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requirements that conventional wireless communications have been difficult to meet.
We propose a method to consume the minimum transmission power relative to the
maximum data rate with the target of LoRaWAN among LPWA networks.
Reinforcement learning is adopted to find the appropriate parameter values for the
minimum transmission power. With deep reinforcement learning, we address the
LoRaWAN problem with the goal of optimizing the distribution of network resources
such as spreading factor, transmission power, and channel. By creating a number of
deep reinforcement learning agents that match the terminal nodes in the network
server, the optimal transmission parameters are provided to the terminal nodes. The
simulation results show that the proposed method is about 15% better than the
existing ADR (adaptive data rate) MAX of LoRaWAN in terms of throughput relative to
energy transmission.
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1 Introduction
As the 4th industrial revolution using information becomes an issue, information and
communication technologies such as the IoT (Internet of Things), big data, and Al (arti-
ficial intelligence) have become popular around the world. In particular, the IoT is a
very important part of the technology that generates information that is the basis of the
4th industrial revolution. As a result, the scale of the IoT will increase in the next few
years, and the current wireless communication environment will not be able to meet the
demands of society. It is necessary to research the Internet of Things to meet the demands
of the future society.

Even if the number of connected devices is large, there is an IoT environment in

which the amount of data generated by each device is relatively small. This environment
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opens up the possibility of large-scale connectivity and LPWA (low power wide area)
networks [1]. Compared with traditional wireless technology, LPWA technology aims to
provide a compromise between low power consumption, range, and data rate to address
a wider range of requirements than traditional IoT applications. There are several com-
mercial technologies such as LoRaWAN, SIGFOX, NB-IoT, INGENU, and TELENSA in
this LPWA. This paper is aimed at LoRaWAN, which discloses standard protocols.

LoRa specification includes two layers: physical layer (LoRa RF) and link layer
(LoRaWAN) [2]. LoRa enables low-power, long-distance communication through modu-
lation schemes using chirped spread spectrum technology at the physical layer. And the
link layer is designed to consume the minimum power of the end node using pure ALOHA
method. This design makes LoRa possible for low-power long-distance communication,
but there are disadvantages due to the simplicity of the terminal node. The possibility of
packet collision has increased due to the increase of time on air of packets in LoRa system,
and LoRa also has near-far problem depending on the location of gateway and terminal
node. Therefore, in order to minimize these side effects, appropriate spreading factor val-
ues and transmission power values should be set. LoORaWAN provides ADR to find an
appropriate factor value.

This paper attempts to use reinforcement learning to find the appropriate parameter
values. Deep learning technology is currently used to solve a variety of problems, includ-
ing Deep Mind’s AlphaGo. In particular, deep learning is widely used in network fields
such as network resource allocation and load balancing. In this paper, we take a deep
approach to the problem of the distribution of network resource optimization such as
spreading factor, transmission power, and channel allocation in LoRaWAN.

This paper is organized as follows. Section 2 discusses LoRa and the existing network
resource allocation methods, discusses deep reinforcement, and explains the motivation
of the proposed method. Section 3 describes the proposed method. Section 4 analyzes the
performance of the proposed method through simulation. Finally, Section 5 concludes
this paper.

2 Related work
2.1 LoRa

LoRa is an abbreviation for Long Range and is a long-range wireless communication sys-
tem [2]. LoRa uses a shared frequency band called unlicensed spectrum and consists of
LoRa terminal nodes, gateways, and network servers as shown in Fig. 1. The terminal
and the gateway can communicate with 1-Hop, so it is composed of star-shaped network
topology. The terminal and the gateway transmit data through LoRa connection, and the
gateway and the network server exchange data received from the terminal through wire.
LoRa consists of two layers, LoRa and LoRaWAN. LoRa can send data at low power and
long distance because of the unique modulation schemes in the LoRa physical layer. Chirp
spread spectrum (CSS) modulation is used for the physical layer, which uses signals that
increase or decrease with the increase of time called chirp.

The symbol duration of LoRa is based on spreading factor (SF) and bandwidth (BW).
The symbol of each LoRa is composed of convolutions for the entire bandwidth, and the
symbol duration (75) is as shown in Eq. 1.
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Fig. 1 LoRa network

Therefore, the symbol duration is doubled according to the value of SF when having a
fixed bandwidth. This means that the higher the SE, the greater the probability of collision
between packets due to the symbol duration, and also doubles the data rate over the same
time. In addition, as symbol duration increases, more energy is consumed in signal encod-
ing, increasing battery consumption. On the contrary, as the symbol duration increases,
the message transmission time (ToA) increases, and communication can be performed at
a relatively longer distance than the low SE. Since SF has orthogonality, the gateway can
receive signals encoded with different SF values in the same channel. In Table 1, we can
see the bit rate and sensitivity as SF increases.

The second network layer, called LoRaWAN, processes the media access control layer
(MAC). LoRaWAN supports three devices: class A, class B, and class C. Class A pursues
low power, so it uses pure ALOHA instead of carrier sense multiple access (CSMA) to
check if media is in use. Class B allocates additional slots to increase the downlink success
rate from the gateway. Allocating additional slots increases the probability of data recep-

tion but consumes more power than class A. Class C always allocates downlink slots in
an externally powered format.

Table 1 Bit rate and sensitivity according to LoRa modulation

Mode Bit rate (kb/s) Sensitivity (dBm)
LoRa SF =11 0.537 —1345
LoRaSF=10 0.976 —-132

LoRa SF=9 1757 —129

LoRa SF=8 3125 —126
LoRaSF=7 5468 —123
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2.2 Performance issues of LoRa and ADR

LoRa enables low-power, long-range wireless communication due to the simple modu-
lation of the special modulation scheme and pure ALOHA. However, this structure not
only has advantages but also disadvantages. There is no carrier sensing for packets sent
from other terminal nodes, and the message transmission time due to high SF increases
the probability of packet collision as the number of terminals increases.

LoRaWAN also has a near-far problem like other wireless communication environ-
ments. If the received signal strength indicator (RSSI) of the packet transmitted from the
LoRa gateway is very large, the packet transmitted from the terminal node far from the
gateway may not be recognized by the gateway. LoRa has this performance problem [3].

LoRaWAN has this problem, so it provides adaptive data rate (ADR) to solve the above
problems. ADR can control symbol duration, data rate, and energy consumption to min-
imize side effects as the number of LoRa terminals increases. As shown in Algorithm 1,
the ADR collects approximately 20 packets initially and then analyzes the received packet
strength to determine the SF increase/transmission power (TP) increase. By adjusting
SF and TP properly, near-far problem can be solved by minimizing packet collision and
increasing the strength of transmission signal to the node far from gateway [3].

Algorithm 1 LoRa ADR Algorithm
i<0
offset < 10
history([j] <- 0 foralljin [0, 19]
threshold < {20.0,17.5,15.0,12.5,10.0, 7.5}

if i = 20 then
margin <— max(history) - threshold[DR] - offset
steps < round(margin/3)

if step >0 then
increase DR by steps until DR = 5
decrease TP by remaining steps until TX =0
else
increase TP by stps until TX =5
end if
else
history[i] = mSNR
i<i+l
end if

The ADR uses the signal-to-noise ratio (SNR) of the collected packets to determine SF
and TP. The ADR varies greatly depending on the number of packets collected and how to
set the representative values. As a result, much research has been conducted to maximize
the performance of ADR. The research by Hauser et al. [4] changed the existing ADR logic
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to make network resource distribution more efficient. Reynders et al. [5] significantly
reduced the retransmission rate of packets by adding logic to change the channel accord-
ing to the distance between the gateway and the terminal node to the ADR. There are
several characteristics that can lead to an unbalanced distribution of data extraction rate
(DER) between nodes. Since SF does not have perfect orthogonality, it is not possible to
detect weak packet signals due to strong packet signals. For this reason, packets of nodes
with large signal attenuation are not delivered well. In view of these issues, Abdelfadeel et
al. [6] proposed the Fair Adaptive Data Rate Algorithm (FADR). FADR is an ADR in which
LoRa achieves an effective data extraction rate with an appropriate spreading factor and
transmission power while excluding excessively high transmission power. Kim et al. [7]
suggested congestion estimation through logistic regression to improve the transmission
performance degradation of LoraWAN without considering congestion. They proposed a
congestion classifier based on logistic regression, which improves performance in terms
of transmission delay. When using the same data rate and not considering collision,
throughput is greatly reduced. Therefore, Kim and Yoo [8] proposed a contention-aware
adaptive data rate for throughput optimization and applied a gradient projection method
to find the optimal value. Through this, the throughput was improved to a value close to
the theoretical maximum value. El-Aasser et al. [9] proposes the algorithms of sensitivi-
tySF and assignmentSF, which are smarter SF setting techniques than the existing ADR, to
increase both the throughput between the nodes of the same tier and the overall through-
put, and achieve higher throughput than the existing ADR. For fair SF allocation, Cuomo
et al. [10] proposed ordered water-filling-based EXPLoRa-KM (K-means) and EXPLoRa-
TS (time symbol) techniques. KM mitigates the critical region where the collision occurs
seriously, and TS plays a role to make the traffic load of each SF constant. Through this,
fair allocation was achieved. Zhou et al. [11] proposed Data Rate and Channel Control
(DRCC) to support massive number of LoRa nodes and improve resource utilization. The
channel was evaluated based on data extraction rate (DER), SF allocation was performed
based on DER, and load balancing of the channel was performed in consideration of
packet collision according to node density. Through this, it was proved that the proposed
technique is excellent in dense deployment scenarios. Ta et al. [12] derived optimized
SF for fair resource allocation using Exponential Weights for Exploration and Exploita-
tion (EXP3) algorithm to support large-scale LoRa nodes. Through the simulation using
real data such as non-uniform node distribution and inter-spreading factor, collision was
reflected, and as a result, fair resource allocation was achieved.

As such, we are conducting advanced research to modify the existing ADR or add tech-
nologies such as machine learning for efficient and reliable usage of network resources.

2.3 Deep reinforcement learning
Reinforcement learning is an algorithm that derives the best value for the situation
through interaction with the environment. Reinforcement learning agents recognize state
in the environment and take appropriate action. From this behavior, the agent learns
through rewards to determine if the action is appropriate and to maximize its future
reward.

This environment of reinforcement learning is generally modeled as a Markov decision
process (MDP). An agent operates according to a policy, which is expressed as an action-
able distribution according to each state defined in the MDP. The goal of a agent is to
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continually refine the policy to maximize the total future reward G; = ZLT:t R;41 attained
at any time ¢.

Most reinforcement learning algorithms define a state s; in ¢ time, a value r.y; obtained
from the environment by performing an action a; in that state s;, and a new state s;41
transformed from this continuous interaction into a tuple (s¢, g, rr41,5:4+1). An agent
learns from these consecutive sequential tuples. This learning is usually done through
action-valued functions called Q values [13], which is usually expressed as Eq. 2.

Q(s,a) =E"[G; | St = s,Ar = a (2)

Equation 2 is the expected value obtained by taking action on the state according to the
policy. On-policy and off-policy are divided according to whether the agent recognizes
the current policy. If the current policy is continuously followed, it is on-policy.

In general, off-policy reinforcement learning is used because it is better at finding
similar optimal values than on-policy reinforcement learning. Among these off-policy
reinforcement learning is Q-learning. Q-learning is a simple structure that learns policy
from greed policy that takes action from the highest estimated Q value in each state. In
2014, the Deep Q-Network Algorithm [14] was created when deep learning combined
with Q-learning in Deep Mind. Q-learning updated the value function as shown in Eq. 3.

Q(st, ar) = Q(sy, ar)

(3)
+ a(ry + ymax,Q(sy, a,) — Q(sy, ay))

On the other hand, Deep Q-Network (DQN) works by adding artificial neural network
parameters to define the loss function as shown in Eq. 4 and repeating it i times to reduce
the cost of the loss function through gradient descent.

Li0) = Eya,r,5[ P — Q(s,4:0))%]

with,yf)QN =r+ymaxy(s,a;0]) @
It also prevents divergence by using experience replay, which randomly extracts the
collected experiences and learns them. DQN has been able to solve the high dimen-
sional observation space problem by integrating deep learning technology with existing
Q-learning.

By incorporating deep learning into traditional reinforcement learning, it was able
to develop more practically than before. However, this deep learning may not solve all
real problems. The world we live in consists of multi-agents and is complicated by the
cooperation or competition of these agents [15, 16].

Areas such as autonomous driving, robot soccer, and wireless networks are composed of
one environment and partially aware agents, and these agents achieve their goals through
negotiation or competition with each other. In the case of deep learning, the state of the
MDP model is designed on the assumption that the whole environment can be recog-
nized. However, the multi-agent system has no choice but to understand the environment
only partially by the agent. Therefore, MDP in multi-agent environment is called Par-
tially Observable Markov Decision Process (POMDP) [17]. We need to be able to apply
deep learning in the POMDP environment so that we can solve more real-world prob-
lems. Centralized RL (reinforcement learning) and distributed multi-agent RL (DMRL)
are models designed to solve this real-world multi-agent problem.
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The centralized RL deploys one agent to recognize all states centrally and to select
successive actions. The advantage of this method is that the agent can select actions col-
lectively without designing cooperation or competition. The disadvantage is that it takes
a plurality of actions and thus has a relatively large amount of action space. How to effec-
tively handle a relatively large number of states and actions will be required for centralized
reinforcement learning methods.

On the other hand, in distributed multi-agent RL, each agent exists independently and
each agent learns its own policy through cooperation and competition. However, since
they exist independently of each other, a system for cooperation and competition must
be additionally implemented. DMRL has this disadvantage, but it has a fixed action space

because the agent is separated.

2.4 Motivation of the proposed method

In order for LoRa to consume the minimum transmission power while guaranteeing
the maximum data rate, an appropriate spreading factor (SF) and transmission power
(TP) must be selected. Well-selected and distributed SFs significantly increase the total
throughput of LoRa network [19] [18]. However, using the same parameters selected by
ADR among LoRa nodes to increase the data rate may increase the loss rate of trans-
mitted packets. In addition, the distance between the gateway and LoRa nodes should
be taken into account. As the distance increases, parameters such as transmission power
and encoding method need to be changed. Like this, it is not easy to estimate the opti-
mal value considering everything. LoRa has an ADR proposed by LoRaWAN to solve
this network resource problem, and complementary algorithms are proposed. However,
to minimize the complexity of algorithm, those methods compute the parameters with
very limited number of samples and simply set the user-defined threshold value to get the
parameters. They may increase the total throughput compared to the normal class A, but
the energy consumption may increase too. Therefore, to decrease the energy consump-
tion and increase packet arrival rate, we devised an appropriate transmission parameter
method for LoORaWAN by using deep learning. Information about the LoRa terminal is
transmitted to the central network server. By adjusting the network transport parameters
through the reinforcement learning agent on the network server, the overall network situ-
ation of LoRa can be identified and network resources allocated more efficiently than the
existing ADR method. The contributions of our proposed method are as follows: (1) we
considered not only the throughput of nodes but also the energy efficiency of nodes; (2)
we considered the distances among the nodes and gateway, and we grouped the nodes by
distance and their samples are learned on the same agent; and (3) if the sufficient learning

is done, our methods provide the appropriate parameters immediately.

3 Proposed method

We recognized LoRaWAN as a multi-agent problem. We used a mixture of centralized RL
and distributed multi-agent RL methods. Since LoRa has a star-shaped network, infor-
mation about each terminal is collected in a central network server. Therefore, like the
centralized RL method, one controller can determine the information about each termi-
nal and distribute network resources to each terminal. However, in this case, the number
N of terminals and the number of actions of each terminal must be considered, that is,
N action space must be considered. If only one controller is configured, the number of
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action spaces in the controller varies depending on the number of terminals. As the num-
ber of terminals increases, the number of terminals has a relatively large number of action
spaces. This is high. Therefore, reinforcement learning agent corresponding to each LoRa
terminal is created in the network server to create multiple controllers, reducing action
space and giving common reward for each action so that each terminal has fixed action
space.

Our model is to create reinforcement learning agents corresponding to LoRa’s terminals
in the network server and learn them. Therefore, like centralized RL, state information
about each node is centralized. The model presented in this paper takes the most appro-
priate action based on the information of all the centrally gathered nodes. In this case,
we use independent information corresponding to LoRa terminal nodes like distributed
multi-agent RL rather than centralized RL to prevent the increase of action space. It is
designed to receive high rewards when creating an agent and taking action considering
all LoRa terminals through common rewards. We explain how the model presented is
applied to LoRa environment in detail in order of reinforcement learning agent, state,

action, and reward.

3.1 System model

In this section, we describe the system model. Figure 2 demonstrates our reinforcement
work. It is assumed that one LoRa gateway and multiple LoRa nodes are distributed in
a two-dimensional grid of size 1500 x 1500. LoRa gateway is located at the center of
the grid, and nodes are uniformly distributed in the grid. Basically, LoRa gateway and
nodes adjust transmission power and spreading factor according to ADR, and transmis-
sion method follows class A protocol. In this paper, in order to derive the transmission
power and spreading factor through reinforcement learning, an additional role for rein-
forcement learning was given to gateway. LoRa gateway is a container for the agent for the
node and basically creates an agent according to the number of nodes. However, if there
are many nodes, the nodes located at similar distances are grouped and managed by one
agent. Each agent performs training through training data in the learning stage, and the
nodes transmit messages every 30 min in the test stage to obtain transmission power and
spreading factor through the agent in the gateway and apply it to the ADR.

3.2 Reinforcement learning agent

The goal of this paper is to analyze LoRa network situation using reinforcement learn-
ing agent and find the optimal network parameters accordingly. For this reason, MDP
is applied. LoRa system is composed of N terminal nodes. s; is the node information
of ¢t time zone, a; is the network parameter selected at one terminal node and r; is the
compensation value obtained through corresponding network parameter, and last s;11 is
applied to action. This is defined as the state of the LoRa network. The experience gained
thus made tuples (s, a;, r1+1, St+1) to learn reinforcement learning agents.

And all the reinforcement learning agents of the proposed model are composed of Deep
Q-Network (DQN) [14]. Therefore, the end of the reinforcement learning was defined as
the end of the divided episode as shown in Fig. 3. Since the model is composed of DQN,
we update the value function as shown in Eq. 4. Because DQN updates the value function
in this way, we can find the convergence value quickly, maximizing future compensation
by updating the Q value every step before termination.
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Fig. 2 LoRa reinforcement learning model

3.2.1 State

We should give reinforcement learning agent enough information about the environment,
so the agent can recognize the differences by state and take appropriate action for each
situation. We have included attribute values such as terminal information, packet infor-
mation, and learning information in state so that the reinforcement learning agent can
fully understand network status of LoRaWAN. Figure 4 shows the state information of
reinforcement learning. The state is composed of a matrix of terminal information, packet
information, and learning information. Each row of the matrix represents the informa-
tion of the terminal node and is continuously updated until the learning is completed as
the environment changes.

State 1
State 2
State N Action Reward
@000 ENE-6 - D@
Episode 1 Episode 2 Episode N
Episode
Fig. 3 Episode division by terminal node for learning
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[Node_id SF TP CH SNR RSSI PacketID Energy Num_Pkt Time]

[Node_id SF TP CH SNR RSSI PacketID Energy Num_Pkt Time]

[Node_id SF TP CH SNR RSSI Packet ID Energy Num_Pkt Time}

Fig. 4 State of the proposed model

Node ID, SF, TP, and CH of Fig. 4 are information about terminal node. Node ID is a
value mapped to LoRa terminal node. SF denotes a spreading factor, TP denotes a trans-
mission power of a terminal, and CH denotes a channel value currently used by a terminal.
These values like SF, TP, and CH are in one-hot encoding format. SNR, RSSI, Packek
ID, and Energy are information on currently received packets. SNR is the signal-to-noise
ratio. RSSI is the received signal strength indicator, signal strength of packet. Packek ID is
the unique number generated each time packet is sent from terminal node, and Energy is
the energy consumed at the terminal node. We calculate it based on the research by Calle-
baut et al. [22]. Num_Pkt represents the sum of unique packets received at the gateway.
Time is information to help reinforcement learning by including the entire simulation
time in state information.

3.2.2 Action

In the LoRa system model used in this paper, the parameters affecting network conditions
are SF, TP, and channel. So SF, TP, and channel are designed as the action of reinforcement
learning. In LoRa, SF should be one of 7 to 12; TP should be one of 2 dBm, 5 dBm, 8 dBm,
11 dBm, and 14 dBm as the transmission power [20]; and the channel should be one of
868.1 MHz, 868.3 MHz, and 868.5 MHz. Therefore, it has 90 fixed actions which are
SF{7,8,9,10,11,12} x TP{2,5,8,11, 14} x Freq{868.1 x 10°,868.3 x 10°,868.5 x 10°}. In
this paper, one of these 90 actions can be selected as an action.

3.2.3 Reward
The reward for action is given as shown in Eq. 5.

(5)

In Eq. 5, N is the number of nodes. P is the sum of the packets received over time, and E
means the sum of energy consumed by the terminal. By designing a reward like this, the
reward increases as the total packet increases, and the reward decreases as more energy
is consumed. As the reward changes according to the state of the entire node, the reward
gets closer to the full optimization rather than the partial optimization. The packet suc-
cess rate is given priority over the energy consumption by multiplying o which is a very
large value.
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3.3 Learning method

In this paper, LoRa terminal is treated as one agent. As a result, each agent has its own
policy. However, in case of LoRa, the terminal nodes are not mobile, and if the termi-
nal and the gateway are located in a similar position, they will have similar policies as
other nodes. Therefore, as shown in Fig. 5, we form groups in tracks according to the dis-
tance between the terminal and the gateway in order to share a common learning weight.
In the proposed method, the number k of groups was previously determined to create
fixed groups. The criteria for dividing groups are distances, and each group has a cer-
tain distance range in tracks. If the number of sectors per group is variable, a new sector
must be learned, so a fixed sector is assumed. Algorithm 2 represents group creation and
assignment. First, the boundary of group is derived by calculating the range of each group
through the communication radius, which is set to 750, given the number of groups.
Then, after calculating the distance between each node and the gateway, each node joins
the corresponding group. In the learning process, nodes placed in each group were ran-
domly divided between 0 and 30, and they were continuously repeated to learn to cope
with various deployment situations. In the evaluation process, 6 nodes were placed in
each group.

In this way, agents with similar policies can learn reinforcement learning agents more
efficiently because they share the weights of neural network models with each other.
Figure 6 is the overall learning procedure of the proposed scheme. The learning manager
in the LoRa gateway gathers the distances of nodes then creates the learning group by sim-
ilar distances, then generates RL agents per each group. If the gateway receives a packet, it
converts node’s information to the current state and determines the corresponding agent
by pre-determined group. After that, it computes the current action for the current state
and does current action. Then, it calculates the reward for the current action and updates

distance (meter)
o

same weight

0
distance (meter)

Fig. 5 Group by distance between terminal and gateway
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Algorithm 2 Grouping Algorithm
i<0

j<0
n <« 30
k<5
radius < 750
gateway < (x,y)
nodeList[] <— (NodelD, x, y, 0)
groups[] < 0
whilei < kdo
groupsl[i] < (i, i*radius/k, (i+1)*(radius/k))
i<i+l
end while
whilej < ndo
distance <— norm2(gateway, nodeList[i])
i< 0
while i < kdo
if groups[i].min < distances < groups[i].max then
nodeList[j].group = groups[i].gid
Break
end if
i<i+l
if i = k then
nodeList[j].group = groups[i].gid
end if
end while
j<—j+l
end while

the neural network weights. This procedure is repeated until the maximum simulation
time.

And as shown in Fig. 3, we split one episode into several smaller episodes, and then, we
load and learn only one reinforcement learning agent into GPU memory for each episode.
The reason for designing the learning method is as follows. Firstly, if the number of ter-
minals increases, it is impossible to put all reinforcement learning in the GPU memory.
Second, since only one reinforcement learning agent learns for each divided episode and
ADR is performed, the entire system of LoRa is operated during reinforcement learning
except the reinforcement learning agent.

4 Experiments and results

4.1 Test setup

In the previous work, we implemented LoRa simulation in OPNET simulator [21]. How-
ever, to integrate with the RL tested implemented using Keras which is the deep learning
platform written in Python code, we used other published LoRa simulator [22]. In our
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simulation, LoRaWAN is composed of 30 LoRa terminal nodes and 1 gateway, and sub-
urbs are assumed. All LoRa terminals are configured as class A, and the payload of the
packet is fixed to 10 bytes. In addition, one packet is generated every 30 min at each node,
and more packets are generated than before. In addition, the path loss and the energy
consumption of the terminal node are set as in the research by Callebaut et al. [22].
Basically, as explained in the system model section, the learning agent is generated in
proportion to the number of terminals, but if there are many terminals, it is impossible to
create agents for all terminals, so the terminals are grouped according to their respective
distances and one agent was created for each group. Figure 7 shows the test scenario
with the group applied. The triangle in the center represents the gateway, and the circles
around it represent the nodes. In the test scenario, the sector was divided into five groups,

with six nodes in each group.
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Tables 2 and 3 are the LoRa simulation parameters and the reinforcement learning
parameters, respectively. The simulation environment of the proposed method has a
topology of 1500 x 1500 size, 5 groups are created, and a total of 30 nodes were divided
and arranged so that 6 nodes could belong to one group. LoRA gateway is located at the
center of the topology. Theoretically, the spreading factor can be set from a minimum of
6 to a maximum of 12, but because there are many products that do not support SF 6, this
paper tested the values from 7 to 12. The transmission power is set to a total of five steps
up to 14 dbm according to the specification [2] as the uplink transmission power of the
node. The data transmission rate is a value obtained by converting the frequency of data
generation to bps, and a slow environment is assumed. The simulation time is 150 h in
total. Since a low transmission rate is assumed, the simulation time is set long to collect
sufficient information. Replay buffer size is generally determined according to the size of
the sample that occurs in the learning process. In this simulation, it is assumed that the
frequency of occurrence of the sample is low. So, if the replay buffer is large, learning
will not proceed. In the same context, the minibatch is also set to a small enough value,

Table 2 LoRa simulation parameters [22]

Parameters Values
Topology size (m?) 1500 x 1500
Spreading factors 7-12
Transmission power (dBm) 2,58,11,14
Data transmission rate (bps) 0.02
Number of LoRa nodes 30

Number of LoRa gateway 1

Number of groups 5

Simulation time (hours) 150

Page 14 of 20
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Table 3 Hyperparameters for RL

Hyperparameters Values
Replay buffer size 50
Minibatch size 8
Activation function Relu
Optimizer Adam
Learning rate 0.01
Epsilon decay 0.99
Hidden layers 30 x 58
Learning time (hours) 10

because a part of the replay buffer is sampled and trained, but if it is set to a size simi-
lar to the replay buffer, the learning may be unevenly biased. As the activation function,
a non-linear function relu was used. Because it is an environment that does not need to
normalize the value, we chose relu, which treats only negative numbers as 0 and outputs
the rest as it is. The learning rate was set to 0.01, and the epsilon decay was set to 0.99
to set the learning to converge quickly because the nodes were grouped and divided into
multiple agents, so it was determined that the learning difficulty of each agent was not
high. The total learning time of the proposed method is 10 h, and the Adam optimizer is
used.

4.2 Experimental results

We confirmed the difference between the proposed model and ADR. In Algorithm 1,
ADR collects approximately 20 packets and then determines SF and TP based on the
collected SNR. Depending on where the reference point is set in the SF and TP determi-
nation, it can be classified into SNR(MAX) and SNR(MIN). SNR(MAX) determines SF
and TP based on the highest SNR among the collected packets, and SNR(MIN) classifies
SF and TP based on the lowest SNR among the collected packets. There are various ADR
methods depending on how the packet is classified based on the collected packets. So,
we compare SNR(MAX) and SNR(MIN) with the reinforcement learning method pro-
posed in the paper. In the simulation, 10 h of simulation time, the results of ADR(MAX),
ADR(MIN), and the proposed model were examined.

When ADR(MAX) is applied, the SF and TP distributions selected by all LoRa terminals
are shown in Figs. 8 and 9. Looking at Fig. 8, it can be seen that LoRa terminals adopt-
ing ADR(MAX) mainly selected SF7. SE8, SF9, SF10, and SF11 are also about 400 times,
but SF7 is selected about 800 times. This is because SF is the first priority when designing
ADR. As SF increases, symbols are designed to use lower values of SF because they con-
sume more energy for data rate and encoding. In the case of TP distribution, ADR(MAX)
was mainly selected as 2 dBm and 14 dBm. The distribution of SF and TP with ADR(MIN)
is more extreme than ADR(MAX). All packets were selected SF7 and 14 dBm. ADR(MIN)
can be seen that the focus is on obtaining more data rate at the expense of packet recep-
tion probability. The proposed method in this paper analyzes all LoRa network conditions
and decides SF and TP. As shown in Fig. 9, the proposed method shows that the abso-
lute number of packets is smaller than the ADR and the SF value is concentrated on a
large value. The reason is that because the SF value is large, the length of the symbol
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required for transmission is increased and the time on air is increased, so the number of
transmitted packets is absolutely smaller than that of the ADR.

Next is the simulation statistics. This can be seen in Table 4, which is divided into infor-
mation measured at the terminal and information measured at the gateway. Statistical
information is shown as an average value divided by the number of terminals. The infor-
mation obtained by the terminal includes total packets issued by the terminal and total
energy consumed by the terminal. The information obtained from the gateway includes
non-overlapping number of received packets (unique packets), number of weak packets
in uplink transmission (UL weak packets), and number of packets lost during downlink
transmission (DL packets lost).

The actual throughput in Table 4 is unique packets. In order of high throughput,
ADR(MAX) received the most packets with 33.13, followed by ADR(MIN) with 18.97 and
11.84. However, ADR actually issued a lot of packets and the ratio of UL weak packets
and DL packets lost is relatively higher than the proposed model. When comparing the
energy consumed at the terminal node, the proposed model consumed the least energy
at 1497.94 (m]), followed by ADR(MAX) at 13,577.30 (m]) and ADR(MIN) at 22,268.20
(m]).

We are interested in throughput and energy consumption. Thus, we compared how
our model differs from the conventional methods in terms of throughput and energy
consumption. We compared ADR(MAX) and ADR(MIN) with the energy consumption
compared to throughput. The proposed method is 2.8 times and 1.60 times less than
ADR(MAX) and ADR(MIN) respectively in throughput and 3.24 times and 9.28 times
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better in terms of energy consumption. Arithmetic calculations show that the proposed
method is 1.15 times better than ADR(MAX) and 5.8 times better than ADR(MIN).
Figure 10 shows the packet arrival rates of uplink and downlink packets. The proposed
method is better than the other two methods by performing the learning considering the
energy consumption so that it can transmit reliably with lower power than the other two
methods. Specifically, in the case of the downlink, almost all messages were delivered to
the node so that the proposed method has an arrival rate close to 1. In the case of class
A protocol, downlink is performed twice after one uplink. In the case of the proposed
method, it was already confirmed through Fig. 8 that the SF was set very conservatively,
so it can be deduced that most of the first downlink succeeded. In addition, since the
transmission power of all packets can always be set to the maximum value in the gateway,
the influence by the transmission power value is very limited. In the case of ADR(MAX)
and ADR(MIN), ADR(MIN), which sets the SF more conservatively, showed a slightly
higher arrival rate than ADR(MAX), but it was less than the proposed method. In the case
of the uplink, there is a risk of collision because the node tries to transmit at any time,
and thus, the transmission power has a great influence. In this context, ADR(MIN) has

Table 4 Simulation statistics result

Terminal Terminal Gateway Gateway Gateway
total packets total energy (mJ)  unique pack- UL weak pack- DL  packets
ets ets lost
ADR(MAX) 265.84 13,577.30 3313 169.80 4797
ADR(MIN) 119.97 22,268.20 1897 33.87 2827

Proposed method 4140 1497.94 11.84 26.57 3.64




Park et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:176 Page 18 of 20

1 T T T T T
//j‘;
09r > 1
///
Y
08 // 4
P 5
/'/
0.7 —< ]
P-4 —8— Uplink
% I _ —&— Downlink ]
& 0.6 )
© |
2 4
E 0S5 4
<€
04r 1
03} e — 1
0.2} i 1
B,/
0.1 A 1 ) L A
ADR(MAX) ADR(MIN) Proposed Scheme

Fig. 10 Packet arrival rate

a slightly higher performance than the proposed method because it attempts uplink with
high SF and high transmission power.

Figure 11 shows the energy efficiency per packet. Since the proposed method derives
the transmission power and spreading factor by setting the reward considering the energy
efficiency compared to the transmission time, it can be confirmed that the energy effi-
ciency is better than other methods. In the case of ADR(MIN), the arrival rate and
throughput are guaranteed to a certain level, but it can be seen that the energy efficiency
is very poor; in the case of ADR(MAX), it shows the observed energy efficiency. There-
fore, in an environment that needs to be used at a low speed for a very long period of time,
the proposed method is suitable. ADR(MIN) may be effective in an environment where
energy consumption is not significantly considered, and ADR(MAX) may be effective in

an environment in which transmission failure is tolerated.

5 Conclusions
We applied reinforcement learning to allocate network resources in LoRaWAN. In the
case of ADR, which is the existing method, the optimal value between the LoRa terminal
and the gateway is considered, while the proposed method using reinforcement learning
has centrally distributed network resources considering the network conditions of all the
terminal nodes. As a result, it was arithmetic improved about 15% more than ADR(MAX).
But the method we have presented is not good. Our method shows good performance
in terms of energy consumption but decreases in throughput. And also while the existing
method works with only 20 sample data, our method took a lot of time to learn. The
results presented in Section 4 were acquired by learning 10 h in real time and 150 h in
simulation time. So, if we want to get the same results in the real world, it may need 150 h
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of operation time to gather the same number of sample experiences. We can decrease
this operation time by pre-learning with generated samples, but the necessary amount of
samples are very huge if the number of candidate LoRa nodes is not fixed. Since our RL
agent works on the LoRa gateway, the gateway must be more powerful than the current
gateway device, and as the results of the ADR procedure must be reported to the LoRa
network server to process the LoRaWAN procedure, it is necessary for researches about
the protocol-level approach to extend the cooperation of the gateway and the network
server.

Although there are some disadvantages, the proposed method can execute various
scenarios depending on what information is given to the state.

In the case of sufficient learning, the proposed method is able to derive the result
according to a wider range of trends in a short time, unlike the existing ADR that only sees
the last 20 data. In addition, it is possible to ensure that the ADR operates effectively even
in an environment where the data generation rate is very low and the transmission time is
very long. In this paper, learning was performed in terms of energy efficiency compared
to transmission time, but it has the potential to develop according to the throughput and
transmission success rate depending on the setting of the reward.

This study complements the abovementioned shortcomings as an initial study, and it
will be able to meet the needs of various network environments required by the future
society. This study has this potential, so we think it is worth studying.
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