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Direct observation of time-asymmetric breakdown
of the standard adiabaticity around an exceptional
point
Youngsun Choi1, Jae Woong Yoon1✉, Jong Kyun Hong1, Yeonghwa Ryu1 & Seok Ho Song 1✉

Recent study on topological operations around an exceptional point singularity has shown

remarkably robust chiral processes that potentially create time-asymmetric or nonreciprocal

systems and devices. Nevertheless, direct observation of the entire dynamics in the courses

of the topological operations has not been revealed in experiments thus far. Here, we report a

comprehensive experimental study on fully time-resolved dynamic-state evolution passages

during encircling-an-exceptional-point operations. Using dynamically tunable electrical

oscillators, we create a self-intersecting eigenvalue topology with an unprecedented accuracy

and experimentally confirm that the time-asymmetric breakdown of the standard adiabaticity

is indeed unavoidable when the system encircles an exceptional point in the canonical

adiabatic limit. We further discuss the impact of parasitic noises on the time-asymmetric

mode-transfer performance and subsequent considerations for practical design requirements.
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Controlled wave amplification and attenuation are key
features for numerous practical devices and systems in
acoustics, electronics, and optics. Previously, gain and loss

in such systems are in general treated as being independent of
major inter-oscillator properties. Remarkable interplay between
them has been found only in specific cases such as injection
locking and synchronization phenomena1,2. However, recent
development of the non-Hermitian wave dynamics suggests
various novel effects produced by intentionally engaging gain and
losses with inter-oscillator or inter-modal coupling properties.
They are violation of the Friedel’s law of diffraction from sta-
tionary lattice structures3,4, unidirectional invisibility5,6, broad-
band optical nonreciprocity7, to mention a few. Remarkably,
exotic non-Hermitian properties have been found even beyond
the wave dynamics or classical physics domains as demonstrated
in diffusive heat-transfer processes8 and single-photon systems
consisting of a nitrogen vacancy in a diamond crystal9.

These intriguing effects essentially involve a non-Hermitian
singularity referred to as an exceptional point (EP) that corre-
sponds to a threshold of the spontaneous parity-time (PT)
symmetry-breaking transition and creates extremely deformed
vector spaces due to coalescence of multiple normal-mode solu-
tions10. An EP involves a unique self-intersecting Riemann-sur-
face geometry in the parametric eigenvalue spectrum11,12 that
enables an exotic chiral effect under topological stimuli around an
EP7,13–25. Following the initial theoretical proposal by Moiseyev
et al.13,14, this chiral effect has been experimentally established in
microwave transmission channels17, cryogenic optomechanical
oscillators18, and silicon-photonic waveguide architectures very
recently19. Therein, final states through the topological operations
around an EP strongly suggest that it must involve the chiral
mode-transfer effect originating from the time-asymmetric
breakdown of the standard adiabaticity. Nevertheless, any direct
observation of the effect in the courses of the operations has not
been reported thus far. Considering the potential impact of the
effect on the fundamental physics and device engineering, direct
time-resolved observation of this exotic chiral effect should be an
important step toward novel wave-controlling devices and sys-
tems pertaining to the far-reaching open-system properties and
associated non-Hermitian dynamics.

Here, we provide an experimental analysis that reveals entire
dynamics of the time-asymmetric non-Hermitian effect in the
courses of the encircling-an-EP (EEP) operations. Using
dynamically-tunable electrical-circuit oscillators, we create the
Rieman-surface eigenvalue topology with an unprecedented
accuracy and measure fully time-resolved complex amplitudes in
real-time with the dynamic EEP operations. In contrast to the
previous indirect observations due to final-state analyses, the
measured dynamic state-evolution passages show how the unique
non-Hermitian effects such as the adiabatic state flip, anti-
adiabatic state jump, and subsequent time-asymmetric mode
transfer properties occur in the passage of time. Therefore, our
proposed approach provides a comprehensive experimental
platform for fundamental study on exotic non-Hermitian
dynamics.

Results
We use dynamically tunable binary electrical-circuit oscillators as
shown in Fig. 1. The circuit configuration consists of two
capacitively-coupled LRC oscillators. Similar electrical circuits
have been used to explore intriguing non-Hermitian properties
such as the PT-symmetric quantum brachistochrone problem26,
enhanced remote sensor applications27,28, anomalous anti-PT-
symmetric dynamics29, and robust wireless power-transfer devi-
ces30. In our configuration, distinguished features from the

previously studied parity-time-symmetric oscillator circuits31 are
negative-resistor units (partial circuitries with an operational
amplifier AL1 or L2, resistors ρNR, and AR1 or R2) connected in serial
with inductor λ1 or 2 and varactor-diode capacitors (dC and d2)
included in the coupling mechanism at CC and the restoration
force mechanism at C2 in Oscillator 2. The negative-resistor units
eliminate parasitic resistance components in the inductors. The
varactor-diode capacitors provide a control mechanism that
dynamically tunes inter-oscillator coupling constant and free-
running resonance frequency at Oscillator 2. Other variable
components including resistors ρL1, ρL2, Δρ1, ρR1, ρR2, and a
capacitor Δγ1 are manually tunable so that we precisely adjust an
initial condition with a desired set of effective LRC-circuit con-
stants {L1, R1, C1, L2, R2, C2}. Other details of the circuit con-
figuration are provided in the figure legend for Fig. 1a.

Electrical response of this circuit configuration is described by
the following binary Hamiltonian model

d
dt

vj i ¼ �iH vj i; ð1Þ

H ¼ ω1 � κþ iγ κ

κ ω2 � κ

� �
; ð2Þ

where |v〉= [v1 v2]T is a state vector with vn being a voltage-
amplitude phasor at Oscillator n, ωn= (LnCn)–1/2 is free-running
resonance frequency, γ= (2Δρ1C1)–1 is decay rate, and κ=
ω0CC(C1+ C2)–1 is a coupling constant with ω0= 0.5(ω1+ ω2)
being average free-running resonance frequency. Here, voltage
signal Vn to be measured at Oscillator n is given by Vn= Re(vn).
The diagonal elements in Eq. (2) consist of free-running reso-
nance frequency ωn, decay rate γ, and frequency shift κ which is
tunable by the varactor-diode capacitors connecting two LC
oscillators. See Supplementary Note 1 for detailed mathematical
treatment based on the Kirchhoff’s circuit laws. In Eq. (2), we
note that coupling constant κ in the off-diagonal elements also
appears in the diagonal elements in contrast to canonical
coupled-oscillator models where diagonal and off-diagonal ele-
ments are independent on each other. This property originates
from resonance-frequency shift induced by net alternating cur-
rent passing through the coupling capacitor CC.

The Hamiltonian in Eq. (2) has a parity-time-symmetric EP at
ω1= ω2 and γ= 2κ. Therefore, an EEP operation requires
simultaneous control of ωn and κ around the EP. In our circuit
configuration in Fig. 1a, independent electrical tuning of the
varactor-diode capacitors at CC and C2 immediately leads to
simultaneous dynamic control of κ and ω2, respectively.

We realize the required control scenario with a computer-
controlled system as illustrated in Fig. 1b. Therein, voltage signals
VC and VD from a general purpose AD/DA converter are applied
to the varactor-diode capacitors at CC and C2, respectively, and
subsequently adjust κ and ω2, respectively. A function generator
provides an excitation signal to either one of Oscillators 1 or 2
depending on the on/off relay and channel-selecting toggle switch
status. An oscilloscope acquires excited signals V1 and V2 directly
in real time. A desktop computer precisely synchronizes desired
control and measurement sequences in communication with the
general purpose AD/DA converter, function generator, and the
oscilloscope.

In the first step of our experimental analyses, we measure
eigenvalues and eigenstates of the system with the circuit constants
L1= L2= 4.789mH, R1= 38 kΩ, R2= 0, C1= 10 nF, C2= C1+
ΔC with ΔC varying from –100 pF to +100 pF, and CC changing
from 90 pF to 350 pF. These constants are chosen so that the two
oscillators resonate at frequencies around 20 kHz where the
equipment that we use here operates in routinely stable and reliable
conditions. See “Methods” section and Supplementary Note 2 for
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the eigenvalue-measurement procedures and underlying mathe-
matical relations, respectively. Figure 2 shows wireframe surfaces
for the measured real and imaginary eigenvalue spectra on a two-
dimensional parametric plane represented by ΔC and CC. Therein,
we label a set of eigenvalues for gain modes (or equivalently least-
attenuating modes) as λG and that for loss modes as λL. They
clearly show characteristic self-intersecting Riemann-surface geo-
metry around an EP at (ΔC, CC)= (0 pF, 185 pF). Remarkably, the
experimental and theoretical values agree within an error less than
5Hz which is merely 0.02% of the minimal resonance frequency
identified in this measurement. See Supplementary Fig. 2 for more
details. Such high degree of accuracy enables precise further
experimental analyses including dynamic EEP operations.

We conduct EEP operations on a parametric loop defined by
the relations

ΔC ¼ pAΔsinð2πT�1tÞ; ð3Þ

CC ¼ C0 þ ACcosð2πT�1tÞ�; ð4Þ
where p is an encircling-direction parity constant that takes +1
for anticlockwise (ACW) rotation or –1 for clockwise (CW)
rotation, AΔ is an amplitude constant for the ΔC modulation, T
denotes a time period for one complete EEP operation, C0 is an
average-capacitance constant for CC, and AC are an amplitude
constant for the CC modulation.

Dynamic EEP operations due to this scenario requires a well-
prepared initial state |ψ(0)〉 that should be either one of the two
eigenstates, i.e., symmetric-like (bonding) eigenstate |s〉 or anti-
symmetric-like (anti-bonding) eigenstate |a〉 at our selected
starting point (ΔC, CC)= (0 pF, 350 pF). This starting point is
located in the unbroken PT-symmetric region (γ < 2κ) on the PT-
symmetric line at the condition ω1= ω2. For such initial condi-
tion, eigenstates |s〉 and |a〉 take identical dissipation rates, i.e.,

identical imaginary eigenvalues. Therefore, there is no preferred
state if certain appropriate initial-state preparation procedures are
not applied.

We obtain such an initial state by driving the oscillators with
time-harmonic current-source signal Iin at a measured resonance-
center frequency and a subsequent relaxation procedure that
effectively eradicates parasitic modal-impurity noises from |ψ(0)〉.
The relaxation procedure is performed by slightly detuning ΔC
and CC towards gain-mode domain for the desired state and then
returning to the starting point adiabatically. During this adiabatic
process for the initial state preparation, parasitic modal-impurity
component exponentially decays in the loss-mode domain while
the desired mode component amplifies its amplitude in the gain-
mode domain. For an optimally selected adiabatic detuning
passage, we achieve desired initial-state with a purity exceeding
99%, as estimated from a real-time excitation-amplitude mea-
surement. Once such a pure initial state is excited from this
procedure, control signals VC and VD creating ΔC and CC profiles
due to Eqs. (3) and (4) are then injected to perform a single
complete round of a desired EEP operation. Meanwhile, excited
voltage signals V1 and V2 are recorded in time domain as a
complete evolution history of an associated dynamic state |ψ(t)〉.
See “Methods” section for further details including associated
circuit constants, dynamic control ranges of ΔC and CC.

The EEP operation in this way successfully produces the the-
oretically anticipated time-asymmetric mode-transfer effect as
shown in Fig. 2 for a time-period constant T= 30 ms. Therein, we
provide bi-orthogonal expectation value 〈H〉= 〈ψ*(t)|H|ψ(t)〉
passages with respect to the measured eigenvalue surfaces. The bi-
orthogonal expectation value in this way not only allows
the simplest probabilistic description for non-Hermitian
systems in our case but also can be directly obtained from
dynamic-state |ψ(t)〉 measurement with no need of other

Fig. 1 Binary non-Hermitian Hamiltonian simulator using tunable electrical oscillators. a A circuit diagram for binary electrical oscillators as a dynamic
non-Hermitian Hamiltonian simulator. The circuit consists of two LRC oscillators coupled through an electrically-tunable capacitor unit CC including six
varactor diodes (dC). In Oscillator n, an inductor unit Ln consists of a conventional coil inductor λn and a negative-resistance unit (an operational amplifier
ALn and resistors ρNR and ρLn) compensating a parasitic resistance component in λn. A resistor unit Rn includes a manually-variable resistor Δρ1 (Oscillator 1
only) and another negative-resistance unit (an operational amplifier ARn and resistors ρNR and ρRn). A capacitor unit Cn contains a main capacitor γn and a
manually-variable capacitor Δγ1 for Oscillator 1 or an electrically-tunable varactor-diode capacitor (four d2’s) for Oscillator 2. b Control configuration for
dynamically encircling an exceptional point. An excitation signal current Iin from a function generator is injected to either one of the two oscillators
depending on toggle-switch status. Voltage signals VC and VD from an analog-to-digital/digital-to-analog converter dynamically control inter-oscillator
coupling constant at CC and frequency detuning at C2, respectively. The electrical responses V1 and V2 of the two oscillators are acquired with an
oscilloscope. The excitation of the circuit and measurement start or stop with a trigger signal from the analog-to-digital/digital-to-analog converter. These
controls are precisely managed with a desktop computer (Control desktop computer).
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independent measurements on eigenvalues and Hamiltonian
parameters. See Supplementary Note 3 for detailed explanation.
Note that Fig. 2a, b show ACW (p=+1) EEP case and Fig. 2c, d
show CW (p= –1) case for an initial state |ψ(0)〉= |s〉. The real
and imaginary parts of 〈H〉 passages in the ACW case adiabatically
evolve from the initial eigenvalue point for |s〉 to that for |a〉 while
〈H〉 passages in the CW case involve the anti-adiabatic state jump
from the loss-mode (λL) surface to the gain-mode (λG) surface and
the passages eventually end up in the eigenvalue point for |s〉.

Here, the essential physics is a fact that an EEP operation on a
loss-mode surface inevitably undergoes an anti-adiabatic state
jump toward a gain-mode surface while the time-reversed
operation simply evolves along the adiabatic-state passage on a
gain-mode surface. This property is clearly found in the other
cases for |ψ(0)〉= |a〉 as shown in Fig. 2e–h.

Discussion
Our electrical-circuit EEP simulator enables further experimental
investigation on various parametric dependences of the time-
asymmetric EEP operations. For a given EEP loop, a parameter of
the most significant impact is the evolution-time constant T
because it is a characteristic time scale of the EEP operation that
is directly associated with the time-asymmetric mode-transfer
efficiency18. In Fig. 3, we provide measured 〈H〉 passages for
different T values in a range from 2ms to 50 ms. It shows mea-
sured passages for all four possible cases from the two encircling-
direction and two initial-state conditions. The adiabatic state flip
takes place for the CCW case with initial state |s〉 (Fig. 3a) and
CW case with initial state |a〉 (Fig. 3b). They experimentally
demonstrate the time-asymmetric mode-transfer effect persisting

over a broad T ranges. Importantly, Fig. 3c, d show significant
details of the anti-adiabatic jump that has never been observed in
experiments previously.

In the time-resolved passages during the anti-adiabatic state
jump, we note two important observations. First, this state jump
obviously becomes inevitable for larger T values as the binary
Hamiltonian model predicts18. Therefore, we experimentally
confirm that this effect is indeed anti-adiabatic in a sense that
slower parametric change makes the abrupt non-adiabatic tran-
sition unavoidable.

Another important observation is that the passages during the
jump seem remarkably chaotic for excessively large T values (T >
40 ms in our measurement). In our analyses, this property does
not appear for ideal cases in theoretical study and becomes
prominent whenever amplitude of the dynamic state |ψ(t)〉 is
comparable to noise levels. Therefore, the chaotic behavior of the
passages during the jump is attributed to amplified noises in the
gain mode that dominate system’s response when the dynamic
state before the jump stays at the loss mode for a significantly
long time enough to attenuate its amplitude below a certain cri-
tical level. Developing practical device applications, this implies
that care must be taken for device design in this aspect. The
evolution-time constant T should be in a certain optimal range in
order to avoid chaotic signal behaviors and to maintain certain
encoded information carried by the dynamic states through the
time-asymmetric EEP operations.

Further investigating the optimal range of the T values for a
given EEP loop, we take a closer look at modal probability PG(t)
= |〈ϕG*|ψ(t)〉|2 and PL(t)= |〈ϕL*|ψ(t)〉|2 curves in time domain,
where |ϕG〉 and |ϕL〉 represent the gain and loss modes

Fig. 2 Complex eigenvalue spectra and dynamic expectation-value passages for encircling-an-exceptional-point operations in experiment. Wireframe
surfaces indicate measured real (a, c, e, g) and imaginary (b, d, f, h) eigenvalues on 2-dimentional (ΔC CC) plane, where ΔC is detuning capacitance and CC
is coupling capacitance. Eigenvalue surfaces for the gain modes are in light-blue skin and labeled by λG while those for the loss modes are in light-red skin
and labeled by λL. All real and imaginary eigenvalue surfaces in a–h are duplicated identical plots. Real (a, c, e, g) and imaginary (b, d, f, h) parts of
expectation-value 〈H〉 passages are indicated by black arrow curves in every panel. Encircling-direction and initial-state conditions for each panel are (a, b)
anticlockwise encircling from |ψ(0)〉= |s〉, (c, d) clockwise encircling from | ψ(0)〉= |s〉, (e, f) anticlockwise encircling from |ψ(0)〉= |a〉, and (g, h)
clockwise encircling from |ψ(0)〉= |a〉. Yellow arrows in c–f indicate portions where anti-adiabatic state-jump events take place. Evolution-time constant
T is fixed at 40ms for all cases in this figure.
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corresponding to the eigenvalues λG and λL, respectively. These
curves are inferred from the measured complex amplitudes and
are shown in Fig. 4. In Fig. 4a for the ACW EEP cases with initial-
state condition |ψ(0)〉= |s〉, the EEP operations do not involve
the anti-adiabatic state jump and it results in PG(t) ≈ 1 and
PL(t) ≈ 0 over the entire time domain from 0 to T. Significant
deviation of PG(t) from 1 and PL(t) from 0 is found only for T < 5
ms. In this case, non-adiabatic coupling is strong due to fast
parametric change beyond the standard adiabatic limit. Almost
identical property is also found for CW EEP cases starting from
|ψ(0)〉= |s〉, as shown in Fig. 4b. Therefore, in order to induce
efficient EEP operations for the adiabatic state flip, a necessary
condition is to have a sufficiently large T so that |ψ(t)〉 undergoes
time-varying system configuration well within the canonical
adiabatic limit.

For stable EEP operations involving the anti-adiabatic state
jump, on the other hand, T does not have to be excessively large.
Modal-probability curves involving the anti-adiabatic state
jump are provided in Fig. 4c, d. In these cases, the curves start at
PG(0)= 0 and PL(0)= 1, undergo abrupt transitions associated
with the anti-adiabatic state jump near t ≈ 0.4 T, and finally relax
at PG ≈ 1 and PL(t) ≈ 0 as the dynamic states settle down in the
gain-mode (|ϕG〉) passage in each case. We notice that the curves
toward t= T indicate that the dynamic states end up in a single-
mode state |ψ(T)〉 ≈ |ϕG〉 for T > 20 ms and, thereby, excessively
large T over 20 ms should not offer any remarkable advantage for
the time-asymmetric EEP operations.

Moreover, dynamic responses of the system during the anti-
adiabatic state jump become significantly instable due to noise-

induced chaotic behaviors for excessively large T as signal
strength of |ψ(t)〉 tends to enter the low signal regime where
unpredictable noises present in general. Therefore, optimal
dynamic-control speed conditions for given noise levels should be
taken into account as a crucial design requirement for practical
device applications.

In summary, we have developed a dynamic non-Hermitian
simulator using tunable electrical-circuit oscillators. The pro-
posed electrical-circuit simulator creates characteristic non-
Hermitian spectral structures with unprecedented accuracy and
enables fully time-resolved complex-amplitude measurements
for unique non-Hermitian effects such as the adiabatic state
flip, anti-adiabatic state jump, and time-asymmetric mode-
transfer operation. Notably, arbitrary EEP loops and evolution-
speed profiles are immediately realizable simply by injecting
appropriately prepared control signals VC and VD in our pro-
posed approach. As a reliable experimental test platform for
emerging non-Hermitian physics and concomitant device appli-
cations, the tunable electrical-oscillator approach takes remark-
able advantages in terms of simplicity in construction, flexibility
in configuring desired non-Hermitian Hamiltonians, high
control precision, and fully time-resolved measurement capability
without any significant interruption of the excited state. There-
fore, our proposed method is immediately applicable as a real-
time simulator for dynamic non-Hermitian properties. Further
development involving higher-order EPs or nonlinear compo-
nents is greatly of interest for advanced experimental investiga-
tion on various non-Hermitian effects and their potential
applications.

Fig. 3 Evolution passages of dynamic states in time domain. Complex expectation value 〈H〉 as a function of passage time t for different evolution-time
constant T. Encircling-direction and initial-state conditions for each panel are (a) anticlockwise encircling from | ψ(0)〉= |s〉, (b) clockwise encircling from
|ψ(0)〉= |a〉, (c) anticlockwise encircling from |ψ(0)〉= |a〉, and (d) clockwise encircling from | ψ(0)〉= |s〉. Colors of the expectation-value 〈H〉 passage
curves indicate corresponding evolution-time constant T values in a 2-to-50-ms range as represented by the horizontal color-density bar above panel
a. Gray curves in each panel indicate reference passages if a state follows the exact instantaneous eigenstates, i.e., adiabatic states, along the EEP loop.
Light-gray arrow on the bottom of panel indicates the evolution-time direction.
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Methods
Eigenvalue-measurement procedures. In our eigenvalue-measurement method,
we excite the circuit for given ΔC and CC with a time-harmonic current Iin at a
frequency fn and an amplitude of 0.5 μA injected at Oscillator 1, wait for 100 ms
until response of the circuit relaxes at a stationary state, take V2(t) at Oscillator 2 in
time domain over 10 ms, identify oscillating amplitude a2(fn) from V2(t), and
repeat this measurement cycle for a2(fn+1) at a next excitation frequency fn+1. Real
and imaginary parts, i.e., Re(λ) and Im(λ), respectively, of the eigenvalue of H are
identified by double-Lorentzian curve fitting of an acquired amplitude spectrum
{a2(fn)} for resonance-peak center frequencies and linewidths, respectively.

Circuit constants for the EEP operation. In our dynamic EEP-operation
experiment, fixed constants are AΔ= 80 pF, AC= 120 pF, and C0= 230 pF, while
p and T are taken as case-by-case variables in order to investigate corresponding
changes in the dynamic state passages. Under this condition, corresponding EEP
loop is an ellipse starting at (ΔC, CC)= (0 pF, 350 pF) and inscribing a rectangular
area within –80 pF ≤ ΔC ≤+80 pF and 110 pF ≤ CC ≤ 350 pF ranges. In addition,
we detune R2 off zero in a negative region of –200 kΩ < R2 < 0 (R2 ~ –115 kΩ in the
EEP measurements) so that excited signals in the oscillators stay acceptably high
with respect to a noise level ~ 2 mV in our laboratory environment and do not go
beyond upper and lower amplifier thresholds at +10 V and –10 V, respectively. We
note that R2 detuning in this way does not affect the established eigen-system
structure since it changes the corresponding Hamiltonian in a specific way fol-
lowing H → H′=H – igI, where g is an auxiliary gain coefficient and I is the
identity operator. The amount of eigenvalue splitting and subsequent dynamic
properties of the relative system responses are invariant for any change under this
constraint. The only consequence of the R2 detuning is overall amplitude change in
the excited signals while essential dynamics in relative signal amplitudes remain
unspoiled in principle as far as the amplification and attenuation processes in the
system operates in the linear regime.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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