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ABSTRACT Wavelet thresholding (or shrinkage) attempts to remove the noises existing in the signals
while preserving inherent pattern characteristics in the reconstruction of true signals. For data-denoising
purpose, we present a new wavelet thresholding procedure which employs the step-down testing idea of
identifying active contrasts in unreplicated fractional factorial experiments. The proposed method employs
bootstrapping methods to a step-down test for thresholding wavelet coefficients. By introducing the concept
of a false discovery error rate in testing wavelet coefficients, we shrink the wavelet coefficients with p-values
higher than the error rate. The error rate controls the expected proportion of wrongly accepted coefficients
among chosenwavelet coefficients. Bootstrap samples are used to approximate the p-value for computational
efficiency. We also present some guidelines for selecting the values of hyper-parameters which affect the
performance in the step-down thresholding procedure. Based on some common testing signals and an
air-conditioner sounds example, the comparison of our proposed procedure with other thresholding methods
in the literature is performed. The analytical results show that the proposed procedure has a potential in
data-denoising and data-reduction in a variety of signal reconstruction applications.

INDEX TERMS Bootstrap aggregating, complex wavelet transform, data-denoising, step-down test, wavelet
shrinkage.

I. INTRODUCTION
Wavelet transform (WT), due to its excellent localization
property, has rapidly grown up as a powerful tool for analyz-
ing noisy signals that arise in various fields of applications,
e.g., denoising, function estimation, change-point detection,
inverse problem, principal components, and discrimination
analysis [23]. One reason for this popularity is the ‘‘sparse-
ness’’ property of theWT, that is, signals from awide range of
applications can have a parsimonious representation through
only a few significant coefficients in wavelet series [3]. The
WT resembles the fast Fourier transform (FFT). However,
the WT can successfully model irregular data patterns better
than other statistical methods such as spline and polynomial
regression, as well as the FFT [12], [14]. In addition, because
theWT provides an excellent multi-resolution approximation
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through dilation and translation, it can effectively extract
time-frequency features of noise signals [17].

For signal denoising purpose, wavelet thresholding (or
shrinkage) attempts to remove the noises existing in the sig-
nals while preserving inherent signal characteristics, regard-
less of its frequency content. To date, a number of wavelet
thresholding methods have been developed to apply such
good properties of the WTs to data-denoising or data reduc-
tion. From a statistical point of view, the wavelet threshold-
ing closely relates to multiple hypotheses tests where each
coefficient is tested whether it is statistically significant or
not [1], [9]. Due to the sparse property of wavelets, it is
reasonable to assume that only a few wavelet coefficients
contain inherent information about the real signal, while other
coefficients appear as a consequence of signal’s corruption
by random noises. Accordingly, the wavelet coefficients that
are ‘‘significantly different from zero’’ can be used in the
reconstruction to original signals. The purpose of wavelet
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thresholding is to extract these significant coefficients by
ignoring others through a threshold value. Because the results
of a hypothesis test should guide the choice of significant
coefficients, a stronger control for noise levels is required
lest truly insignificant coefficients should be used in the
model building [2]. Many thresholding methods in the litera-
ture shrink insignificant coefficients by directly calculating
a threshold value from an estimate of the noise variance,
or assuming that the variance is known a priori. Consid-
ering a white-noise process for noise errors, for example,
Donoho and Johnstone [9] proposed a universal thresholding
method to shrink the coefficients resulted from the noises.
However, if the estimate of error variance is highly biased
or distributional assumptions for the errors are mis-specified,
the threshold value for wavelet shrinkage will be misguided,
thus at risk of shrinking significant wavelet coefficients as
insignificant and vice versa.

In this paper, we propose a statistical method for thresh-
olding the (complex-valued) wavelet coefficients based on
a step-down testing procedure using bootstrapping. The
proposed method employs Venter and Steel’s idea [22]
on identifying active contrasts from unreplicated fractional
experiments. The experimental design approach for wavelet
thresholding has many features that make it attractive from a
practical point of view. The contribution or this work can be
summarized as follows:
• The proposed method has an advantage over other
wavelet thresholding methods in that the method
indirectly deals with error variance by introducing
scale-invariant ordinal statistics so that the undistorted
shrinkage is provided.

• The proposed method is capable of considering a false
discovery error rate which makes the wavelet shrinkage
less stringent in multiple hypothesis testing problems.

• The amount of noise removal is adjustable by introduc-
ing hyper-parameters that can be controlled according
to user-specification, where the user can modulate the
degree of data reduction.

In brief, our proposed method is simple and easily inter-
pretable since it involves only two quantities; the assumed
least number of insignificant coefficients and a significance
level of testing coefficients. Additionally, the approach pro-
vides a flexible guidance for checking a ‘‘sparseness’’ of
wavelet coefficients by computing p-values, then by compar-
ing themwith the significance level. Coping with the need for
aggressively reducing the dimension for a high-dimensional
data set, as in an air-conditioner example in Section IV-B,
the suggested procedure facilitates the control of shrinkage
ratios via a user-specified error rate.

The paper is organized as follows. In Section II, we briefly
review complex wavelet transforms and several wavelet
thresholding methods. Section III proposes a wavelet thresh-
olding based on step-down testing procedure. The p-values
of the hypotheses tests are calculated using bootstrap-based
approximation method. In Section IV, we provide ana-
lytical results to illustrate our procedure and compare its

performance with those of other existing wavelet threshold-
ing methods via a variety of simulations and a real example
of air-conditioner noise sounds. Some concluding remarks
are presented in Section V with the discussion about future
research directions.

II. COMPLEX WAVELET TRANSFORMS AND
THRESHOLDING METHODS
A. COMPLEX WAVELET TRANSFORMS
Wavelets are basis functions that allow the transformation
of signals from their original domain to another domain
in which some operations can be performed in a flexi-
ble manner. Such transformation provides opportunities for
effective data-denoising and data-reduction processes. In a
variety of signal processing applications, discrete wavelet
transforms (DWTs) have beenwidely used due to the easiness
of its fast, local, sparse, and decorrelated multi-resolution
analysis of signals [11]. However, DWTs may suffer from
serious applicative problems such as shift sensitivity arising
from downsamplers in the implementation [21] and no phase
information [13].

As an alternative, complex wavelet transforms (CWTs)
extend the idea of real-valued wavelet transform by employ-
ing complex-valued filters in place of real-valued filters.
In particular, Daubechies complex wavelet transform has
been well known as an effective decomposition method
for capturing the boundary or abrupt changes of signals
or images. It can be controlled to be symmetric and
shift-invariant to reduce the risk of a distortion in the wavelet
domains and to easily handle the boundary problems of the
object [8].

Suppose that the translation set of dilated scaling and
wavelet functions

φL,k (t) = 2L/2φ(2L t − k) and (1)

ψj,k (t) = 2j/2ψ(2jt − k), (2)

are orthonormal bases at resolution level j and location k in
L2(R), where L denotes the lowest decomposition level and
Z is the set of all integers. Any function f̃ (t) in L2(R) can be
represented as

f̃ (t) =
2L−1∑
k=0

cL,kφL,k (t)+
J∑
j=L

2j−1∑
k=0

dj,kψj,k (t), (3)

for J ≥ L, where the coefficients cL,k =
∫
R f (t)φL,k (t) dt

are considered to be the coarsest-level coefficients charac-
terizing smoother data patterns and dj,k =

∫
R f (t)ψj,k (t) dt

are viewed as the finer-level coefficients which capture high
frequency oscillations of data patterns [19]. The two wavelet
coefficients cL,k and dj,k also consist of both real and imagi-
nary parts as

cL,k = Re(cL,k )+ i · Im(cL,k ) and (4)

dj,k = Re(dj,k )+ i · Im(dj,k ), (5)

respectively.
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The simplest version of wavelet thresholding is typically
expressed as the estimation of a signal (f (ti)) given a noise
data (y(ti)) as

y(ti) = f (ti)+ εi, i = 1, . . . ,N , (6)

where the errors εi are assumed independently N (0, σ 2)
distributed. We can rewrite Eq. (6) as y = f + ε, for
f ≡ (f (t1), . . . , f (tN ))T , y ≡ (y(t1), . . . , y(tN ))T , and
ε ≡ (ε1, . . . , εN )T . Then, the CWT of y is defined as

d =Wy =Wf +Wε, (7)

whereW is the orthonormal (N×N ) matrix corresponding to
the CWT. Here, d is the combined set of (N×1) wavelet coef-
ficients consisting of real and imaginary parts, describing the
features of the original function. d can be represented as: d ≡
(cL ,dL ,dL+1, . . . ,dJ )T , through the wavelet coefficients at
various subbands (scales), cL ≡ (cL,0, . . . , cL,2L−1)

T ; dL ≡
(dL,0, . . . , dL,2L−1)

T ; dL+1 ≡ (dL+1,0, . . . , dL+1,2L+1−1)
T ;

· · · , dJ ≡ (dJ ,0, . . . , dJ ,2J−1)
T . Note that the total number of

wavelet coefficients is equal to the number of measurements,
that is, N = 2J+1. Hereafter, the wavelet coefficients are
represented by d ≡ (d1, d2, . . . , dN )T for the simplicity of
notation. Using the inverse CWT, the (N × 1) vector of the
original signal is reconstructed via

y =W−1d. (8)

In the CWT, individual components of Wε(≡ ε′), which
are considered as complex-valued random variables, are
uncorrelated. However, the real and imaginary parts of ε′ are
real-valued normal random variables and they can be strongly
correlated. Barber and Nason [4] showed that for a unitary
matrixW,

Cov{Re(ε′), Im(ε′)} = −σ 2Im(WWT )/2, (9)

Cov{Re(ε′),Re(ε′)} = σ 2
{IN +Re(WWT )}/2, (10)

Cov{Im(ε′), Im(ε′)} = σ 2
{IN −Re(WWT )}/2, (11)

since ε are MVN (0, σ 2IN ) distributed. Here MVN (·)
denotes a multivariate normal. The noise error variance σ 2

is generally estimated by the squared mean deviation of
the coefficients at the finest resolution level, but Barber
and Nason [4] estimated σ 2 by the sum of the squared
median absolute deviation of the real and imaginary parts
of the finest-leveled coefficients. Finally, d becomes a
bivariate normal vector with mean, Wf (≡ θ ), and the
variance-covariance matrix of 6 which are equal to the ele-
ments of the variance-covariance matrix of ε′.

B. WAVELET THRESHOLDING METHODS
When the signals of interest are transformed by the wavelets,
the meaningful energy is prone to concentrating on the small
number of wavelet coefficients which may contain infor-
mation of real signals. Wavelet thresholding is a denoising
method by comparing transformed coefficients with a thresh-
old value, then only the coefficients larger than the threshold
are used to reconstruct the denoised signals. Most popular

three thresholding procedures in CWTs are VisuShrink [9],
RiskShrink [9], and complex multiwavelet style shrinkage
(CMWS) [4].

The VisuShrink threshold method, usually called a ‘‘uni-
versal threshold’’, requires an estimation of error variance of
the noises to calculate the threshold value. The estimators
obtained by reconstructing the function from the remaining
coefficients via the threshold value have the risk close to the
minimal risk corresponding to the optimal thresholding rule.
Sardy [20] developed a universal thresholding method for the
CWTs to preserve the additional phase information. Therein,
along with the threshold value of λVS ≡ σ̂

√
2 log(N logN ),

the hard and soft thresholding rules are given by

Visuh(d∗j,k ) = d∗j,k · I(|d
∗
j,k | > λVS ) and (12)

d∗j,k
|d∗j,k |

·max(|d∗j,k | − λVS , 0), (13)

respectively, where d∗j,k is the coefficient at resolution level j
and location k . Here, I(·) denotes the indicator function.
According to the rules, the coefficients smaller than the
threshold are removed as noises. As a minimax threshold
method, RiskShrink minimizes a theoretical upper bound on
the asymptotic risk. The minimax method is efficient in pick-
ing up abrupt jumps, but at the expense of smoothness. Unlike
previous two methods that directly compare the wavelet
coefficients with the threshold value, CMWS [4] considers
not only the wavelet coefficients, but also the covariance
of resolution levels. Based on the complex multi-wavelet
shrinkage, this method shrinks the noisy data by calculating
the level-weighted statistics so that the information of each
resolution level is preserved. Its threshold corresponds to
λCMWS ≡ 2 logN . The hard and soft thresholding rules for
CMWS are

CMWSh(d∗j,k ) = d∗j,k · I(ϑj,k > λCMWS ) and (14)

CMWSs(d∗j,k ) =
d∗j,k
|d∗j,k |

·max(ϑj,k − λCMWS , 0), (15)

for shrinkage statistics ϑj,k = d∗Tj,k6
−1
j d∗j,k , where d∗j,k ∼

MVN 2(dj,k , 6j). Here, 6j denotes the variance-covariance
matrix at decomposition level j. The thresholding rules are
based on the fact that ϑj,k has a non-central χ2

2 distribution
with non-centrality parameter dTj,k6

−1
j dj,k . Note that ϑj,k

follows a central χ2
2 distribution if dj,k = 0. The CMWS

method consistently provides more accurate estimates than
the shrinkagemethods based on real-valuedwavelets. In addi-
tion, other data-driven thresholding for the CWTs include
Bayesian approaches [4] for determining wavelet thresh-
olding levels, SURE thresholding rule [6], which is based
on minimizing Stein’s unbiased risk estimate, and the gen-
eralized SURE thresholding rule based on the variance
estimator [15].

Overall, existing methods shrink the data dimension with-
out any direct control of the degrees of noise removal. How-
ever, if we seek to shrink data dimensionality while managing
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the noise level of original signals efficiently, it will be better
for users to specify a denoising rate by controlling resolution
levels of wavelet-domain signals. In the following section,
we propose a wavelet step-down thresholding that designates
a user-specified error rate by pre-specifying a lower bound
on the total number of insignificant coefficients. Moreover,
the variance-related statistics are indirectly dealt with so
that the de-noising results are robust regardless of the error
variance.

III. THE STEP-DOWN THRESHOLDING PROCEDURE
We rewrite the CWT model in (7) to illustrate a wavelet
step-down thresholding (WSDT) procedure as

d = θ + ε′. (16)

Due to the orthogonality ofW, ε′ have the identical structure
with ε as iid MVN (0, 6). Thus, d ∼ MVN (θ , 6). One
can obtain the signal f from the inverse transformation of
θ . However, true values of θ ≡ (θ1, . . . , θN ) and σ 2 are
unknown andmust be estimated from the wavelet coefficients
d only. At this case, the estimation of d independent of σ 2

is not available. Different estimation methods for σ 2 will
lead to distinct shrinkage schemes of wavelet coefficients,
resulting in different dimensions of data reduction. In gen-
eral, small-valued coefficients result from noise data, thus
thresholding out these coefficients has an effect of ‘‘removing
noises’’. Relatively a few large-valued coefficients can effec-
tively contribute to the reconstruction of true signals. In using
any types of wavelet thresholding methods, a main issue is
how to choose the threshold value for all of the wavelet
coefficients.

The thresholding rule closely associates with identifying
active (that is, ‘‘non-zero’’) contrasts in a single replicate
of experimental design problems. Consider a linear model
for an experimental design, Y = Xβ + ε, where Y is a
(N × 1) vector of responses, design matrix X is orthogonal,
and ε is a (N × 1) vector of random error and assumed to
be iid MVN (0, σ 2IN ). In a design of experiment, an ordi-
nary least squares estimator β̂ = (XTX)−1XTY becomes
β̂ = XTY, which is an orthogonal transformation of the
observations. The stepwise elimination of inactive contrasts
in the model corresponds to removing components with the
smallest absolute value of t-statistics for β̂. Since the design
is orthogonal, the values of remaining β̂ do not change in
the process of elimination. This stepwise deletion procedure
characterizing a multiple hypotheses test is considered as
a hard-thresholding rule in the case of orthogonal wavelet
transforms [24, p. 177]; that is, β̂∗i = max(|β̂i|−λ, 0), where
β̂∗ is an active contrast for the threshold λ(> 0).
Introducing the multiple hypotheses-testing approach to

wavelet thresholding problems, we seek to build a test con-
sisting of the overall null hypothesis that all the di’s are zero
(referred to as H0). If H0 is rejected, the non-zero di’s that
cause the rejection of the hypothesis are identified. The proce-
dure is designed to control the probability of wrongly declar-
ing at least one of insignificant coefficients as significant

using their p-values. Because the presence of falsely declared
significant coefficients can cause biased results, it is desirable
to control the error rate. TheWSDT proceeds downward from
the wavelet coefficient with the largest variance-weighted
statistic. Through the iteration of bootstrapping, a set of maxi-
mum data points satisfying the hypotheses test is constructed.
The WSDT procedure involves the following steps:
• Step 1: Define the variance-weighted statistics θj,k =
d∗Tj,k6

−1
j d∗j,k , which are the shrinkage statistics in

CMWSmethod [4], then sort θj,k ’s so that {θ(1) < θ(2) <

· · · < θ(N )} are the order statistics of θ .
• Step 2: Define a scale-invariant ratio Tq as

Tq =
θ(q)(∑l−1

i=1 θ
2
(i)/(l − 1)

)1/2 , (17)

where l is a specified lower bound to determine the
number of zero-valued wavelet coefficients. Here, q is
an index of non-zero coefficients, i.e., q = l+1, . . . ,N .
The denominator is a fixed scale-equivalent function
that depends only on the pre-determined value of l. The
scale-invariant ratio is regarded as a random variable
of the standardization form that guarantees the evalu-
ation of the coefficients on the same scale [18, p.90].
Section III-B will discuss the guidelines to determine
lower bound l and investigate its effect on the overall
performance of the WSDT procedure.

• Step 3: Based on the tentative (N − l) non-zero samples,
bootstrap Tq’s satisfying the following condition

T̃ (b)
q ≡ Max

Tq
(Tq ≥ T (b)

q | Hq), (18)

for q = l + 1, . . . ,N , b = 1, . . . ,B, where Hq denotes
the parameter configuration in which exactly l number
of the wavelet coefficients are zeros. The collection of
sampled data, T̃q ≡ {T̃

(1)
q , . . . , T̃ (B)

q }, is constructed
from the bootstrapping procedure. The distribution of
the scale-invariant ratios under Hq does not depend on
the variance and we will take the unit variance for con-
venience when calculating the distribution of T̃q [22].

• Step 4: A test statistic for determining the number of
insignificant coefficients is achieved using the concept
of p-value as

Pr(T̃ (b)
q ≥ λκ | Hq) ≤ κ, b = 1, . . . ,B, (19)

where κ is the false discovery error rate that controls the
expected proportion of wrongly accepted coefficients
among chosen wavelet coefficients [5]. The values of
the threshold λκ are controlled by the false discovery
error rate κ . It implies that the level of shrinkage can be
controlled by specifying the error rate. If the aggressive
thresholding is required, a user can set smaller values
of κ . The calculation of the p-values using the bootstrap
procedure may be computationally intensive, thus we
introduce approximate methods, which will be illus-
trated in Section III-A.
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• Step 5: Extract significant coefficients using either hard
or soft thresholding criterion. The soft thresholding cri-
terion is defined by

d∗j,k =

{
d∗j,k/|d

∗
j,k |(θj,k − λκ ), if θj,k > λκ ,

0, if θj,k ≤ λκ .
(20)

Alternatively, the hard thresholding criterion is

d∗j,k =

{
d∗j,k , if θj,k > λκ ,

0, if θj,k ≤ λκ .
(21)

Hereafter, the procedure based on the soft thresholding
rule is called ‘‘WSDTs’’ while the hard thresholding rule is
called ‘‘WSDTh’’. In reconstructing the wavelet coefficients,
Donoho and Johnstone [9] suggested that the coefficients at
the coarse levels should always be included even if these
coefficients do not pass the thresholding rule.More flexibility
according to applicative problems will be given while adopt-
ing their suggestion in this work.

A. APPROXIMATION METHOD FOR COMPUTING p-VALUE
The bootstrap-based approach provides a simple but effective
calculation of p-value alternatively. To describe the approx-
imation to compute p-value, let T ∗q be a random variable
whose distribution is the same as that of the bootstrapped
samples T (b)

q for b = 1, . . . ,B. Denote the p-value with
observed Tq to be Pr(T ∗q ≥ T (b)

q ). Then, the procedure to
compute the p-value is as follows:
• Step 1: Generate iid N (0, 1) random variables
X∗1 ,X

∗

2 , . . . ,X
∗
N .

• Step 2: Set T ∗q = |X
∗

(q)|/{(
∑l−1

i=1 |X
∗

(i)|
2)/(l − 1)}1/2,

where {|X∗(1)| < |X∗(2)| < · · · < |X∗(N )|} are
the order statistics with respect to random samples
{|X∗1 |, |X

∗

(2)|, . . . , |X
∗
N |}.

• Step 3: Generate a realization of bootstrap samples
{T (1)
q , . . . ,T (B)

q } which satisfies the condition T (b)
q ≥

T ∗q |Hq for b = 1, . . . ,B. Note that for each bootstrap-
ping, the set of wavelet coefficients are re-sampled from
the original set of wavelet coefficients with the same
length of data points. Using the extracted distribution
of T̃q = {T̃

(1)
q , . . . , T̃ (B)

q }, re-sample the threshold and
calculate the p-value as Pr(T̃ (b)

q ≥ λκ | Hq) ≤ κ for
b = 1, . . . ,B, through the realized bootstrap samples.

B. DETERMINATION OF THE HYPER-PARAMETERS
To execute the proposed procedure effectively, it is necessary
to determine the values of hyper-parameters; the assumed
number of insignificant wavelet coefficients (l), false dis-
covery error rate (κ), and the number of simulation repli-
cations (B). In this section, we present some guidelines for
selecting these hyper-parameters.

Actually, the l value should be less than the anticipated
number of insignificant coefficients in order to safeguard
against eliminating significant coefficients from the WSDT

procedure. In practice, if the number of extracted significant
coefficients is equal or larger than the number of tested coef-
ficients in process, we decrease the value of the lower bound
l and implement the procedure again. In other words, to be
self-consistent, the WSDT procedure, along with certain l,
should be able to recognize the insignificant coefficients for
shrinkage purpose.

Alternatively, to determine l, denote a normalized energy
at position j as θ̆2j = θ2j /‖θ‖

2 and sort them so that {θ̆2(1) <
θ̆2(2) < . . . < θ̆2(N )}. Using a cumulative ordered normalized
energy for the smallest value of lower bound l, Eθ (l) =∑l

j=1 θ̆
2
(j)/‖θ‖

2, the criterion for selecting the value of l is

defined as

l = N −
N∑
j=1

I(Eθ (l) ≥ (1− δ)), (22)

where (1 − δ) is the energy cut-off point for a cumulative
energy level of interest, δ. Because wavelet coefficients have
the sparseness property, much greater cumulative normalized
energies should be compacted into fewerwavelet coefficients.
According to (22), we need to search for the δ values to
determine the best l value under a variety of scenarios. A pic-
torial explanation for determining the lower bound is given
in Figure 1.

FIGURE 1. Pictorial explanation for determining a cut-off value of l .

The choice of κ affects the threshold level, therefore, vari-
ous values of κ are implemented to investigate their impacts
on the extracted wavelet features. We fix κ to either 0.01,
0.05, or 0.1 to secure 99%, 95%, or 90% confidence level
in the analysis of both simulations and a practical example.
In the threshold determination, user can decide the level
of noise removal by adjusting hyper-parameters since the
parameters, l and λκ , are derived by a selection of κ and δ. The
number of bootstrapping replications can also affect overall
thresholding performance. One way to guide against biased
approximation results is to try with large value of B. In this
work, we set B = 10, 000 for the simulations and a real data
analysis to achieve desirable approximation accuracy with
consistent reconstruction results.
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IV. APPLICATIONS AND COMPARISONS
In this section, we compare the performance of the pro-
posed thresholding procedure with those of other existing
thresholding methods by analyzing various simulated data
and a real-world example. The simulated patterns in use are
four well-known signals [9]: Bumps, HeaviSine, Blocks, and
Doppler. For comparison, we added Gaussian white noises to
the four signals to examine noise effects on the thresholding
performance. In case of a real-world dataset, the sound signals
obtained from an air-conditioner were used to evaluate the
performance of various thresholding methods. Hereinafter,
all of both soft and hard thresholdings are denoted by the
subscripts ‘s’ and ‘h’, respectively. For the wavelet trans-
form method, the complex Daubechies wavelet transform
was used to convert original signals into wavelet-domain
signals, where the family of Lina-Mayrand 3.1 wavelets (also
called as Lawton’s complex-valued wavelets) [16] has been
applied. As a performance measure of the thresholding rules,
the goodness-of-fit statistics were evaluated for each sig-
nal data in terms of average mean-square error: AMSE =∑N

i=1(fi− f̂i)
2/N , where fi and f̂i are a true signal and an esti-

mated (denoising) signal, respectively. For the sound data of
an air-conditioner, the number of significant coefficients (NS )
and the data reduction ratio (DRR) were considered as the
thresholding performance measure instead of the AMSE.

FIGURE 2. Four simulated testing signals [9].

A. SIMULATION WITH NOISY SIGNALS
Four simulated signals in Figure 2 characterize different
types of features commonly observed in signal process-
ing, seismography, manufacturing, and other engineering
fields [9], [10]. Each of testing signals has N = 1, 024
data points, containing some of fluctuations which can be
observed in the real-world applications. We compared the
performance of the proposed procedure in Section 3 with
other existing thresholding methods using the simulated four
signals.

FIGURE 3. Noisy Bumps signals at various levels of SNR.

FIGURE 4. Histogram of θ of a Bumps signal with size 210 and SNR
equal to 0.5.

In a series of experiments, Gaussian white noises with a
zeromeanwere added to the four testing signals. The variance
of added noises was set based on the signal to noise ratio
(SNR), which decides the degrees of noises added to the
original signals. For example, Figure 3 shows some noisy
Bumps signals at different levels of SNR, where the smaller
SNR imposes the stronger additive noises onto the original
signals. For example, Figure 4 illustrates the distribution of
the variance-weighted statistics θ (at Step 1 in Section 3)
for the Bumps signal of size 210 with SNR equal to 0.5.
Based on the variance-weighted statistics, we need to calcu-
late the scale-invariant ratio Tq at Step 2. Figure 5 presents
the Tq statistics against the assumed number of significant
coefficients (q) according to various SNRs. Tq values tend to
depend on the noise levels, showing that Tq value increases as
the noise level increases. It is necessary to generate bootstrap
samples of Tq satisfying (18) in Step 3 and calculate the
p-values of theWSDT procedure in Step 4. However, because
the calculation procedure of the p-values using the bootstrap
samples is computationally intensive, we introduced approx-
imation method for computing the p-values. Figure 6 shows
bootstrap statistics of Tq’s (solid line) against q for the Bumps
signal of size 210 with SNR = 0.5, along with the simulated
Tq’s (dashed line), which are generated from iid N (0, 1) by
following the approximation procedure. We calculated the

174768 VOLUME 8, 2020



M. Lim et al.: Step-Down Test Procedure for Wavelet Shrinkage Using Bootstrapping

TABLE 1. Average mean-square errors (AMSEs) for four testing signals using various thresholding rules.

FIGURE 5. Plots of Tq for statistics of Bumps signals depending on SNR.

FIGURE 6. Bootstrap statistics of Tq’s against q for the Bumps signal of
size 210 with SNR = 0.5, along with Monte-Carlo simulations following
iid N (0,1).

maximum value of Tq satisfying T̃q ≥ Tq|Hq (the cross-
ing point of two curves in Figure 6) to consist of bootstap
samples. Then, we repeated this bootstrap procedure for B
replicates. Constructing the bootstrap samples in (18) with
B = 10, 000 replicates, that is, T̃q ≡ {T̃

(1)
q , . . . , T̃ (10000)

q },
the p-value satisfying (19) will be finally calculated.

Figure 7 shows reconstructed Bumps signals with
SNR = 1 using various thresholding rules. The visualization
results show that the VisuShrink thresholding rule provides

FIGURE 7. Reconstruction of the Bumps noisy signal with SNR = 1.

smoother results than other thresholding rules, removing
considerable amounts of fluctuations from the Bump signals.
On the other hand, the CMWS and the WSDT thresholding
rules perform better in that the abrupt changes in the original
signals are successfully preserved. Note that the WSDT
thresholding rule shows more accurate reconstruction results
in the straight section. For a qualitative evaluation of shrink-
age performance, Table 1 gives a summary of the perfor-
mances for the four noisy signals, along with four SNR cases.
Overall, AMSE tends to increase as the SNR decreases,
indicating that the denoising capabilities depend on the noise
degrees in true signals. AMSEs from both soft and hard
WSDT thresholding rules show better reconstruction capabil-
ities, indicating that theWSDT procedure can be successfully
used for data-denoising purpose.
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TABLE 2. Optimal hyper-parameter values for four testing signals.

In the WSDT procedure, the hyper-parameters need to be
set to efficiently threshold the wavelet coefficients accord-
ing to the degrees of the noises. Accordingly, users can
flexibly control the denoising intensities by adjusting the
hyper-parameter values. In general, the best combinations of
the hyper-parameters should be determined and it can be done
by employing a kind of best model selection procedure. In this
work, a grid-search approach was adopted to determine opti-
mal values of the two parameters δ and κ . Table 2 presents the
optimal values for each hyper-parameters in the WSDT rule,
where δ seems to decrease as the SNR decreases, whereas
κ is insensitive to the SNR. Overall, the proposed method
provides improved thresholding capabilities by effectively
removing interruptive noises from original signals while cap-
turing the characteristics of original signals.

B. AN EXAMPLE: AIR-CONDITIONER
REFRIGERANT NOISES
In this section, we applied the WSDT procedure to air-
conditioner refrigerant noises, along with existing wavelet
thresholding methods for comparison. Refrigerant noise from
air-conditioners is a chronic complaining issue to users. It is
crucial to discriminate the noise types in advance to eliminate
or reduce the harsh noises. To classify the refrigerant noises,
a microphone was used to record the refrigerant flow noises
from an air-conditioner of wall-mounted type. The refrigerant
noises weremeasured in an anechoic roomwith a background
noise level of 22.8 decibel (dB) at the height of 0.8 m wall.
It was operated over 600 seconds under cooling conditions to
generate a sufficient amount of noises at 1.0 m distance from
the microphone. A jury test by experts was also conducted
to acoustically discriminate the refrigerant noises, where the
details on the scheme were given in Cha et al. [7].
As a result, three types of refrigerant noises with unique

audible characteristics were detected. The first noise (named
‘‘Sound 1’’) was characterized as waveforms, slugs and bub-
bles. The second noise (named ‘‘Sound 2’’) sounds like water
drops, and the third noise (named ‘‘Sound 3’’) sounds like
single-phase gas flows. The samples of three sounds are
presented in Figure 8. The signals do not show any significant
differences in original scale, thus we performed the WSDT
to distinguish each sound by eliminating interruptive noises.
In performing the WSDT procedure which considers the

FIGURE 8. Three refrigerant noise sound data from a wall-mounted
air-conditioner.

difference of data size, the resolution levels were decomposed
into 17, 18, and 19 levels for measurements of sound 1,
sound 2, and sound 3 refrigerant noises, respectively. Instead
of AMSE criterion, we used the number of significant coeffi-
cients (Ns) and data reduction ratio (DRR) as denoising per-
formance criteria after performing thresholding rules because
information about true signals was not given. The values of
hyper-parameters, δ and κ , were fixed to 0.99 and 0.01.

For example, Figure 9 presents reconstructed curves using
various (soft and hard) thresholding methods, as well as
the WSDT thresholding procedures for Sound 1 signal.
Figure 9 clearly shows that reconstructed signals using both
WSDTh andWSDTs effectively capture sound characteristics
(e.g., fluctuations or peaks) in the signal by thresholding
interruptive noises. Table 3 gives a summary of threshold-
ing performances resulting from the air-conditioner data.
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FIGURE 9. Reconstruction of the Sound 1 signal.

TABLE 3. The number of significant coefficients (Ns) and data reduction
ratio (DRR) for the air-conditioner.

Note that the WSDT procedure drastically reduces data
dimension, providing smoother signals than other threshold-
ing methods. Considering both visualization results and data
reduction capabilities, the proposed theresholding procedure
is effective in true signal reconstruction by removing the
noises from original signals.

V. CONCLUDING REMARKS
In this paper, we propose a new wavelet thresholding proce-
dure for data-denoising purpose. The proposed procedure is
constructed based on the step-down testing procedure which
efficiently identifies significant effects in unreplicated frac-
tional factorial experiments by controlling a false discovery
error rate. By testing the significance of variance-weighted
statistics with boostrapping, the wavelet step-down proce-
dure remove insignificant wavelet coefficients as noises.
Performance measures of the proposed procedure are com-
pared with other existing thresholding methods using four
popular signals and a real practical example. The results
show that the wavelet step-down procedure has a potential
in signal-denoising and signal-reconstruction problems by
efficiently thresholding interruptive noises from original sig-
nals. In particular, the WSDT procedure shows better perfor-
mance in denoising and reconstruction of the signal data with

irregular variation, where the data reduction rate is flexibly
adjustable according to the selection of hyper-parameters.
Moreover, the proposed method effectively removes inher-
ent noises from the data with large sample size, showing
its robustness of data length and magnitude. For this pur-
pose, it’s application area can be extended to change-point
problems or anomaly detections of time series data. Admit-
tedly, the WSDT procedure depends on the hyper-parameters
which control the degrees of shrinkage by adjusting false
discovery error rate. In future work, the best values of the
hyper-parameters can be searched using numerical methods
or optimization procedures such as a Bayesian optimization.
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