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1 Introduction

The concept of stability for a functional equation (x) arises when the functional equation
(x) is replaced by an inequality that acts as the equation perturbation. In 1940, Ulam [16]
posed the first question concerning the stability of homomorphisms between groups. Hy-
ers [4] answered the question of Ulam in the context of Banach spaces. Hyers’s stability
theorem was generalized by some authors, and they considered cases where the Cauchy
difference was unbounded (see [1, 3, 8, 10, 12, 13]). The stability problem for the Cauchy
functional equation on a bounded domain was first proved by Skof [14]. The stability prob-
lem for the functional equation

Sxy) =xf () +f(x)y (1.1)

on the interval (0, 1] was posed by Maksa [7]. Tabor [15] and Péles [11] proved the Hyers—
Ulam stability of functional equation (1.1) for real-valued functions on the intervals (0, 1]
and [1, +00), respectively. In this paper, we use some ideas from the works [6, 9, 14] to
investigate the Hyers—Ulam stability of the Cauchy functional equation and (1.1) for map-
pings from bounded (unbounded) intervals into multi-normed spaces.

Let (E,| - ||) be a complex linear space. For given k € N, we denote by EX the linear
space consisting of k-tuples (x1,...,%x), where x1,...,x¢ € E. The linear operations on EX
are defined coordinatewise. We write (0,...,0,x;,0,...,0) for an element in EX, when x;
appears in the ith coordinate. We denote the zero element of either E or EX by 0.

Definition 1.1 ([2]) A multi-norm on {E" : n € N} is a sequence {|| - ||,}, such that || - ||,
is a norm on E” for each n € N and the following axioms are satisfied for each n € N:
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(A1) llxlly = |Ix|| for each x € E, and || - ||, is @ norm on E”;
(A2) a1z, ..., o) |ln < (MaX1<i<y |oti]) (%1, ..., %) ||, for each g, ..., 0, € C and each
X1yeeor Xy €EE;
(A3) 1xoqys-- s Xa@)ln = 1(x1,...,%,)|l,, for each permutation o on {1,...,n};
(Ag) 1155 %0, O) a1 = 1 (X1, .., %) ||, for each xy,...,x, € E;
(As) 1115w es %015 % X)) lns1 = [1@01, -+, %01, %) |1 for each xy,..., %, € E;
In this case {(E", || - ||,.) : » € N} is called a multi-normed space.

Example 1.2 ([2]) Let (£, || - ||) be a normed space. For given #n € N, define || - ||, on E” by
121, .- %p |, = Maxi<i<y [|#;]|. This gives a multi-norm on {E” : n € N}.

For details and many other examples, we refer the readers to [2]. We now have the fol-
lowing consequences of the axioms.

Proposition 1.3 ([2]) Let {(E", || - ||,) : n € N} be a multi-normed space. Then
@) N, ), = llx|| for each x € E;
(@) Narx, ..ozl = 11001, .., x0) || for each x1,...,%, € E and as,...,a, € C with
log| =+ =lau| =1;
(fii) maxi<iy %]l < @1 ox) e < 2oy Il < mmaxo<i<, llxill for each xi,...,
x, €E.

Proof (i) follows from (A;) and (As). To prove (ii), it follows from (A,) that
||(011x17~-«,0!nxn)”,, = ” (xlru«:xn)Hn = ||(0710€1x1,m,07n01nxn) ||n = ” (Ollxl,..-,anxn)n,,'
This proves (ii). To prove (iii), since || - ||, is a norm on E”, we have by (A4)

||(x1,.‘.,xn)||n < ||(x1,0,...,0)Hn+-~~+ ||(0,0,...,O,xn)||n

n
= Il < nmax x|l
v 1<i<nm

On the other hand, for each 1 <i < n, we have by (i)
1
llac: || = §||(x1,...,xi,...,xn)+(—x1,...,xi,...,—xn)||n
1
< i[H(xler)“-’xn)Hn + ||(x17x27-~~)xn)||n] = ||(xl1x2¢---’xn)||n'
Hence we get maxi<j<p [l [l < [(x1, ..., %)l 0

Item (iii) of Proposition 1.3 implies that if (E, || - ||) is a Banach space, then (E", | - ||,,) is a
Banach space for each n € N. We use the term multi-Banach space for {(E", || - ||,) : n € N}
when (E, || - ||) is Banach.

Definition 1.4 Let {(E", || - ||,) : n € N} be a multi-normed space. A sequence {x,}, in E is
said to be a multi-Cauchy sequence in E if, for each ¢ > 0, there exists 1y € N such that

SUP” (xn —Xms o3 Xnrk-1 — xm+k—1) “k <& nm,m= .
keN
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A sequence {x,}, in E is called multi-convergent to a in E if, for each ¢ > 0, there exists
m € N such that

sup||(xn -y Xkl —a)||k <g n>m.
keN

In this case we write

Limx, = a.
Applying the triangle inequality for the norm || - || and property (iii) of Proposition 1.3,
we deduce the following result.

Lemma 1.5 ([9]) Suppose that k € N and (x1,...,%),(y1,...,9%) € EX. For each j €
{1,...,k}, let {x,,j}, be a sequence in E such that lim,,_, o X, = x;. Then

nli)rgo(xn,l =Yoo Xk — Vi) = (X1 = Y15 oo Xk — Vi)-

It is clear that each multi-convergent sequence is a multi-Cauchy sequence and conver-
gent. In multi-Banach spaces a multi-Cauchy sequence is multi-convergent.

In this paper, using some ideas from [6, 9, 14], we investigate the Hyers—Ulam stability
of functional equation (1.1) for mappings from subsets of R into multi-normed spaces.

2 Stability of functional equation (1.1)
Theorem 2.1 Let f : [0,c) — E be a function satisfying

su§|| (fer +30) = 1) =f 0o f @+ 30) = f ) = f ) |, < 8 (2.1)

for some & > 0 and all x1,...,%4,91,...,9 € (0,c] with x; + y; € (0,c] forall i € {1,...,n}.
Then there exists an additive function A : R — E such that

sug” (A1) —f (1) ..., Axn) = f (x0)) ||n <35, x€[0,0). (2.2)

Proof We extend the function f to [0, +00). For this we represent arbitrary x > 0 by x =
n(c/2) +a, where nis an integer and 0 < & < ¢/2. Then we define a function ¢ : [0, +00) — E
by ¢(x) = nf(c/2) + f(). It is clear that ¢(x) = f(x) for all x € [0,¢/2). If x € [¢/2,¢), then
o(x) =f(c/2) + f(x — ¢/2). We claim that

sup| (¢(@1) = f(x1), .., 0&n) = f(x)) |, <8 %1,...,%4 € [0,0). (2.3)
neN
Let n e Nand x1,...,x, € [0,¢). Weset 2 ={i: 1 <i<mx; €[c/2,c)} and |2| = m. If 2 is
empty, then ¢(x;) = f(x;) for all 1 <i < n, and consequently the claim is true. For the case
m > 1, we have ¢(x;) — f(x;) = f(c/2) + f(x; — c/2) — f(x;) for all i € 2. Let jy,...,jm € £2.

Then (A4) and (2.1) imply

(@) = f 1), () = f )], = [ (0x7,) = f i), 0(3,) = f (3,)) ||, < 6
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which proves (2.3). We now prove that
su§|| (01 +31) = 9(x1) = @), -, @& + Vi) — 9(xn) = 0(y)) ||, <28 (2.4)
ne

for all x1,...,%4,¥1,...,¥x € [0,+00). For given n € N and «;,y; > 0, let x; = n;(c/2) + o; and

y; = m;i(c/2) + B;, where m; and n; are integers and 0 < ¢, B; < ¢c/2. Weset A={i:1<i<
n,a; + B € [¢/2,¢)}. Then it is easy to show that

@i +y1) — o) — o) =flou + Bi) = flar) = f(Bi), i€ A, (2.5)
Pl +y:) — o) — o) = i + B) —fle) = f(B), i€ A. (2.6)
To prove (2.4), we need to consider three cases as follows.

Case 1. Suppose that A is empty. Then (2.4) follows from (2.1) and (2.5).
Case 2. Suppose |A| = n. Then, by (2.1), (2.3), and (2.6), we have

(@1 +31) = 0(x1) = 9(1)s .., 0% + y4) = 9(xn) — 0) |,
= ” ((/)(051 + 1) —flea + B1), -, oy + B) —f (o + ,Bn)) ”n
+ || (Flar + Br) = fler) =f(BL)s- s f(otn + Bn) = flan) = F(Ba)) ||,
<24.

Case 3. Suppose that A is not empty and |A| = m < n. Then

(@ + 1) = (1) = 901)s -, 9@ + ¥) = () = 0(3)) |,
= ” (w(ajl + ﬁ/l) _f(ajl + ﬁjl)’ s gD(Otjm + 'Blm) _f(ajm + IBIm)) Hm
+ ” (f(al + ﬂl) —f(al) _f(ﬁl): .. 'rf(an + ,Bn) _f(an) _f(ﬁn)) ”n
< 26.

Hence we have proved (2.4). Letting y; = x; for 1 <i <nin (2.4), we get

sugll (0(2%1) = 20(x1), ..., p(2x,) — 20(x,)) ||, < 26

for all x1,...,%5,91,...,¥4 € [0, +00). Replacing x1,...,x, by 2%%x1,...,2k%, in the above in-
equality and dividing both sides of the resulting inequality by 2¥*!, we obtain

e N A R

n

<<p(2"*1x1) %) @) (o(kan))

for all x1,...,%, € [0,+00). Then

) e(2"x1)  p(2%'x,)  @(27x)
2k+1 - om 7t k+1 - om

n

Yoo

L o@Mx)  e@2x) 9@k, p(2ix,)
i+l - 9i : i+l - i

n

Page 4 of 14
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—apy (w(szlxl) pQm) g <p<2{xn)>
neN pa 21+1 2i 21+1 2i "
s
< Z 2 (2.7)
i=m

for all x4,...,%, € [0,+00). For fixed x € [0, +00), replacing x; by 21 for all 1 <j<min
the above inequality, we obtain

sup
neN

p(2%)  e(2"x)  e(2x) (27 k)
2k+1 - om 7T kel - om

ks
nszg. (2.8)

Then (A;) and (2.8) yield

") e@™x)  9("x) (27 x,)
ilelg ok+1 - om 77 ok+n N om+n-1 ;
~ P(2"1%)  (2) 1 [p@"x) @™ 'x,)
- :lelg 2k+1 - om 7 on-1 ok+1 - om ;
- ) p2™x)  e(x) (27 x,)
su - yeees —
neg 2k+1 om 2k+1 om Y
k
1)
< Z 5
i=m

Hence { “’(g—:x)}m is a multi-Cauchy sequence in E for all x € [0,+00). So it is multi-
convergent in the multi-Banach space {(E", | - ||,,) : » € N}. Consider the function A, :
[0, +00) — E defined by

Ao(x) = Lim 227

m—oo M

Letting m = 0 in (2.7), we get

k+1 k+1
(7(/)(22“1961) g, L) <p(xn)>

Sup 2k+1

neN

ks
SZE
i=0

n

forall xy,...,x, € [0,+00). Letting k — oo and utilizing Lemma 1.5, we infer that
sup | (Ao(x1) = @(x1), ..., Ao(xn) — (%)) |, <28, %1,...,%, € [0, +00).
neN

Using (2.3), we have
sugll (Aox1) —f (x1),..., Ao(xn) = f (%)) |,

< sup||(Ao(x1) — @(&1),..., Ao(xn) — 9(xa)) ||,

neN

+ SupH ((p(xl) _f(xl)’ .. 'r(/)(xn) _f(xn)) ”n

neN

<38, Xx1,...,%, €[0,0).

Page 5 of 14
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We now extend Ay to a function A : R — E given by

AO(x)7 X Z 0;
-Ao(=x), x<0.

A(x) =

We show that A is additive. For given x,y € R, since A(x + y) — A(x) — A(y) is symmetric in
x and y, we may assume the following cases:

() Ifx,y>0orxy<0,then we get A(x +y) = A(x) + A().

(i) Ifx>0,y<0and x +y >0, then

Alx+y) —Ax) —A(y) = Ao(x +y) — Ap(x) + Ao(-y)
= [Ao(x +y) + Ao(=y)] - Ao(x)

=Aop(x) = Ao(x) = 0.
(i) Ifx>0,y<0and x +y <0, then

Alx+y) —Ax) —A(y) = —Ao(—x—y) — Ag(x) + Ao(-y)
=Ao(=y) - [Ao(=x = y) + Ag(x)]

=Ao(=y) = Ao(-y) = 0.
Hence A : R — E is an additive function satisfying (2.2), which completes the proof. [

Theorem 2.2 Let ¢ > 0 and f : [c, +00) — E be a function satisfying
sugH (1 + 1) = f 1) = FO1)s oo f B+ y0) —f ) = f ) |, <6 (2.9)

forsome § >0 and all x1,...,%,,1,...,Yy € [c, +00). Then there exists an additive function
A :R — E such that

sug” (AGer) —f (1), Alxn) = f(x0)) ||n <68, X1,...,%, € [c,+00). (2.10)

Proof Using the same argument as in the proof of Theorem 2.1, there exists an additive

function T : [¢, +00) — E such that
sup||(T(e1) = f 1), Tn) = f () ||, <8, %1, € [, 400).
neN
We extend T from [c, +o0) to R. First, we extend T from [c, +00) to [0, +00) by defining

T(x), x € [¢, +00);

Tx+c)—T(c), x€][0,c).

T(x) =
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It is easy to see that T: [0, +00) — E is additive. Now, we extend T to the additive function
A :R — E by defining

T(x), x> 0;

Ax)=1 _
-T(-x), x<0. O

For convenience, we use the following abbreviation for a given mapping f : (0,1] — E:

Df (x,y) := f(xy) —xf () = f %)y, x,y€(0,1].
Theorem 2.3 Let {(E", || - ||,) : n € N} be a multi-Banach space. Suppose that ¢ is a non-
negative real number and f : (0,1] — E is a mapping satisfying

n

1(Df ®1,31)s ... Df s y)) |, < €| | 530 (2.11)
i=1

forallneNandall x1,...,%,91,...,Y, € (0,1]. Then there exists a function A :(0,1] — E
satisfying functional equation (1.1) and the inequality

sup[(A(t) —f(&1),..., Alta) —f (&) |, <&  t1,....t, € (0,1].

neN

Proof For each n € N, it follows from (A,) and (2.11) that

n-1
H (]_[ xyiDf @y, ). | [2iDf (xmyn))

i=1

n

= ” (Df xl’yl) xmyn < 81_[x,j/l
forall xy,...,%,,91,...,¥, € (0,1]. Then

<& XbLeeor X, ¥1,--,9n € (0,1]. (2.12)

” <Df xl,yl Df(xmyn)>

ey
xlyl xnyn

n

If we define the mapping g: (0,1] — E by

f@)

’
X

gx) =

then (2.12) means

l(gxn) - g&1) = g0), ..., g(xnyn) — glxn) — gO)) ||, < (2.13)

for all xy,...,%4,91,...,¥s € (0,1]. Let us define the mapping G : [0,+00) — E by G(¢) =
g(e™). Replacing (xy,...,x,) and (y1,...,y,) by (€74,...,e7™) and (e™*,...,e*"), respec-
tively, in (2.13), we get

sup[ (G(t1 +51) = G(t1) = G(s1),-.., Gty +5,) = G(t,) = G(sn)) |, < &

neN
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forall ¢,...,8,,81,...,8, € [0,+00). As in the proof of Theorem 2.1, there exists an additive
mapping A : R — E such that

sug” (A(x1) = G(x1),..., Axn) — G(x)) ||n <&  X1,...,% € [0,+00).

Letting x; = —In¢; in the above inequality and using the definitions of G and g, we obtain
¢ £y
sup (A(— Inty) —@,,..,A(— Int,) _f(t )) <e, ft1,...,t,€(0,1]. (2.14)
neN 1 n n

Applying (A,) and (2.14), we get

sup|[ (L A(=Int)) —f(t1), .., taA(=Inty) ~ £(2) |,

neN
= sup (tl[A(—lntl)—f(i)}...,tn[A(—lntn)_MD
neN t t, §
<sup (A(—lntl) —ﬂi)w.,A(—lntn) _f(tn)>
neN t £, .
<&, ..t €(0,1]. (2.15)

If we define the function A : (0,1] — E by A(x) = xA(-Inx), then A(xy) = A(x)y + xA(y)
for all x,y € (0,1] and (2.15) implies

sup|[(A@t) = f(t1), ..., Altn) = f(t)) |, <&  f15ennrtn € (0,11, 0

neN
Theorem 2.4 Let X be a normed space. Suppose that f,g,h : (0,+00) — X are mappings
satisfying

I (xy) — xg () = hx)y|| < ¥ (x.9), %,y € (0,+00), (2.16)

where ¥ : (0, +00) — [0, +00) is a mapping satisfying and

fim Y0 i Y@ o e (0, 400).

X—>00 X y—00 y

Then

glab) = ag(b) + bg(a) — abg(1);
h(ab) = ah(b) + bh(a) — abh(1), a,b € (0, +00).

(2.17)

Moreover, if
lim ¥ (a/x,x) =0 or lim y¥(ax,1/x)=0, a € (0,+00),
X—> 00 X—> 00

then

f(ab) = af (b) + f(@)b — abf (1), a,b e (0, +00). (2.18)
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Proof We define the functions F, G, H : (0, +00) — X by

F(x)z'@, G(x):‘@, H(x) = M, x € (0, +00).
x x x
By (2.16), we have
F) - 6 - HOY| = L9255 e (0, +) 2.19)
xy

Then from (2.19) we get

Gx) = lim [Flxy) - HO)], % € (0, +00);

H(y) = lim [F(xy) - G(x)], y € (0, +00).

Therefore, for all a, b € (0, +00), we have
G(ab) - G(a) - G(b) = lim [F(abx) - Hw)] - lim [F(ax) - Hx)] - G(b)
= lim [F(abx) - F(ax)] - lim [F(abx) - H(ax)]
= lim [H(ax) - F(ax)] = -G(1),

H(ab) - H(a) - H(b) = xlilg)[F(abx) - G(x)] —xli)rrolo[F(ax) - G(x)] - H(b)

xll)ngo [F (abx) — F (ax)] — lim [F (abx) — G(ax)]

X—> 00

lim [G(ax) - F(ax)] = -H(1).

X—> 00

Moreover, if limy_, o ¥ (a/x, x) = 0, then by replacing x with x/y in (2.19) and letting y — oo
in the resulting inequality, we get

F(x) = lim [G(x/y) +H(y)], x € (0, +00).
y—>0o0
Consequently,

F(ab) — F(a) - F(b) = xlirglo[G(ab/x) + H(x)] - xlirglo[G(a/x) + H(x)] — F(b)

= lim [G(ab/x) - G(a/x)] — lim [G(ab/x) + H(x/a)]

= —lergO[G(a/x) + H(x/oz)] =—F(1).

Hence we get f(ab) = af (b) + f(a)b — abf (1) for all a,b € (0, +00). By a similar argument,
we get the result if lim,_, » ¥ (ax, 1/x) = 0 for all a € (0, +o0). a

Corollary 2.5 Let X be a normed space. Suppose that f,h : (0,+00) — X are mappings
satisfying

[fGey) — af () = h(x)y| < ¥ (x,9), %,y € (0,+00), (2.20)

Page 9 of 14
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where ¥ : (0, +00) — [0, +00) is a mapping satisfying and

lim M = lim M =0, a,be(0,+00).
X—00 X y—00 y
Then
h(ab) = ah(b) + h(a)b, f(ab) = af (b) + bh(a) = af (b) + bf (a) — abf (1) (2.21)

foralla,b e (0,+00).

Corollary 2.6 Let X be a normed space and p,q,r,s € (—00,1). Suppose that ¢, §, 0 are
nonnegative real numbers and f, g : (0, +00) — X are mappings satisfying

|V(xy) —xf(y) —g(x)y” <e+38xPy1 +0x"y’, x,y€(0,+00).
Then f and g satisfy (2.21).

Corollary 2.7 Let X be a normed space and p,q € (—00,1) with pq < 0. Suppose that ¢ is
a nonnegative real number and f,g,h : (0, +00) — X are mappings satisfying

If xy) — xg(y) = hx)y|| < e(¥ +¥7), x5 € (0, +00).
Then f, g, and h satisfy (2.17) and (2.18).

Remark 2.8 By similar reasoning as in the proof of Theorem 2.4, it can be shown that
Theorem 2.4 is also valid if the domains of functions f, g, ¥ are (—oo,0) or R \ {0}.

The following theorem is an improved version of the main result in [6].

Theorem 2.9 Let X be a normed space. Suppose that ¢ is a nonnegative real number and
f.8,h:(0,+00) = X are mappings satisfying

If (xy) — xg(y) = h(x)y|| <&, %,y € (0, +00). (2.22)
Then
(i) f, g satisfy (2.17).
(ii) there exists a function ¢ : (0, +00) — X satisfying (1.1) and
Hf(x) - @(x) —xf(l)H <d4xs, «x€[l,+00). (2.23)

Moreover, ¢ is unique on the domain [1, +00).

Proof (i) follows from Theorem 2.4. It suffices to prove (ii). Lettingx =1,y =1, and x =
y =11in (2.22), respectively, we obtain

F») -g0) -my| <&, |f0) -xg) -h@)| <&, |f(1)-gQ)-h1)| <
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for all x,y € (0, +00). Therefore

[fGey) — 2 ) = f @)y + 2 (1) |
< |[fxy) - xg(y) - hix)y
+ e 0) - 5f ) + xyh(1) |
+ | h)y - f )y + x9g(1) |
+ | xyf (1) — xyg(1) — xyh(1) |

<e(l+x+y+ay), xye€(0,+00). (2.24)

Define the functions F: (0, +00) - X and T: R — X by

F(x):%, x € (0,+00), T(t)=F(¢'), teR.
Then by (2.24) we have
|E@y) = F(y) = F(x) + f(1)| < &1+ 1/x + 1/y + 1/xy),  x,y € (0, +00). (2.25)

Replacing x and y by ¢’ and €’ in (2.25), respectively, we get
|Ts+8)-T@)-T@E)+TO)| <e(l+e*+e‘+e"), tsekR

Hence
|| T(s+t)—T(s)— T(t) + T(0) || <dg, t,s€[0,+00).

Then by [5, Lemma 2.27] there exists a unique additive function A : R — X such that
|T(x) - Ax) - T(0)| <4e, € [0,+00).

Therefore
Hf(x —xA(Inx) — xf(1) ” <4xe, «x€[1,+00).

We put ¢(x) := xA(Inx), x € (0, +00). Then we get ¢(xy) = x¢(y) + ¢(x)y and (2.23). To prove

the uniqueness of ¢, let ¥ be another function satisfying (2.23) and ¥ (xy) = ¥ () + ¥ (x)y

for all x € [1, +00). It is easy to see that p(x") = nx"'¢p(x) and ¥ (x") = nx" "1y (x) for all
neNandx € [1, +00). Then

@) -y @] = o) -y ()]
= &) - () =2 + (&) - v (") - )

<8x"e, x€[l,+00),meN.
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Hence
8xe
le@) -y @)| < —, %€ [1,+00),n € N.
Letting n — oo, we conclude that ¢(x) = ¥ (x) for all x € [1, +00). O

For convenience, we use the following abbreviation for given mappings f, g,/ : [¢c, +00) —
E, where ¢ > 0:

Dy nf (%,y) :=f(xy) —xg(y) = h(x)y, %,y € [¢, +00).

Theorem 2.10 Let {(E",| - ||,.) : n € N} be a multi-Banach space. Suppose that ¢ is a non-
negative real number and f,g,h : (1, +00) — E are mappings satisfying

S“g” (Dgif c1,91)s - Dgaf s yn)) ||, < € (2.26)
ne

forallxy,..., %091, ..,Yn € [1,+00). Then there exists a function A : (0, +00) — E satisfying
functional equation (1.1) and the following inequalities:

<deg

neN n

el (M S0, A S

X1 X1 Xn Xn

f(1)>

forall xq,...,x, € [1,+00) and
|| (A(xl) —flx1) + 21 (1), ..., Alxy) — f(x,) +x,‘f(1)) ||n <d4ce
forall xq,...,x, € [1,c].

Proof It follows from (2.26) that || Dgf (%, y)|| < & forallx,y € [1,+00). Then g and / satisfy
(2.17) by Theorem 2.9. Applying axiom (4,) in (2.26), we infer

D , D, nr Y

up ( eif 3131)  Dof iy )> <e (2.27)

neN X1)1 XnYn n
for all Xlreeor Xy V1reeor Y € [1,+OO). Letting X1=-=%x,=1, Yy1=- =Y, = 1, and X1 =
<-=x, =y =+ =y, = 1in (2.27), respectively, we obtain

sup (f—(yl) 80 ), S g0n) h(l)) <e,

neN N N In n n

h n) B,
sup <M _ ﬂ _g(l),m,f(i) - ﬂ —g(l)) <eg,
neN X1 X1 Xn Xn n

|[f(1) -g(1) —h(1)|| <& XiyeeH; X Y15---0Yn € [1,400)

forall xy,...,%4,91,...,9s € [1,+00). Let F, G, H : [1, +00) — E be mappings defined by

F(x):@, G(x):g;—x), H(x) = @

Page 12 of 14
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Therefore we conclude from (2.27) and the above inequalities that

|(F@x1y1) = F(x1) = F(y1) + F(1),...., F(x1y1) — F(x1) = F(y1) + FQ) |,
< [(F@1y1) = G1) = Hx1), - E(xyn) = G) = H(x)) |,
+[(G1) = F(n) + HQ),..., G(yn) = Fy) + HQ)) |,
+ | (H(x1) = F(x1) + G(1), ..., H(x,) = F(x4) + G(1)) ||
+ | (F(1) - GQ) - H(1),...,F(1) - G(1) - H(D)) |
<4de, neNx,...,%,91,...,Yy € [1,+00).

Letting T'(¢) = F(e') and replacing x; and y; by € and € in the above inequality, respec-

tively, we get

sup (T(s1 +t1) = T(s1) = T(t1) + T(0),..., T(sn + ) = T(s,) = T(ts) + T(0)) ||n <4e
neN

for all sy,...,8,,t1,...,t, € [0,+00). By Theorem 2.2 there exists an additive function A :
R — E such that

sup (A(t1) = T(&) + T(0),..., A(tx) = T(t,) + T(0)) |, < 4e

n
neN

forall ty,...,¢t, € [0, +00). Hence

sup| (A(Inx;) — F(x1) + F(1),...,A(Inx,) — F(x,) + F(1)) ||n <4e

neN
for all xy,...,x, € [1,+00). Define A : (0,+00) — E by A(x) = x *A(Inx). Then A(xy) =
xA(y) + Ax)y for all x,y € (0, +o0) and

<deg

neh (M SE) g, Al _f%) .

neN X1 X1 Xn n

f(1)>

n

forall xy,...,%, € [1,+00). Using axiom (A4,), we get

|| (A(xl) —flx1) + 21 (1), ..., Alxy) —f(x,) +x,1f(1)) ||n <4ce

for all x1,...,x, € [1,c]. O
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