.070 4 9 0.070 64 8
15 0.389 0.890 64 10 0.273 32 9 0.284 16 5 0.491 128 10
16 0.17 0.195 128 10 0.179 128 10 0.162 16 10 0.158 4 10
17 0.217 0.474 128 10 0.154 64 9 0.189 64 9 0.189 4 9
18 0.467 0.567 128 10 0.200 64 9 0.3 16 9 0.3 32 7
19 0.25 0.464 128 10 0.000 8 3 0.000 8 3 0.000 16 8
20 0.133 0.833 256 10 0.067 64 3 0.133 128 3 0.0670 128 5

average 0.234 0.340 0.172 0.154 0.148

Table 3. Comparison of computation time in seconds between SAX and SAX-TM for the three datasets
(Lighting2, SpaceShuttle, ECG2) of length 637, 5000, and 21,600, respectively.

Lighting2 SpaceShuttle ECG2

n SAX SAX-TM SAX SAX-TM SAX SAX-TM

16 0.00071 0.00757 0.00169 0.06058 0.00143 0.2883
32 0.00047 0.00722 0.00128 0.05236 0.00060 0.2563
64 0.00057 0.01095 0.00260 0.05413 0.01102 0.2491

128 0.00129 0.01344 0.00419 0.05911 0.03463 0.2185
256 0.00342 0.01793 0.01397 0.05850 0.08983 0.2199

avg. 0.00129 0.01142 0.00475 0.05693 0.02750 0.2464
std. 0.00110 0.00397 0.00472 0.00314 0.03349 0.0258

In our experiments, we take P as the distribution of the original signal T and Q as that of the
reconstructed signal T̃ by a histogram with α as the number of bins.

Information loss measures the amount of information abandoned when converting the original
time series to a symbolic representation. KL-divergence represents the closeness between the
distribution of a raw signal and that of a reconstructed signal. To combine the two measures, Song et al.
defined information embedding cost (IEC) as a ratio of KL-divergence and information loss as follows:

IECT(P, Q) =
KLT(P ‖ Q)

1 + Lin f o(T̃, T)
. (10)

Given a time series T in distribution P and reconstructed signal T̃ with distribution Q, the IEC
score describes the number of extra bits needed to transform the output T̃ when information loss
incurs by one unit, revealing how much useful information is abandoned when transforming a raw
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signal [20]. A higher value of information loss and a lower value of KL-divergence imply that the
reconstruction preserves a large quantity of information while reducing complexity. Hence, we prefer
a representation method with lower IEC.

For intuitive understanding, we graphically compare SAX with the proposed method using one
representative coffee dataset, providing only performance summaries for the others. Figure 4a shows
the raw time series together with representations by SAX and SAX-TM for the coffee dataset. SAX and
SAX-TM affordably follow up the shape of the raw signal. In Figure 4b, the information loss of SAX-TM
is higher than that of SAX. This means SAX-TM lost much more information than SAX. However,
the KL-divergence value of SAX-TM is lower than that of SAX, as shown in Figure 4c. The tendency is
also preserved in the IEC scores shown in Figure 4d.

(a) Raw, SAX, and SAX-TM signals (b) Information loss

(c) KL-divergence (d) Information embedding cost

Figure 4. Performance comparison of SAX and the proposed method on the coffee dataset.

We used twelve datasets in total, including the coffee one, to see the amount of useful information
preserved in terms of the information loss, KL-divergence, IEC score, and 1NN classification error.
The comparative results between SAX and the proposed method are shown in Table 4, where N is the
data length. We applied the same parameter settings for SAX as in [20] and applied the combination of
parameters from Table 2 for SAX-TM.
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Table 4. Information loss and efficiency of information embedding in SAX and SAX-TM.

Dataset N Information Loss KL-Divergence IEC Score Classification Error

SAX SAX-TM SAX SAX-TM SAX SAX-TM Raw Data SAX SAX-TM

50words 270 0.056 0.06 0.323 0.355 0.304 0.332 0.361 0.338 0.286
Adiac 176 0.009 0.189 0.07 0.103 0.07 0.087 0.407 0.383 0.491
Beef 470 0.038 0.03 0.346 0.493 0.332 0.477 0.4 0.466 0.3

Coffee 286 0.014 0.016 0.123 0.088 0.122 0.086 0.25 0.107 0
ECG 96 0.053 0.084 0.504 0.44 0.474 0.405 0.11 0.22 0.07

Face(four) 350 0.069 0.104 0.597 0.702 0.556 0.631 0.276 0.171 0.158
Gun-point 150 0.025 0.027 0.357 0.35 0.346 0.338 0.13 0.17 0.04
Lighting2 637 0.112 0.387 0.969 0.934 0.862 0.666 0.197 0.229 0.164
Lighting7 319 0.123 0.232 0.912 0.898 0.8 0.716 0.37 0.397 0.274
Oliveoil 570 0.064 0.121 0.261 0.342 0.246 0.305 0.233 0.166 0.067

SwedishLeaf 128 0.025 0.015 0.174 0.142 0.169 0.14 0.201 0.441 0.171
Synthetic
control 60 0.092 0.073 0.2 0.158 0.182 0.148 0.12 0.02 0.02

Average 0.057 0.112 0.403 0.417 0.372 0.361 0.255 0.259 0.17

Overall, in Table 4, information loss of SAX is lower than that of SAX-TM. That is, SAX loses
smaller quantities of information than SAX-TM. However, the KL-divergence values of SAX-TM
are mostly lower than those of SAX: the number of lower KL-divergence for SAX-TM (7/12) is
larger than that for SAX (5/12). This tendency is preserved in the IEC score. Even the average IEC
scores for SAX-TM are lower than those for SAX. That is, SAX-TM loses less useful information than
SAX. Nevertheless, the 1NN classification error of SAX-TM is considerably lower than that of SAX.
By appending transitional information to the original SAX, we obtained substantial gains in accuracy.

5. Conclusions

In this work, we described the popularity and universality of SAX, which is a symbolic aggregate
approximation in the field of dimensionality reduction for time series data. The original SAX barely
captures trend information from the perspective of time-series shape. Therefore, we proposed
a symbolic aggregate approximation with transitional information, which can represent trend
information by appending transition information to basic SAX.

In a given time window, a SAX word is created, and we can trace how data points travel from the
current quantile region to the next location. We call this moving behavior from the current location
to the next location a transition. When in a current location, data points in a window can choose
from three movements—upward transition, downward transition, and sojourn transition. These
movements are saved in the data format of a matrix. First, we conducted experiments to verify the
effectiveness of SAX-TM compared with other state-of-the-art methods such as SAX-TD and SAX-SD.
The experimental results show SAX-TM has the lowest 1NN classification error among the algorithms.
Next, we identified intrinsic statistical properties of SAX-TM. From [20], we selected information loss,
KL-divergence, and information embedding cost as important measurements. Overall, the information
loss of SAX is lower than that of SAX-TM. However, the number of datasets with lower KL-divergence
for SAX-TM is slightly larger than that for SAX. This tendency is also preserved in terms of the IEC
score. Nonetheless, SAX-TM substantially reduces classification error compared with SAX. SAX-TM
shows explicit increases in accuracy even while appending transition information to SAX.

In spite of the aforementioned advantages, the proposed algorithm has several limitations.
Basically, SAX compresses raw data for smoothing. However, SAX-TM increases the complexity
of SAX representation by appending a transition matrix. We plan to investigate the minimal
effective information to add to SAX and compare it with well-known non-SAX methods. In addition,
future research directions include the theoretical aspects of the transition information in several
time-series models.
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