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We study (fermionic) spectral functions in two holographic models, the Gubser-Rocha-linear axion
model and the linear axion model, where translational symmetry is broken by axion fields linear to the
boundary coordinates (ψ I ¼ βδIixi). Here, β corresponds to the strength of momentum relaxation. The
spectral function is computed by the fermionic Green’s function of the bulk Dirac equation, where a
fermion mass, m, and a dipole coupling, p, are introduced as input parameters. By classifying the shape of
spectral functions, we construct complete phase diagrams in (m, p, β) space for both models. We find that
two phase diagrams are similar even though their background geometries are different. This similarity
might be due to temperature effect, since our analysis has been done at small but finite temperature
(T=μ ¼ 0.1). We also find that the effect of momentum relaxation on the (spectral function) phases of two
models are similar even though the effect of momentum relaxation on the dc conductivities of two models
are very different. We suspect that this is because holographic fermion does not backreact to geometry in
our framework.
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I. INTRODUCTION

One of the important milestones in condensed matter
physics is Landau’s Fermi liquid theory because it provides
us a way to understand almost all metals, semiconductors,
superconductors, and superfluids. Since the 1980s some
exotic materials have been found, which cannot be
explained by the Fermi liquid theory, called non-Fermi
liquid. In addition to non-Fermi liquid, various phases of
matter are discovered in strongly correlated systems such as
the strange metals and high temperature superconductors
[1–3]. However, theoretical frameworks to describe them
are still not complete.
Thegauge/gravityduality (orAdS/CFTcorrespondence, or

holographic methods) have provided effective tools to study
such exotic phases in strongly correlated materials [4–6],

which states that the strongly correlated condensed
matter physics can be mapped to the classical gravity
physics. Using this method, there are many studies of
fermionic response in strongly correlated system. We refer
the reader to [7–10] for pioneering works and [3] for a
comprehensive review. In particular, studying holographic
“spectral function” could be an important test for the
application of gauge/gravity duality because it can be
compared with measurements of angle resolved photo-
emission spectroscopy (ARPES) or scanning tunneling
microscopy (STM).

A. Momentum relaxation

As well as spectral function, conductivity is one of the
most important and widely studied experimental observ-
ables. To investigate conductivity in holography, it is
important to consider holographic models with transla-
tional symmetry broken, because, with translation sym-
metry, momentum cannot be relaxed at finite density and
conductivity is simply infinite.
Depending on the method to break translational sym-

metry, holographic models can be divided into two classes:
homogeneous and inhomogeneous models. “Homogeneous”
means the spacetime geometry is only functions of the
holographic direction and independent of field theory
directions. Otherwise, models are called inhomogeneous.
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For example, homogeneous models include (i) helical
lattice [11–13], (ii) Q-lattice [14,15], (iii) linear axion
model [16–20]. In particular, in the linear axion model,
translational symmetry is broken by massless scalar fields
linear in spatial coordinates. This type of model is related to
the Stückelburg formulation of a massive gravity theory
[21–24]. Inhomogeneous models are obtained by imposing
periodic boundary conditions on a scalar field (scalar
lattice) or chemical potential (ionic lattice). See, for
pioneering works, [25,26]. The models can be also clas-
sified by symmetry breaking mechanism: (i) explicit break-
ing, (ii) spontaneous symmetry breaking for pair density
wave, charge density wave, spin density wave phases.1 For
example, for spontaneously generated inhomogeneous
lattice model see [28,29].
In inhomogeneous models, because of the periodic

boundary conditions of fields, the equations become partial
differential equations (PDE), while, in homogeneous mod-
els, the equations are ordinary differential equations (ODE).
Thus, homogeneous models are technically more tractable
than inhomogeneous models, and sometimes allow partly
analytic treatment and intuitions. In this paper, we focus on
the homogeneous models based on linear axion models.

B. Spectral function with momentum relaxation

As we mentioned, broken translation symmetry is now an
essential ingredient in holographic models, to give momen-
tum relaxation and the finite conductivity. Therefore, for
consistency, it is important to study spectral function in
holographic models with translational symmetry broken. To
the best of our knowledge, we collect all relevant literatures:
[30–37]. For the comparison of models, see Table I, where
there are three parameters: fermion mass (m), dipole
coupling (p), strength of momentum relaxation (β). The
precise meaning of m and p will be given in (2.1). The
precise meanings of β are different model by model, but the
main point is it represents the strength of momentum
relaxation.
Let us categorize the models in Table I into two classes:

homogeneous and inhomogeneous holographic models.

First, [32–34] deal with homogeneous holographic models.
It is known that the dipole coupling can open a Mott-like
gap [38–40]. The main theme of [32,34] is the effect of
momentum relaxation on the gap-generation mechanism of
the dipole coupling. [32] found that the insulating phase
opens the Mott gap much easier than metallic phase in the
Q-lattice model and [34] reports that a bigger dipole
coupling is required to open a gap at larger momentum
relaxation in the massive gravity model. Reference [33]
found that the spectral functions are suppressed at large
momentum relaxation in helical lattice model, where there
is no dipole coupling.
Next, [30,31,35–37] deal with inhomogeneous holo-

graphic models. Their main interest is the shape-change
of the Fermi surface when there is momentum relaxation
(lattice effect) along one direction, so it is kind of
anisotropic effect. References [30,31] found that the shape
of the Fermi surface is changed from circle to ellipse at
weak lattice potential, and [35–37] discovered a disappear-
ance of Fermi surface along the symmetry breaking
direction when the lattice strength increases.

C. Motivations of this paper

One of our motivations is to investigate the effect of
momentum relaxation on spectral functions more system-
atically and thoroughly in two senses.
First, as shown in Table. I the effect of momentum

relaxation has been investigated in part of parameter space
ðm;p; βÞ: (i) most works focus on m ¼ 0 case or a few
finite values ofm; (ii) for the cases with p ≠ 0 and/or β ≠ 0,
only some values are chosen for illustrative purposes;
(iii) the case with ðm ≠ 0; p ≠ 0Þ has not been considered
yet. Therefore, we will explore whole parameter range in
ðm;p; βÞ space to understand momentum relaxation effect
from weak (β ≪ 1) to strong (β ≫ 1) case for various
values of ðm;pÞ.2
Second, recently it has been shown that, in the Reissner-

Nordstrom AdS (RN-AdS) black holes geometry, there are
various phases in ðm;pÞ space in terms of spectral density
[41] in addition to the well known non-Fermi liquid or
gapless phase [8,10,42,43] and gapped phase [38–41]. New

TABLE I. Studies of holographic fermions with momentum relaxation.

References Models m p β

[33] Helical lattice m ¼ 0, m ¼ 2.5 p ¼ 0 β ≠ 0
[32] Q-lattice m ¼ 0 p ≠ 0 β ≠ 0
[34] Nonlinear massive gravity m ¼ 0 p ≠ 0 β ≠ 0
[30,31,35,36] Spontaneously or Explicit generated lattice m ¼ 0 p ¼ 0 β ≠ 0
[37] Ionic lattice m ¼ 1=4, m ¼ 3=4 p ¼ 0 β ≠ 0

1These are representative examples of striped quantum phases
in strongly correlated electron systems [27] and they are believed
to play a crucial role in strongly correlated systems, in particular,
in high temperature superconductors.

2In [32,33,35,36], it was reported that the spectral functions are
suppressed if there is momentum relaxation in limited range of
parameters (m, p, β).
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phases found in [41] include various types of gapless phase,
pseudogap phase and gapped phase. However, it has not
been studied yet how these phases are affected by momen-
tum relaxation. These phases can be enhanced/suppressed
or new phases may arise in principle. To investigate this
problem we will study the RN-AdS model with linear-
axion to impose momentum relaxation. This model is
called “linear axion model” in short [16].
Another motivation of our work is to investigate if there

is any relation between the background geometry and
spectral function, a “probe” of the background geometry.
Note that all works presented in Table I are based on the
RN-AdS geometry in the sense the geometries become RN-
AdS if β → 0. Let us call them “RN-AdS-like.” Thus, it is
important to study the phase diagram for spectral function
in another background different from RN-AdS-like models.
A good candidate is a Gubser-Rocha model [44] with linear
axion [45,46], which we will call the “Gubser-Rocha-linear
axion” model. The Gubser-Rocha-linear axion model may
be phenomenologically more appealing than RN-AdS-like
models because it has zero entropy at zero temperature
[44,45] and also exhibits linear-T-resistivity (an interesting
universal property of strange metals3) [45,48] contrary to
RN-AdS-like models.
Note that there is no work on the spectral function in the

Gubser-Rocha-linear axion model even though there is only
a few works [49–51] in the Gubser-Rocha model (no linear
axion) only for a small range in (m, p) where there is no
momentum relaxation. See Table II. In order to make a
complete comparison between the RN-AdS-like model and
the Gubser-Rocha-linear axion model and to see if there is
any relation between the spectral function and background
geometry, we will study the spectral functions in the
Gubser-Rocha-linear axion model in full (m, p, β) space.
In summary, in this paper, we study two simple holo-

graphic models with momentum relaxation: the linear
axion model [16] and the Gubser-Rocha-linear axion model
[45,46]. Both models contain axion field which breaks the
translational symmetry so renders the conductivity finite.
Both have an advantage of allowing the analytic solution.
This paper is organized as follows. In Sec. II, we review

the methods to compute the holographic spectral function.
In Sec. III, we compute the spectral function in the Gubser-
Rocha-linear axion model. In Sec. IV, we study the spectral

function in the linear axion model and compare it with the
Gubser-Rocha-linear axion model. In Sec. V, we conclude.

II. METHOD

A. Dirac equation and Green’s function

In this section, we review the fundamentals of the
fermionic spectral function in a holographic framework
[8,41,52]. We start with a fermion probe bulk action with
the fermion mass m and the dipole interaction p

Sspinor ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
iψ̄

�
ΓMDM −m −

ip
2
ΓMNFMN

�
ψ ;

ΓMN ¼ 1

2
½ΓM;ΓN �; ð2:1Þ

where ΓM and DM is the Gamma matrices (2.3) and the
covariant derivative in a curved spacetime (2.4) respec-
tively. We consider this probe fermion in the background
metric and gauge field

ds2 ¼ −gttðrÞdt2 þ grrðrÞdr2 þ gxxðrÞdx2 þ gyyðrÞdy2;
A ¼ AtðrÞdt; ð2:2Þ

where A is a U(1) gauge field with the field strength
F ¼ dA.
The Gamma matrices can be expressed in terms of the

tangent space indices as follows:

ΓM ¼ ΓaeMa ; ΓMN ¼ ΓabeMa eNb ; ð2:3Þ

where eMa is the inverse veinbein satisfying gMNðxÞ ¼
ηabeaMðxÞebMðxÞ with the flat spacetime metric ηab ¼
ð−1; 1; 1; 1Þ. Here, M, N and a, b indicate the bulk
spacetime and the tangent spacetime respectively. We will
also use underline indices to refer to tangent spacetime. In
other words,M, N ¼ ðt; r; x; yÞ and a, b ¼ ðt; r; x; yÞ. Note
that these Gamma matrices satisfy the Clifford algebra,
fΓa;Γbg ¼ 2ηab. The Dirac adjoint (ψ̄) and the covariant
derivative (DM) in (2.1) are given as

ψ̄ ¼ ψ†Γt; DM ¼ ∂M þ 1

4
ωabMΓab − iqAM; ð2:4Þ

with the spin connection ωabM determined by the torsion-
free condition dea þ ωa

b ∧ eb ¼ 0.4 In what follows, we
will choose the following veilbein

ett ¼
1ffiffiffiffiffi
gtt

p ; err ¼
1ffiffiffiffiffiffi
grr

p ; exx ¼
1ffiffiffiffiffiffi
gxx

p ; eyy ¼ 1ffiffiffiffiffiffigyy
p ;

ð2:5Þ

TABLE II. Studies of holographic fermions withoutmomentum
relaxation.

References Models m p β

[41] RN-AdS m ≠ 0 p ≠ 0 β ¼ 0
[49] Gubser-Rocha model m ¼ 0 p ¼ 0 β ¼ 0
[50,51] Gubser-Rocha model m ¼ 0 p ≠ 0 β ¼ 0

3See [47] for holographic models showing linear-T resistivity
up to high temperature. 4ωa

b is a shorthand notation for ωa
bMdx

M.
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and the nonzero components of the spin connection from
the torsionfree condition are

ωt r t ¼ −
∂r

ffiffiffiffiffi
gtt

pffiffiffiffiffiffi
grr

p ; ωx r x ¼
∂r

ffiffiffiffiffiffi
gxx

pffiffiffiffiffiffi
grr

p ; ωy r y ¼
∂r

ffiffiffiffiffiffigyy
pffiffiffiffiffiffi
grr

p :

ð2:6Þ

With the Gamma matrices in (2.3) and the covariant
derivative in (2.4), the bulk Dirac equation (2.1) reads�

ΓaeMa

�
∂M þ 1

4
ωabMΓab − iqAM

�

−m −
ip
2
ΓabeMa eNb FMN

�
ψ ¼ 0: ð2:7Þ

After putting the veilbein (2.5) and a spin connection (2.6)
into the bulk Dirac equation (2.7), we have the equation
with the ansatz5 ψ ¼ ð−ggrrÞ−1

4φ as

Γr∂rφffiffiffiffiffiffi
grr

p þ Γtð∂t − iqAtÞφffiffiffiffiffi
gtt

p þ
�
Γx∂xffiffiffiffiffiffi
gxx

p þ Γy∂yffiffiffiffiffiffigyy
p

�
φ −mφ

−
ipΓr tA0

tφffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p ¼ 0: ð2:8Þ

Since we will consider the background metric (2.2) which
has the rotational symmetry in the spatial directions, we can
set ðkx; kyÞ ¼ ðk; 0Þ without loss of generality. Therefore,
by introducing φ ¼ eiðkx−ωtÞϕ, we can rewrite the bulk
Dirac equation (2.8) in the Fourier space:ffiffiffiffiffiffi

gxx
grr

r
ðΓr∂r −m

ffiffiffiffiffiffi
grr

p Þϕþ ð−iuΓt þ ikΓxÞϕ

− ip
ffiffiffiffiffiffiffiffiffiffiffi
gxx
gttgrr

r
Γr tA0

tϕ ¼ 0; ð2:9Þ

where

u ¼
ffiffiffiffiffiffi
gxx
gtt

r
ðωþ qAtÞ: ð2:10Þ

To study the bulk Dirac equation, it is convenient to use

ϕ ¼ ðϕþ
ϕ−

Þ with the following Gamma matrices [8,52]:

Γr ¼
�
1 0

0 −1

�
; Γt ¼

�
0 iσ2
iσ2 0

�
;

Γx ¼
�

0 σ1

σ1 0

�
; Γy ¼

�
0 σ3

σ3 0

�
; ð2:11Þ

where σI¼1;2;3 is the Pauli matrices. By (2.11), the equation
of motion (2.9) can be further simplified as

ffiffiffiffiffiffi
gxx
grr

r
ð∂r ∓ m

ffiffiffiffiffiffi
grr

p Þϕ�

�
�
ikσ1 þ uσ2 � pσ2

ffiffiffiffiffiffiffiffiffiffiffi
gxx
gttgrr

r
A0
t

�
ϕ∓ ¼ 0: ð2:12Þ

In addition, by introducing ϕ� ≔ ð y�z� Þ, the above equation
of motion becomes two decoupled equations:

ffiffiffiffiffiffi
gxx
grr

r
ξ0� þ 2m

ffiffiffiffiffiffi
gxx

p
ξ� −

�
u − p

ffiffiffiffiffiffiffiffiffiffiffi
gxx
gttgrr

r
A0
t ∓ k

�

−
�
uþ p

ffiffiffiffiffiffiffiffiffiffiffi
gxx
gttgrr

r
A0
t � k

�
ξ2� ¼ 0; ð2:13Þ

where

ξþ ≔ i
y−
zþ

; ξ− ≔ −i
z−
yþ

: ð2:14Þ

This decoupled equations (2.13) is called the flow equation
and it can be solved analytically near the boundary
(r → ∞):

�
y−
zþ

�
¼

�
D1r−m þ Ã1rm−1

A1rm þ D̃1r−m−1

�
;

�
z−
yþ

�
¼

�
D2r−m þ Ã2rm−1

A2rm þ D̃2r−m−1

�
; ð2:15Þ

with the coefficients

Ã1 ¼
iðk − ω − qμÞ

2m − 1
A1; D̃1 ¼

iðkþ ωþ qμÞ
2mþ 1

D1;

Ã2 ¼
iðkþ ωþ qμÞ

2m − 1
A2; D̃2 ¼

iðk − ω − qμÞ
2mþ 1

D2;

ð2:16Þ

where μ is the leading term of the gauge field, interpreted as
a chemical potential in holography. Note that the coeffi-
cients ÃI¼1;2 and D̃I¼1;2 in (2.15) are determined by AI¼1;2

and DI¼1;2 through (2.16). In other words, ðA1; D1Þ and
ðA2; D2Þ in (2.15) can be the two set of independent
coefficients.
Now we will formulate the retarded Green’s function

with a set of coefficients (AI¼1;2, DI¼1;2). By following the
prescription given in [8,10,39,41,50,52,53], if the fermion
mass is in the range, −1=2 < m < 1=2 [54,55], we can
develop the Green’s function in two ways. One is called the
standard quantization, and the other is the alternative
quantization. In the standard quantization, AI and DI are
considered as the source and the corresponding response,
respectively. On the other hand, in the alternative quanti-
zation, the role of AI and DI is changed. i.e., DI is the
source term and AI is the response term.5This ansatz makes the spin connection removed.
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In the standard quantization, the retarded Green’s function is given by

GRðω; k;m;pÞ ¼ diag

�
i
D1

A1

;−i
D2

A2

�
≔ diagðGRþ; GR

−Þ: ð2:17Þ

By using (2.14), (2.15), and (2.16), the Green’s function (2.17) can be expressed as

GR
�ðω; k;m;pÞ ¼ 2mþ 1

2m − 1

ð�k − qμ − ωÞr2m þ ð2m − 1Þr2mþ1ξ�ðω; k;m;pÞ
ð2mþ 1Þr − ð�kþ qμþ ωÞξ�ðω; k;m;pÞ ; ð2:18Þ

which reduce to GR
�ðω; k;m;pÞ ¼ r2mξ� at the boundary. Now we can construct the spectral function which is defined as

the imaginary part of the retarded Green’s function:

Aðω; k;m;pÞ ≔ Im½TrGRðω; k;m;pÞ�: ð2:19Þ

In the alternative quantization, the retarded Green’s function can be written as

G̃Rðω; k;m;pÞ ¼ diag

�
i
A1

D1

;−i
A2

D2

�
≔ diagðG̃Rþ; G̃R

−Þ: ð2:20Þ

Similarly to (2.18), we have

G̃R
�ðω; k;m;pÞ ¼ −2mþ 1

−2m − 1

ð∓k − qμ − ωÞr−2m þ ð−2m − 1Þr−2mþ1ξ̃�ðω; k;m;pÞ
ð−2mþ 1Þr − ð∓kþ qμþ ωÞξ̃�ðω; k;m;pÞ ; ð2:21Þ

where ξ̃�ðω; k;m;pÞ ≔ −1=ξ�ðω; k;m;pÞ and they re-
duce to G̃R

�ðω; k;m;pÞ ¼ r−2mξ̃� at the boundary.
It can be shown that there are the following relations

between the retarded Green’s function in the standard
quantization and in the alternative quantization:

GR
�ðω; k;m;pÞ ¼ −1

G̃R
�ðω; k;m;pÞ ;

GR
�ðω;−k;m;pÞ ¼ GR∓ðω; k;m;pÞ; ð2:22Þ

G̃R
�ðω; k;m;pÞ ¼ GR

�ðω;−k;−m;−pÞ
¼ GR∓ðω; k;−m;−pÞ; ð2:23Þ

where ξ̃�ðω; k;m;pÞ ¼ ξ�ðω;−k;−m;−pÞ is used.
Therefore, the Green’s function with the negative fer-

mion mass in the standard quantization can be seen as the
Green’s function with the positive fermion mass in the
alternative quantization. It has been shown that the holo-
graphic spectral function A in (2.19) behaves as A ∼ ω2m in
the high frequency limit in the standard quantization [56]. It
means that A ∼ ω−2m in the alternative quantization. To
have decreasing spectral functions at high frequencies, we
will consider the positive fermion mass in the alternative
quantization framework: G̃R

�ðω; k;m;pÞ.

III. GUBSER-ROCHA-LINEAR AXION MODEL

Let us first introduce the Gubser-Rocha-linear axion
model. [45,46,57] This model is an extended version of the
Gubser-Rocha model [44] by adding “axion” fields. The
action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

4
eϕF2 −

3

2
ð∂ϕÞ2 þ 6

L2
coshϕ

−
1

2

X2
I¼1

ð∂ψ IÞ2
�
; ð3:1Þ

which consists of four fields: metric gμν, U(1) gauge field
Aμ and two scalar fields: “dilaton” field ϕ and axion field
ψ I¼1;2. L is the AdS radius. We will call this model the
Gubser-Rocha-linear axion model, which can be consid-
ered as a minimum holographic model for condensed
matter systems in the following sense. The finite temper-
ature and chemical potential (or density) are holographi-
cally related to the Hawking temperature of a black hole
and the temporal gauge field At at the AdS boundary. The
dilaton field with a specific potential [coshðϕÞ] is intro-
duced to make entropy vanish at zero temperature: entropy
density is linearly proportional to the temperature [44,45].
The axion field breaks the translational symmetry so it
renders the conductivity finite [16,45,46,48,57].
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The action (3.1) yields the equations of motion

Rμν −
1

2
gμν

�
R −

1

4
eϕF2 −

3

2
ð∂ϕÞ2 þ 6

L2
coshϕ −

1

2

X2
I¼1

ð∂ψ IÞ2
�
¼ 1

2
eϕFμδFν

δ þ 3

2
∂μϕ∂νϕþ 1

2

X2
I¼1

ð∂μψ I∂νψ IÞ;

∇2ϕ −
1

12
eϕF2 þ 2

L2
sinhðϕÞ ¼ 0; ∇μðeϕFμνÞ ¼ 0; ∇2ψ I ¼ 0; ð3:2Þ

which are satisfied by the following solution:

ds2 ¼ −gttdt2 þ grrdr2 þ gxxdx2 þ gyydy2

¼ −
r̃2gðr̃Þhðr̃Þ

L2
dt̃2 þ L2

r̃2gðr̃Þhðr̃Þ dr̃
2 þ r̃2gðr̃Þ

L2
dx̃2 þ r̃2gðr̃Þ

L2
dỹ2;

hðr̃Þ ¼ 1 −
L4β̃2

2ð1þ r̃Þ2 −
ð1þ r̃hÞ3
ð1þ r̃Þ3

�
1 −

L4β̃2

2ð1þ r̃hÞ2
�
; gðr̃Þ ¼

�
1þ 1

r̃

�3
2

;

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ r̃hÞ

L2

�
1 −

L4β̃2

2ð1þ r̃hÞ2
�s �

1 −
1þ r̃h
1þ r̃

�
dt̃;

ϕ ¼ 1

3
logðgðr̃ÞÞ; ψ1 ¼ β̃ x̃; ψ2 ¼ β̃ ỹ; ð3:3Þ

where

r̃ ≔
r
Q
; t̃ ≔ tQ; x̃ ≔ xQ; ỹ ≔ yQ; β̃ ≔

β

Q
: ð3:4Þ

Here, r̃h is the black hole horizon radius satisfying hðr̃hÞ ¼
0 and β̃ is the strength of momentum relaxation or trans-
lational symmetry breaking.6 For simplicity, we will set
L ¼ 1 from here.
The temperature and chemical potential read, from (3.3),

T ¼ g0tt
4π

ffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p
����
rh

¼ Q
ffiffiffiffiffi
r̃h

p ð6ð1þ r̃hÞ2 − β̃2Þ
8πð1þ r̃hÞ3=2

≕QT̃;

ð3:5Þ

μ ¼ Atðr → ∞Þ ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ r̃hÞ

�
1 −

β̃2

2ð1þ r̃hÞ2
�s
≕Qμ̃;

ð3:6Þ

where T̃ ≔ T=Q and μ̃ ≔ μ=Q are used in the last
equalities. In this paper, we will explore the spectral
function at fixed chemical potential. For this purpose we
define

T̄ ≔
T
μ
¼ T̃

μ̃
¼

ffiffiffiffiffi
r̃h

p ð6ð1þ r̃hÞ2 − β̃2Þ
4πð1þ r̃hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1þ r̃hÞ2 − 6β̃2

q ; ð3:7Þ

β̄ ≔
β

μ
¼ β̃

μ̃
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ r̃hÞβ̃2

3ð2ð1þ r̃hÞ2 − β̃2Þ

s
: ð3:8Þ

By using these relations, the background solution (3.3),
expressed in terms of (r̃h, β̃), can be determined by (T̄, β̄).
The spectral function (2.19) with (2.21) in the back-

ground (3.3) can be expressed as

Aðω̃; k̃;m;pÞ ≔ Im½TrG̃Rðω̃; k̃;m;pÞ�;

G̃R
�ðω̃; k̃;m;pÞ ¼ −2mþ 1

−2m − 1

ð∓ k̃ − qμ̃ − ω̃Þr̃−2m þ ð−2m − 1Þr̃−2mþ1ξ̃�ðω̃; k̃;m;pÞ
ð−2mþ 1Þr̃ − ð∓ k̃þ qμ̃þ ω̃Þξ̃�ðω̃; k̃;m;pÞ ; ð3:9Þ

where ω̃ ≔ ω=Q and k̃ ≔ k=Q are used. Thus, the spectral function at fixed chemical potential reads

6Note that the background solution (3.3) corresponds to the case with [46] by the transformation (3.4).
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Āðω̄; k̄;m;pÞ ≔ Aðω̃; k̃;m;pÞ
μ̃−2m

; ð3:10Þ

where ω̄ ≔ ω=μ ¼ ω̃=μ̃ and k̄ ≔ k=μ ¼ k̃=μ̃.
In summary, we have five parameters: (m, p, q) from the

probe fermion action (2.1) and (T̄, β̄) from the background
action (3.3). In this paper we will set q ¼ 1

7 and T̄ ¼ 1=10
and investigate various phases inferred from the fermionic
spectral function Āðω̄; k̄Þ in terms of (m, p, β̄). First, we
study phases without momentum relaxation, i.e., β̄ ¼ 0, in
Sec. III A. Next, we will see how momentum relaxations
affect those phases in Sec. III B.

A. Zero momentum relaxation

The phase structure by the spectral function in the space
of ðm;pÞ was first investigated in [41], where the RN-AdS
model was considered. Here, we closely follow the method
of [41], but in the Gubser-Rocha-linear axion model. This
model is phenomenologically more appealing since it has

zero entropy at zero temperature and exhibits linear-T
resistivity in low and high temperature.
We display the typical spectral function of our model, the

Gubser-Rocha-linear axion model, in Fig. 1 to illustrate
various phases of the holographic fermion. The spectral
function in Fig. 1 can be understood as a cross section of
Fig. 2 at a fixed momentum k̄c. The k̄c is the Fermi
momentum (k̄F) if there is a clear Fermi surface. For
example, see Fig. 2(b) and 2(c), where k̄F ¼ 3.3, 1.45
respectively. We will call this phase the “gapless phase.” If
there is no clear Fermi surface, we choose to use k̄c as the
value when the dispersion curve is separated from ω̄ ¼ 0

line. For example, see Fig. 2(a), where k̄F ¼ 3.3, which is
taken from Fig. 2(b). Here, from Fig. 2(b) to Fig. 2(a) we
changes m with a fixed p. We call this phase “pseudogap
phase” or “gapped phase”: if the spectral function is
nonzero at ω̄ ¼ 0, it is a pseudogap phase [Fig. 1(e)].
Otherwise, it is a gapped phase [Fig. 1(f)]. Note that there
are two peaks at finite ω̄ in these phases.
The gapless phase is further divided as four subclasses:

Fermi liquid like (FL), bad metal (BM), bad metal prime
(BM’), half-metal (hM). FL [Fig. 1(a)] has a single sharp
and tall peak at the zero frequency. Because the spectral
function has a finite peak, not a delta function peak we call
it Fermi liquid like. BM [Fig. 1(d)] also has a peak at zero ω̄
in the spectral function. However it has a broader peak
compared with FL and goes to zero very slowly as ω̄
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FIG. 1. Typical fermion phases without momentum relaxation. (a) FL with (m ¼ 0.45, p ¼ 0.5, k̄c ¼ 0.95), (b) BM’ with (m ¼ 0.40,
p ¼ 3.3, k̄c ¼ 1.63), (c) hM with (m ¼ 0.45, p ¼ 7, k̄c ¼ 1.45), (d) BM with (m ¼ 0.10, p ¼ 0.5, k̄c ¼ 0.62), (e) PG with (m ¼ 0.10,
p ¼ 2, k̄c ¼ 1.2) (f) G(Gapped phase) with (m ¼ 0.20, p ¼ 7, k̄c ¼ 3.3). The parameters (m, p) for these plots are shown as blue dots in
Fig. 3(b).

7If we increase qwe find that there are multiple Fermi surfaces
similarly to [8]. We chose q ¼ 1 not to have multiple Fermi
surfaces and to focus on the effect of β on the spectral function in
the simplest setup with a single Fermi surface. At the multiple
Fermi surfaces, it is possible that the β and p may have different
effect on the spectral function. We thank the referee for pointing
out this possibility.

HOLOGRAPHIC SPECTRAL FUNCTIONS WITH MOMENTUM … PHYS. REV. D 102, 026017 (2020)

026017-7



increases. BM’ and hM have two peaks: one at ω̄ ¼ 0 and
the other at finite ω̄. If the spectral function is nonzero
between two peaks, we call it BM’ [Fig. 1(b)] while if it is
zero, we call it hM [Fig. 1(c)].
To make a phase diagram in the ðm;pÞ space, (i) we

choose one pair of ðm;pÞ; (ii) draw the density plot such as
Fig. 2; (iii) make a spectral function plot at k̄ ¼ k̄c such as
Fig. 1; (iv) identify its phase according to the classification
in Fig. 1. Our final result is shown in Fig. 3. For example,
the blue points in Fig. 3 correspond to the plots in Fig. 1.
For the classification of the phases in Fig. 1 and Fig. 3, we
followed the conventions in [41], where the same analysis
has been done for the AdS-RN black hole case. Our result,
Fig. 3, is qualitatively the same as the RN-AdS case in [41].
However, we emphasize that the several “phases” we
defined here are qualitative, so the boundaries between
them are not clearly determined. The purpose of phase
diagram is to point out the very existence of the different
features in spectral functions as shown in Fig. 3, not the
precise identification of the phase boundaries. Thus, the

location and the shape of the phase boundaries in this paper
should be taken only as rough guide lines.
For a fixed m, the dipole coupling has two effects. For

m > 0.35 it generates new metallic phases: BM’ and hM,
whilem < 0.35 it generates a gap. For a largerm, a larger p
is required to open a gap. This gap generation is smooth via
a pseudogap phase. This supports the claim in [41]: the
existence of the smooth transition region between gapless
phase and gapped phase is a general feature of strongly
coupled system. Coming back to Fig. 1 with the under-
standing of Fig. 3 we note that: as p increases, the spectral
function develops another peak while the original peak first
becomes broad but again becomes sharper. For a fixed p, as
m increases, the spectral function tends to be sharper and
align its center to ω̄ ¼ 0, which means gapless.

B. Finite momentum relaxation

Next, we investigate the effect of momentum relaxa-
tion on the spectral function. For illustrative purpose, we
choose nine parameter points out of m ¼ ð0; 0.2; 0.4Þ and
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FIG. 2. The density plot of the spectral function at p ¼ 7.
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FIG. 3. Phase diagram in (m, p) space without momentum relaxation.
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p ¼ ð0; 3; 6Þ, which are marked as green letters ðaÞ; ðbÞ;
…ðiÞ in Fig. 3(b). As momentum relaxation becomes
stronger the spectral functions are changed as shown
in Fig. 4.
The top row is for m ¼ 0.4, the middle row is for

m ¼ 0.2, and the bottom one is for m ¼ 0. The left column
is for p ¼ 0, the middle column is for p ¼ 3, and the right
one is for p ¼ 6. The colors of the curves represent the
strength of momentum relaxation, i.e., β̄ ¼ 0, 1, 3, 7, 10,
100 (red, orange, green, blue, purple, dashed black).

Here, a new phase, null-phase (NP) is introduced for
spectral functions at large momentum relaxation. This is an
almost featureless phase. To quantify NP we have defined

η ≔ ĀHighestðω̄Þ − Āðjω̄j ≫ 1Þ; ð3:11Þ

where ĀHighestðω̄Þ is the highest value of the spectral
function.8 The NP is identified as a phase with η < 1.
As momentum relaxation becomes strong the phase at

every point in Fig. 4 changes as follows:

ðaÞ∶ FL → NP; ðbÞ∶ BM’ → BM → NP; ðCÞ∶ hM → BM’ → BM → NP;

ðdÞ∶ BM → NP; ðeÞ∶ PG → BM → NP; ðfÞ∶ G → BM’ → NP;

ðGÞ∶ BM → NP; ðhÞ∶ PG → NP; ðiÞ∶ G → PG → NP: ð3:12Þ

FIG. 4. Spectral functions at finite momentum relaxation. Different color refers to different momentum relaxation: β̄ ¼ 0, 1, 3, 7, 10,
100 (red, orange, green, blue, purple, dashed black).

8For the numerical calculation, we evaluate Āðjω̄j ≫ 1Þ at jω̄j ¼ 10.
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In this way, we can identify all phases in three dimensional
space ðm;p; β̄Þ. For example, see Fig. 5, where to make our
presentation clear we focus on some boundary cross
sections such as p ¼ 0, 6 and β̄ ¼ 100. For other cross
sections such as p ¼ 3 see Fig. 6.9

Note that, in Fig. 5, the bounded red region corresponds
to the gapped phase. The phase NP including strong
momentum relaxation limit (β̄ ¼ 100) is plotted in green
color. As momentum relaxation becomes stronger, the
spectral function is suppressed in the whole range of
(m, p) and the various phases become featureless (NP)
at strong momentum relaxation.
As a cross-check of our phase diagram for gapped phases

in Fig. 6, we have also computed the density of state Āðω̄Þ,
which is defined as

FIG. 5. Phase diagram in (m, p, β̄) space.
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FIG. 6. Phase diagram in (m, β̄) space. The location and the shape of the phase boundaries should be taken only as rough guide lines.
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FIG. 7. Density of state at ω̄ ¼ 0: the red is for β̄ ¼ 0 and the
orange is for β̄ ¼ 1; (m ¼ 0).9If we put Fig. 6(b) to Fig. 5, it will be too complicated.
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Āðω̄Þ ≔
Z

dk̄ Āðω̄; k̄Þ: ð3:13Þ

The gapped phase is identified by the vanishing density of
state at ω̄ ¼ 0 i.e., Āð0Þ ¼ 0 [34,39]. For example, for
m ¼ 0, we show Āð0Þ as a function of p for β̄ ¼ 0, 1 in
Fig. 7. Āð0Þ becomes zero10 from p ¼ 4 for β̄ ¼ 0 and
p ¼ 6 for β̄ ¼ 1. These agree with the values in Fig. 5. We
have also confirmed this agreement for different values
of m.

IV. LINEAR AXION MODEL AND COMPARISON

In this section, we study a 4-dimensional Einstein-
Maxwell-axion model so called linear axion model [16].
It can be seen as an extension of [41] to finite momentum
relaxation cases. The action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
− F2 −

1

2

X2
I¼1

ð∂ψ IÞ2
�
; ð4:1Þ

which consists of the metric gμν, U(1) gauge field Aμ, and
axion fields ψ I¼1;2. Classical solutions are

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ
r2

L2
ðdx2 þ dy2Þ;

fðrÞ ¼ r2

L2

�
1þL2μ2r2h

r4
−
L4β2

2r2
−
r3h
r3

�
1þL2μ2

r2h
−
L4β2

2r2h

��
;

A¼ μ

�
1−

rh
r

�
dt; ψ1 ¼ βx; ψ2 ¼ βy; ð4:2Þ

where μ is the chemical potential and β is the strength
of momentum relaxation. rh is the black hole horizon,
which can be expressed, using the Hawking temperature
T ¼ f0ðrhÞ=4π, as

rh ¼
L2

6
ð4πT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6β2 þ 16π2T2 þ 12L−2μ2

q
Þ: ð4:3Þ

As in the Gubser-Rocha-linear axion model, we inves-
tigate the spectral functions at fixed chemical potential:
(T=μ; β=μ). In this background we consider the fermion
action in the same way as in Sec. II.
For a parallel analysis with the previous Sec. III, we

display the spectral functions form ¼ ð0; 0.2; 0.4Þ and p ¼
ð0; 3; 6Þ in Fig. 10. As momentum relaxation becomes
strong, phases are changed as

ðaÞ∶ FL → BM → NP; ðbÞ∶ BM’ → BM → NP; ðcÞ∶ hM → BM’ → BM → NP;

ðdÞ∶ BM → NP; ðeÞ∶ PG → NP; ðfÞ∶ G → BM’ → BM → NP;

ðgÞ∶ BM → NP; ðhÞ∶ PG → NP; ðiÞ∶ G → PG → NP: ð4:4Þ

FIG. 8. Phase diagram in (m, p, β̄) space.

10For the numerical calculation, we considered Āðω̄ ¼ 0Þ ∼ 10−2 is zero.
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Comparing (4.4) with (3.12), we conclude that the linear
axion model shows the qualitatively same behavior as
the Gubser-Rocha-linear axion model when momentum

relaxation becomes stronger: (i) the spectral function
is suppressed; (ii) all fermionic phases become NP. Sim-
ilarly to Fig. 5, we can also identify all phases in three
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FIG. 9. Phase diagram in (m, β̄) space. The location and the shape of the phase boundaries should be taken only as rough guide lines.

FIG. 10. Spectral functions at finite momentum relaxation. Different color refers to different momentum relaxation: β̄ ¼ 0, 1, 3, 7, 10,
100 (red, orange, green, blue, purple, dashed black).
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dimensional space ðm;p; β̄Þ. See Fig. 8 and some of its
cross sections in Fig. 9.
Let us finish this section by making comments on three

common11 features both in the Gubser-Rocha-linear axion
model and the linear axion model.
Mass effect: Sharpening spectral functions For a given

dipole coupling and momentum relaxation, the spectral
functions of both models tend to be sharper as the fermion
mass increases. This seems related to the fact that when the
fermion mass is m ¼ 0.5, which is the maximum mass
allowed by the unitary bound, the conformal dimension of
the dual operator becomes unity, which is of a free fermion.
If p ¼ β ¼ 0, the spectral function becomes delta-function
like. As m decreases, the spectral function becomes
broader. For example, see the red curves in the left column

of Fig. 4 and Fig. 10. It is a general feature also for p ≠ 0 or
β ≠ 0 in gapless phase.12

Momentum relaxation effect: Broadening spectral
functions In general the spectral function becomes more
suppressed and broader as momentum relaxation increases.
However, in the intermediate p regime (approximately
1 < p < 5), the broadening effect of β is not manifest
due to finite p and m effect. It can be seen in Fig. 4 and
Fig. 10 but, to display it more clearly, we make plots of
spectral functions as function of k̄ at ω̄ ¼ 0 at m ¼ 0.4 in
Fig. 11. Especially, (b)(e) of Fig. 11 show different
behaviors of spectral function with increasing β̄. First, it
increases up to certain value of β̄ (e.g., Green line), and then
decreases.
Dipole coupling effect: New peak or gap-generation As

the dipole coupling increases, a new peak at finite fre-
quency is generated. If mass is big (close to m ¼ 0.5) the
original peak at ω̄ ¼ 0 still remains (so metallic) while if

FIG. 11. Spectral function of both models at ω̄ ¼ 0 form ¼ 0.4. Different colors represent various momentum relaxation: β̄ ¼ 0, 1, 3,
7, 10, 100 (red, orange, green, blue, purple, black).

11There are some model-dependent features on the phase
diagram. For instance, comparing Fig. 6 and Fig. 9, we see that
the detailed phase separation lines from two holographic models
are different even though overall picture is similar. However, we
do not find any physically important properties on this difference.
We thank the referee for pointing out this issue.

12In pseudogap and gapped phase, the definition of spectral
function is ambiguous because there is no Fermi momentum as
explained in Sec. III A.
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mass is small (close tom ¼ 0) the original peak at ω̄ ¼ 0 is
shifted to the negative values (so pseudogap or gap).

V. CONCLUSION

In this paper, we have investigated the holographic
spectral function with momentum relaxation in two
holographic models: the Gubser-Rocha-linear axion model
and the linear axion model. We have computed holographic
spectral functions by choosing several values of three
parameters: (i) fermion mass (m), (ii) dipole coupling
(p), (iii) the strength of momentum relaxation (β).
Depending on the shape of spectral functions, we classify
the phases as: Fermi liquid like (FL), bad metal prime
(BM’), bad metal (BM), pseudogap (PG), gapped (G) as
shown in Fig. 1. By this classification, we may construct a
phase diagram in (m, p, β) space.
We find that both models show similar phase diagram in

ðm;p; βÞ space. See Fig. 5 and Fig. 8. In both models, a
larger fermion mass (close to m ¼ 0.5) makes the spectral
function sharper while a larger momentum relaxation
makes the spectral function broader. A dipole coupling
generates a new pick at finite frequency and supports
pseudogap or gapped phase for small mass. More common
effects of the parameters are summarized in Table III and
Table IV.
It was noted that if m ¼ 0.5, the conformal dimension of

the dual operator becomes 1, which is of a free fermion and
the spectral function becomes delta-function like. As
momentum relaxation is increased the spectral functions
become broader. For example, we show the change of the
width as functions of momentum relaxation in Fig. 12,
where we choose m ¼ 0.498 for numerical stability instead
of m ¼ 0.5. The red dots are for the Gubser-Rocha-linear
axion model and the gray fitting curve is: ∼0.0001þ
0.0004β̄2. The blue dots are for the linear axion model and
the gray fitting curve is:∼0.00035þ 0.000095β̄2.5. In weak
impurity scattering process in the Fermi liquid theory, the
width of the spectral function can be related to the inverse
of relaxation time 1=τ which is proportional to the impurity

density, nimp. Even though the Fermi-liquid theory is not
applicable, just to have an intuition, we may compare
our results with the Fermi liquid theory. Then, we may
say the effective impurity density is nimp ∼ β2 for the
Gubser-Rocha-linear axion model and nimp ∼ β5=2 for the
linear axion model.
It will be interesting to see if there is any relation

between holographic spectral function and holographic
conductivity, because they are intimately related in field
theory sides. For this comparison let us briefly review dc
conductivities in two models we have considered.
For the Gubser-Rocha-linear axion model and the

linear axion model, dc electric conductivities are given
by [16,48]

σDC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r̃h

s �
1þ 1

β̄2

�
;

ðGubser-Rocha-linear axion modelÞ ð5:1Þ

σDC ¼ 1þ 1

β̄2
; ðLinear axion modelÞ ð5:2Þ

where r̃h ≔ rh=Q and β̄ ≔ β=μ. In particular, for strong
momentum relaxation (β̄ ≫ 1), the formula becomes

TABLE III. Spectral function without momentum relaxation (β ¼ 0).

Increasing m Increasing p

- Gapped phase becomes gapless phase. - New gapless phases appears for large m.
- Larger p is required to open the gap. - Gapped phase is generated for small m.

TABLE IV. Spectral function withmomentum relaxation β ≠ 0.

Increasing β

- The spectral function is suppressed in the whole range of (m, p).
- The various phases become featureless (NP) at strong
momentum relaxation.
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FIG. 12. The width of the spectral functions vs momentum
relaxation. The red dots (∼0.0001þ 0.0004β̄2) are for the
Gubser-Rocha-linear axion model. The blue dots (∼0.00035þ
0.000095β̄2.5) are for the linear axion model.
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σDC ∼

ffiffiffiffiffi
1

r̃h

s
∼

β̄

2
ffiffiffi
2

p
πT̄

;

ðGubser-Rocha-linear axion modelÞ ð5:3Þ

σDC ∼ 1; ðLinear axion modelÞ ð5:4Þ

since

r̃h ∼
8π2T̄2

β̄2
; ðβ̄ ≫ 1Þ ð5:5Þ

for the Gubser-Rocha-linear axion model [48]. At a given
temperature T̄ ¼ 1=10, the dc electric conductivities for
two models are plotted in Fig. 13. The dashed black line in
the figure is (5.3).
Note that, as momentum relaxation increases, the dc

conductivity increases in the Gubser-Rocha-linear axion
model while decreases and saturates to unity in the linear
axion model. Because of this difference in conductivity we
may expect that fermionic spectral functions of two models
may behave differently as we increase momentum relax-
ation. However, our results show that the effect of momen-
tum relaxation is the same for both models: it simply
suppresses spectral function. This difference may be due to
the fact that holographic fermion does not backreact to
geometry while gauge fields used in computing conduc-
tivity backreact to geometry. It seems that it is the universal
feature13 that the holographic spectral function is more
suppressed as momentum relaxation becomes stronger. We

do not have a good understanding on this universality but
we suspect that it may come from the geometric univer-
sality at large momentum relaxation. We leave this inves-
tigation as a future work.
We also may expect that the phase diagram of two

models can be different at zero momentum relaxation at
zero temperature because their IR geometries are different.
It turns out that at low temperature, T=μ ¼ 0.1, the phase
diagrams of both models are qualitatively the same. See the
bottom of Fig. 5 and Fig. 8. However, it is possible that they
become different in the zero temperature limit.
It will be interesting to find how our holographic results

can be related to experimental results in condensed matter
systems such as correlated electron systems with disorder
[58], disorder induced polaron [59] and impurity-induced
states in unconventional superconductors [60]. Moreover, it
will be interesting to study how our results can be related to
other holographic quantities such as quasinormal modes of
the fermionic Green’s function [33] and ac conductivity
[61–64]. In this paper, we consider a dipole coupling as an
interaction term, but it is also interesting to study the
momentum relaxation effect on other types of interaction
such as a Majorana coupling [65]. Another future direction
of this paper is to investigate the temperature dependence of
spectral functions in ðm;p; βÞ space.14 We leave these
subjects as future works.
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APPENDIX: MOTT TRANSITION: COMPARISON
WITH HUBBARD MODEL

In this paper, we show that the various phases of spectral
function can appear in holographic models: four gapless
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FIG. 13. The DC electric conductivity for the Gubser-Rocha-
linear axion model (red line) and the linear axion model (blue
line). The red and blue solid lines represent (5.1) and (5.2),
respectively. The dashed black line is (5.3), the Gubser-Rocha-
linear axion model in β̄ð¼ β=μÞ ≫ 1 limit. The inset figure shows
that σDC of the linear axion model approaches to 1 with
increasing β̄.

13It has been shown that the spectral functions are suppressed
at finite momentum relaxation in limited range of parameters
(m, p) also in different models [32,33,35–37].

14Reference [66] studied the temperature dependence of
spectral function in ðm ¼ 0; p ¼ 0; βÞ space and found the phase
transition between Fermi liquid phase and non-Fermi liquid
phase.
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phases, pseudogap phase, and gapped phase. Thus, one
may ask what physics can be achieved using these phases
or the possibility for comparing our holographic results
with other theoretical studies of spectral function.
One of the possible physics that can be compared

with would be Mott transition (a metal-insulator transi-
tion) because the holographic spectral function can show
both gapless phase and gapped phase. So, we attempt to
compare our holographic results with the study of Hubbard
model, a well-known study of the physics of Mott
transition.
For the purpose of the comparison with Hubbard model,

it is enough to consider the phases of spectral function in
the absence of momentum relaxation (β), since the features
of spectral function is clear for small β. It was first

performed for the RN black hole geometry in [41].
Here, we do it for the Gubser-Rocha model, which
is phenomenologically more appealing. Following the
method introduced in [41], two concepts are needed
to describe Mott physics in holography15: (i) Embedding;
(ii) Symmetrized spectral function.

1. Embedding

Hubbard model essentially has one parameter capturing
the interplay between hopping and on-site interaction.

FIG. 15. Single site DMFT result [70] vs linear embedding.
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FIG. 14. Two types of embeddings in phase diagram. The linear embedding (blue solid line) resembles the single
site dynamical mean field theory(DMFT) and the curved embedding (red solid line) is analogous to two site DMFT.

15In [41], authors also compare the holographic results with
some experimental data of Vanadium Oxide materials or the x-ray
absorption spectrum data. Here, we only focus on the Mott
physics.
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On the other hand, our holographic theory contains two
parameters m and p. Thus, we need to take a path in phase
space (m, p) to match the number of parameters between
theories. This path-selecting procedure is called embedding
[41]. In this paper, we consider two types of embedding for
Mott transition, which is connecting Fermi liquid like phase
and gapped phase: linear embedding (a blue solid line in
Fig. 14), curved embedding (a red solid line in Fig. 14).

2. Symmetrized spectral function

In addition to the embedding, we need to symmetrize
holographic spectral function for the comparison with
Hubbard model. Unlike the spectral functions in Hubbard
model, the holographic spectral functions are asymmetric
with respect to the frequency unless the phase of the spectral
function is Fermi liquid like. The symmetrization is also
considered in [67–69].16
With the embedding and symmetrization, we find some

similarities and differences between holographic results
and results from Hubbard model.

3. Single site DMFT result for Hubbard model

For the linear embedding, we find following features
during the transition from Fermi liquid like (FL) to gapped
phase (G). See Fig. 15(b): (i) the three peak structure
appears in gapless phase; (ii) the spectral function does not
have the pseudogap phase; (iii) as p increases, the degree of

freedom transfers from the central peak to other peaks so
that the central peak becomes thinner until the spectral
function develops the gapped phase. These three features
resemble characteristic features of the single site dynamical
mean field theory (DMFT) results for Hubbard model [70]
in Fig. 15(a). There is also a qualitative difference. In
DMFT case, for the gap to be created the central peak
disappears while, in holographic case, the central peak
is split.

4. Two site DMFT result for Hubbard model

For the curved embedding, the transition in holography
has a resemblance to the two site DMFT result of Hubbard
model [71]. See Fig. 16(b). The curved embedding shows
the following features different from the linear embedding:
(i) being divided into several other peaks, the central peak is
suppressed quickly; (ii) pseudogap (PG) phase is included
during the transition; (iii) the gap can be created with the
zero size. These features from holography are similar to the
characteristic properties of the two site DMFT result of
Hubbard model in Fig. 16(a). There is also a difference: on
the contrary to the two site DMFT result, the spectral
function in holography does not produce a large number of
oscillation in the decay behavior.
Apart from the holography, it is also interesting that two

different approximations of DMFT (single site and two
site) for the same model (Hubbard model) show the
qualitatively different transition scheme from gapless phase
to gapped phase. We hope that the holography may help to
understanding it because the holography can accommodate
them in a single phase diagram but different paths.

FIG. 16. Two site DMFT result [71] vs Curved embedding.

16In high Tc superconductor theory, pseudogap data is usually
presented in symmetrized spectral function [67–69].
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